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Abstract In this paper, we consider the problem of existence and multiplicity of conformal metrics on a Rie-
mannian compact 4-dimensional manifold (M4, g0) with positive scalar curvature. We prove a new existence
criteriumwhich provides existence results for a dense subset of positive functions and generalizes Bahri–Coron
Euler–Poincaré type criterium. Our argument gives estimates of the Morse index of the founded solutions and
has the advantage to extend known existence results. Moreover, it provides, for generic K Morse Inequalities
at Infinity, which give a lower bound on the number of metrics with prescribed scalar curvature in terms of the
topological contribution of its critical points at Infinity to the difference of topology between the level sets of
the associated Euler–Lagrange functional.

Mathematics Subject Classification 58E05 · 35J65 · 53C21 · 35B40

1 Introduction and main results

Let (M4, g0) be a compact 4-dimensional Riemannian manifold with positive scalar curvature Rg0 . Given a
C2 function K defined on the manifold, the prescribed scalar curvature problem consists of finding a metric
g, conformally related to g0, such that the scalar curvature of (M, g) is given by the function K . Writing
g = u2 g0, this amounts to solve the following nonlinear partial differential equation:

(PK) Lg0u = K u3, u > 0 in M4,
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where Lg0 denotes the conformal Laplacian operator, defined as:

Lg0u := −�g0u + 1

6
u.

More generally the same question can be asked on every Riemannian manifold (Mn, g) of dimension n ≥ 3.
In this case the related PDE takes the form:

(SC) Lg0u = K u
n+2
n−2 , u > 0 in Mn,

This problem has been the subject of intensive studies in the last three decades (see [2–10,12,14–16,18–
22,24,26–30,33–36,38] and the references therein).

Regarding the existence results of the problem (SC), we recall that on 3-spheres, an Euler–Poincaré type
criterium for the function K has been obtained by Bahri and Coron [12], see also Chang–Gursky–Yang [18].
Such a criterium has been generalized for the 4-spheres by Ben Ayed et al. [14] and on higher dimensional
spheres, under a closeness to a constant assumption [19] or a “flatness condition” on the critical points of the
function K [28].

For higher dimensional spheres (n ≥ 7), Bahri [10] discovered a new topological invariant and proved new
type of existence results. Some of these results have been generalized by Ben Ayed et al. [15].

The main difficulty of this problem comes from the presence of the critical Sobolev exponent, which
generates blow up and lack of compactness. Indeed the problem enjoys a variational structure, however,
the associated Euler Lagrange functional does not satisfy the Palais–Smale condition. From the variational
viewpoint, it is the occurrence of critical points at Infinity, that are noncompact orbits of the gradient flow,
along which the functional remains bounded and its gradient goes to zero, which prevents the use of variational
methods.

Among approaches developed to deal with this problem, we single out the blow-up analysis of some sub-
critical approximation combined with the use of the Leray–Schauder topological degree, approach developed
by Schoen [34], Li [28,29], Lin and Chen [20–22], among others. The second one is based on a careful study
of the critical point at Infinity, through a Morse type reduction and the identification of their contribution to the
difference of topology between the level sets of the associated Euler–Lagrange functional, has been initiated by
Bahri and Coron [11] and developed through the works of Bahri [10], Ben Ayed et al., see [14,15], Ben Ayed
and Ould Ahmedou [16], among others. Other approaches include perturbations methods of Chang–Yang [19]
and Ambrosetti [2] and the flow approach of Struwe [37,38].

In this paper, we revisit this problem to give new existence aswell asmultiplicity results, extending previous
known ones.

To state our results we need to introduce some notations and assumptions.
We denote by G(a, .) the Green’s function of the conformal Laplacian Lg0 with pole at a and by Aa the

value of its regular part, evaluated at a.
Let 0 < K ∈ C2(M4) be a positive function, defined on the manifold (M4, g0. We say that the function

K satisfies the condition (H0), if K has only nondegenerate critical points and for each critical point y, there
holds

−� K (y)

3K (y)
− 2Ay �= 0.

Denoting K the set of critical point of K , we set

K+ :=
{
y ∈ K; −� K (y)

3K (y)
− 2Ay > 0

}
.

To each p-tuple τp := (y1, . . . , yp) ∈ (K+)p, we associate a Matrix M(τp) = (Mi j ) defined by

Mii = −� K (yi )

3K (yi )2
− 2

Ayi

K (yi )
,

Mi j = −2G(yi , y j )√
K (yi )K (y j )

for i �= j.
(1.1)

We denote by ρ(τp) the least eigenvalue of M(τp) and we say that a function K satisfies the condition (H1)
if for every τp ∈ (K+)p, we have that ρ(τp) �= 0.
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We set
F∞ := {

τp = (y1, . . . , yp) ∈ (K+)p; ρ(τp) > 0
}

(1.2)

and define an index ι : F∞ → Z defined by

ι(τp) := p − 1 +
p∑

i=1

(4 − m(K , yi )),

where m(K , yi ) denotes the Morse index of K at its critical point yi .
Now we state our main result.

Theorem 1.1 Let 0 < K ∈ C2(M4) be a positive function satisfying the conditions (H0) and (H1).
If there exists k ∈ N such that

1. ∑
τp∈F∞;ι(τp)≤k−1

(−1)ι(τp) �= 1,

2.

∀τp ∈ F∞, ι(τp) �= k

Then there exists a solution w to the problem (PK ) such that:
Morse(w) ≤ k,

where Morse(w) is the Morse index of w, defined as the dimension of the space of negativity of the linearized
operator:

Lw(ϕ) := Lg0(ϕ) − 3Kw2ϕ.

Moreover, for generic K , it holds

#Nk ≥
∣∣∣∣∣∣1 −

∑
τp∈F∞;ι(τp)≤k−1

(−1)ι(τp)

∣∣∣∣∣∣ ,

where Nk denotes the set of solutions of (PK ) having their Morse indices less or equal k.

Please observe that, taking in the above k to be l# + 1, where l# is the maximal index of the elements
of F∞, the second assumption is trivially satisfied. Therefore, in this case, we have the following Corollary,
which recovers previous existence results, see [14,16,29].

Corollary 1.2 Let 0 < K ∈ C2(M4) be a positive function satisfying the conditions (H0) and (H1).
If

∑
τp∈F∞

(−1)ι(τp) �= 1,

Then the problem (PK ) has at least one solution.
Moreover, for generic K , it holds

#S ≥
∣∣∣∣∣∣1 −

∑
τp∈F∞

(−1)ι(τp)

∣∣∣∣∣∣ ,

where S denotes the set of solutions of (PK ).
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We point out that the dimension four is crucial in the above existence results. Indeed on manifolds of
dimension n ≥ 5 and under the nondegeneracy assumptions (H0) and (H1) the above sum is always equal to
1.

We notice that the main new contribution of Theorem 1.1 is that we address here the case where the total
sum in the above corollary equals 1, but a partial one is different from 1. The main issue being the possibility
to use such an information to prove existence of solution to the problem (PK ). To understand the difficulty in
addressing such a case, we give, following Li [29], a new interpretation of the above counting formula in terms
of Leray–Schauder degree of the solutions. Indeed Y. Y. Li proved1 that, under the assumption of Corollary 1.2,
there exists R > 0 such that the all solutions of (PK ) remain, for α ∈ (0, 1) in

�R :=
{
u ∈ C2,α; 1

R
< u < R, ‖u‖C2,α < R

}
.

Hence the Leray–Schauder degree deg(v − L−1(K v3)), �R, 0) is well defined. Moreover, it turns out that:

deg(v − L−1(K v3)), �R, 0) = 1 −
∑

τp∈F∞

(−1)ι(τp).

Therefore, considering the case where the counting formula in Corollary 1.2 equals 1, amounts to consider the
case where the Leray–Schauder degree equals zero.

Besides the degree interpretation of the counting formula, another interpretation of the fact that the above
sum is different from one, is that the topological contribution of the critical points at infinity to the level sets
of the associated Euler–Lagrange functional is not trivial. In view of such an interpretation, the above question
can be formulated as follows: what happens if the total contribution is trivial, but some critical points at infinity
induce a difference of topology. Can we still use such a local topological information to prove existence of
solution?

With respect to the above question, Theorem 1.1 gives a sufficient condition to be able to derive from such
a local information, an existence as well as a multiplicity result together with information on the Morse index
of the obtained solution. At the end of this paper, see, we give a more general condition. Since this condition
involves the critical points at infinity of the variational problem, we have postponed its statement to this end
of the paper.

As pointed out above, our result does not only give existence results, but also, under generic conditions,
gives a lower bound on the number of solutions of (PK ). Such a result is reminiscent to the celebrated Morse
Theorem, which states that, the number of critical points of a Morse function defined on a compact manifold,
is lower bounded in terms of the topology of the underlying manifold. Our result can be seen as some sort of
Morse Inequality at Infinity. Indeed it gives a lower bound on the number of metrics with prescribed curvature
in terms of the topology at infinity, that is the one induced by the critical point at infinity.

The remainder of this paper is organized as follows. In Sect. 2 we set up the variational problem, its critical
points at Infinity are characterized in Sect. 3. Section 4 is devoted to the proof of the main result Theorem 1.1
while we give in Sect. 5 a more general statement than Theorem 1.1.

2 Variational structure and the lack of compactness

In this section we recall the functional setting, its variational structure and its main features. Problem (PK )
has a variational structure. The Euler–Lagrange functional is

J (u) =
∫
M Lg0u u(∫

M K |u|4)1/2 (2.1)

defined on H1(M,R)\{0} equipped with the norm

‖u‖2 =
∫
M
Lg0u u.

1 Actually Y. Y. Li proved the a priori estimates on S4 but the proof extends virtually to four dimensional manifolds.
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We denote by	 the unit sphere of H1(M,R) and we set 	+ = {u ∈ 	 : u ≥ 0}. The Palais–Smale condition
fails to be satisfied for J on 	+. To characterize the sequences failing the Palais–Smale condition, we need to
introduce some notations.

Given a ∈ M , we choose a conformal metric

ga := u2a g

such that ua depends smoothly on a. Let x be a conformal normal coordinate centered at a and 
 > 0 uniform
independent of a such that x is well defined on B2
(a).

We set

δa,λ := λ

1 + λ2|x − a|2 , x ∈ B
(a), λ > 0,

and

δ̂a,λ(x) := ua(x) ωa(x) δa,λ(x),

where ωa is a cutoff function such that:

ωa(x) = 1 on B
(a), ωa(x) = 0 on M\B2
(a)

we define ϕa,λ to be the solution of

Lg0ϕa,λ = 8δ̂3a,λ.

We define now the set of potential critical points at infinity associated to the functional J .
For ε > 0 and p ∈ N

∗, let us define

V (p, ε) =
{
u ∈ 	/∃ ai ∈ M, λi > ε−1, αi > 0 for i = 1, . . . , p s.t.

∥∥∥∥∥u −
p∑

i=1

αiϕi

∥∥∥∥∥ < ε,

∣∣∣∣∣
α2
i K (ai )

α2
j K (a j )

− 1

∣∣∣∣∣ < ε, and εi j < ε

}

where ϕi = ϕ(ai ,λi ) and εi j = (λi/λ j + λ j/λi + λiλ j d(ai , a j )
2)−1.

For w a solution of (PK ) we also define V (p, ε, w) as

{
u ∈ 	/∃ α0 > 0 s.t. u − α0w ∈ V (p, ε) and |α2

0 J (u)2 − 1| < ε
}
. (2.2)

The failure of the Palais–Smale condition can be described as follows.

Proposition 2.1 [13,14,16,17,39,40] Let (u j ) ∈ 	+ be a sequence such that ∇ J (u j ) tends to zero and
J (u j ) is bounded. Then, there exist an integer p ∈ N

∗, a sequence ε j > 0, ε j tends to zero, and an extracted
subsequence of u j ’s, again denoted u j , such that u j ∈ V (p, ε j , w) where w is zero or a solution of (PK ).

We consider the following minimization problem for u ∈ V (p, ε) with ε small

min
αi>0, λi>0, ai∈Sn

∥∥∥∥u −
p∑

i=1

αiϕ(ai ,λi )

∥∥∥∥
H1

. (2.3)

We then have the following parametrization of the set V (p, ε).

Proposition 2.2 [9,12,14] For any p ∈ N
∗, there is εp > 0 such that if ε < εp and u ∈ V (p, ε), the

minimization problem (2.3) has a unique solution (up to permutation). In particular,we can write u ∈ V (p, ε)
as follows
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u =
p∑

i=1

ᾱiϕ(āi ,λ̄i ) + v,

where (ᾱ1, . . . , ᾱp, ā1, . . . , āp, λ̄1, . . . , λ̄p) is the solution of (2.3) and v ∈ H1(Sn) such that

(V0) ‖v‖ ≤ ε, (v, ψ) = 0 for ψ ∈
⋃

i≤p, j≤n

{
ϕi ,

∂ϕi

∂λi
,

∂ϕi

∂(ai ) j

}
,

where (ai ) j denotes the j th component of ai and (., .) is the inner scalar associated to the norm ‖.‖.
In the following we will say that v ∈ (V0) if v satisfies (V0).
Following A. Bahri one performs the following finite dimensional reduction:

Proposition 2.3 [9] There exists a C1 map which, to each (α1, . . . , αp, a1, . . . , ap, λ1, . . . , λp) such that∑p
i=1 αiϕ(ai ,λi ) ∈ V (p, ε) with small ε, associates v = v(αi ,ai ,λi ) satisfying

J

( p∑
i=1

αiϕ(ai ,λi ) + v

)
= min

v∈(V0)
J

( p∑
i=1

αiϕ(ai ,λi ) + v

)
.

Moreover, there exists c > 0 such that the following holds

‖v‖ ≤ c

⎛
⎝∑

i≤p

(
|∇K (ai )|

λi
+ 1

λ2i

)
+

∑
k �=r

εkr (Log(ε
−1
kr ))1/2

⎞
⎠ .

Let w be a non degenerate solution of (PK ). The following proposition defines a parametrization of the set
V (p, ε, w).

Proposition 2.4 [10] There is ε0 > 0 such that if ε ≤ ε0 and u ∈ V (p, ε, w), then the problem

min
αi>0, λi>0, ai∈M, h∈Tw(Wu(w))

∥∥∥∥∥u −
p∑

i=1

αiϕ(ai ,λi ) − α0(w + h)

∥∥∥∥∥
has a unique solution (α, λ, a, h). Thus, we write u as follows:

u =
p∑

i=1

αiϕ(ai ,λi )
+ α0(w + h) + v,

where v belongs to H1(M) ∩ Tw(Ws(w)) and it satisfies (V0), Tw(Wu(w)) and Tw(Ws(w)) are the tangent
spaces at w to the unstable and stable manifolds of w.

3 Critical points at infinity of the variational problem

Following A. Bahri we set the following definitions and notations.

Definition 3.1 A critical point at infinity of J on 	+ is a limit of a flow line u(s) of the equation:{
∂u
∂s = −∇ J (u)

u(0) = u0

such that u(s) remains in V (p, ε(s), w) for s ≥ s0.
Here w is either zero or a solution of (PK ) and ε(s) is some function tending to zero when s → ∞. Using
Proposition 2.4, u(s) can be written as:

u(s) =
p∑

i=1

αi (s) ϕ(ai (s),λi (s)) + α0(s)(w + h(s)) + v(s).
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Denoting ai := lims→∞ ai (s) and αi = lims→∞ αi (s), we denote by

(a1, . . . , ap, w)∞ or
p∑

i=1

αi ϕ(ai ,∞) + α0w

such a critical point at infinity. If w �= 0 it is called of w-type.

We first point out that, as is proven in [16], given a function K aC2 positive function satisfying the condition
of Theorem 1.1 and w a solution of (PK ). Then for each p ∈ N, there are no critical point or critical point
at infinity of J in the set V (p, ε, w). The reason is that the term coming from the contribution of w is strong
enough to bring down any flow line.

Moreover, it follows from [14,16], that the critical points at infinity are in one-to-one correspondence with
the elements of the setF∞ defined in (1.2). that is a critical point at infinity corresponds to τp := (y1, . . . , yp) ∈
(K+)p such that the related Matrix M(τp) defined in (1.1) is positive definite. Such a critical point at infinity
will be denoted by τ∞

p := (y1, . . . , yp)∞.

Like an usual critical point, it is associated to any critical point at infinity x∞ of the problem (PK ), which
are combination of classical critical points with a 1-dimensional asymptote, stable and unstable manifolds,
W∞

s (x∞) and W∞
u (x∞). These manifolds can be easily described once a Morse type reduction is performed,

see [10,14]. The stable manifold is, as usual, defined to be the set of points attracted by the asymptote. The
unstable one is a shadow object, which is the limit ofWu(xλ), xλ being the critical point of the reduced problem
and Wu(xλ) its associated unstable manifolds. Indeed the flow in this case splits the variable λ from the other
variables near x∞.

Next, following A. Bahri [10] we extend the definition of domination of critical points to “critical points
at Infinity”.

Definition 3.2 z∞ is said to be dominated by another critical point at infinity z′∞ if

Wu(z
′∞) ∩ Ws(z∞) �= ∅.

If we assume that the intersection is transverse, then we obtain

index(z′∞) ≥ index(z∞) + 1.

4 Proof of the main result

This section is devoted to the proof of the main result of this paper, Theorem 1.1.

Proof of Theorem 1.1 Setting

l# := sup{ι(τp); τp ∈ F∞}
For l ∈ {0, . . . , l#} we define the following sets:

X∞
l :=

⋃
τp∈F∞; ι(τp)≤l

W∞
s (τ∞

p ), (4.1)

where W∞
s (τ∞

p ) denotes the stable manifold associated to the critical point at infinity τ∞
p and

C(X∞
l ) := {t u + (1 − t) (y0)∞, t ∈ [0, 1], u ∈ X∞

l }, (4.2)

where y0 is a global maximum of K on the manifold M4.
By a theorem of Bahri–Rabinowitz [13], it follows that:

W∞
s (τ∞

p ) = W∞
s (τ∞

p )
⋃ ⋃

x∞<τ∞
p

W∞
s (x∞)

⋃ ⋃
w<τ∞

p

Wu(w),
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where x∞ is a critical point at infinity dominated by τ∞
p and w is a solution of (PK ) dominated by τ∞

p . By
transversality arguments we assume that the index of x∞ and theMorse index ofw are no bigger than l. Hence

X∞
l =

⋃
ι(τp)≤l

W∞
s (τ∞

p )
⋃

w<τ∞
p

Wu(w).

It follows that X∞
k is a stratified set of top dimension ≤ l. Without loss of generality we may assume it to be

equal to l. Hence C(X∞
k ) is also a stratified set of top dimension l + 1.

Now we use the gradient flow of −∇ J to deform C(X∞
k ). We first notice that without loss of generality

we may assume the gradient flow is of Morse-Smale type, that is, we may assume that the intersection of its
stable and unstable manifolds are transversal, see [1]. Hence we can assume that the deformation avoids all
critical as well as critical points at Infinity having their Morse indices greater than l + 2. It follows then by a
Theorem of Bahri and Rabinowitz [13], that C(X∞

k ) retracts by deformation on the set

U := X∞
l

⋃ ⋃
ι(x∞)=l+1

W∞
u (x∞)

⋃ ⋃
w<τ∞

p

Wu(w). (4.3)

Now taking l = k − 1 and using that by assumption of Theorem 1.1, there are no critical point at infinity with
index k, we derive that C(X∞

k ) retracts by deformation onto

Z∞
k := X∞

k ∪ ∪w;∇ J (w)=0;w dominated by C(X∞
k )Wu(w). (4.4)

Now observe that, it follows from the above deformation retract that the problem (PK ) has necessary a solution
w with m(w) ≤ k. Otherwise it follows from (4.4) that

1 = χ(Z∞
k ) =

∑
τp∈F∞;ι(τp)≤k−1

(−1)ι(τp),

where χ denotes the Euler Characteristic. Such an equality contradicts the assumption 2 of the theorem.
Now for generic K , it follows from the Sard–Smale Theorem [32], that all solutions of (PK ) are nonde-

generate solutions, in the sense that their associated linearized operator does not admit zero as an eigenvalue.
See details in [36].

We derive now from (4.4), taking the Euler Characteristic of both sides that:

1 = χ(Z∞
k ) =

∑
τp∈F∞;ι(τp)≤k−1

(−1)ι(τp) +
∑

w<X∞
k ;∇ J (w)=0

(−1)m(w).

It follows then that∣∣∣∣∣∣1 −
∑

τp∈F∞;ι(τp)≤k−1

(−1)ι(τp)

∣∣∣∣∣∣ ≤
∑

w;∇ J (w)=0,m(w)≤k

(−1)m(w) ≤ #Nk,

where Nk denotes the set of solutions of (PK ) having their Morse indices ≤ k. ��

5 A general existence result

In this last section of this paper, we give a generalization of Theorem 1.1. Namely instead of assuming that
there are no critical point at infinity of index k, we assume that the intersection number modulo 2, between the
suspension of the complex at infinity of order k, C(X∞

k ) and the stable manifold of all critical points at infinity
of index k + 1 is equal to zero. More precisely, for τp ∈ F∞ such that ι(τp) = k, we define the following
intersection number:

μk(τp) := C(X∞
k−1) · W∞

s (τ∞
p ) (mod2).

Observe that this intersection number is well defined since we may assume by transversality that:

∂C(X∞
k )

⋂
W∞

s (τ∞
p ) = ∅.
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indeed

dim(∂C(X∞
k )) = k − 1, while dim(W∞

s (τ∞
p )) = 4 − k.

We are now ready to state the following existence result:

Theorem 5.1 Let 0 < K ∈ C2(M4) be a positive function satisfying the conditions (H0) and (H1).
If there exists k ∈ N such that

1. ∑
τp∈F∞;ι(τp)≤k−1

(−1)ι(τp) �= 1,

2.

∀τp ∈ F∞, such that ι(τp) = k, there holds μk(τp) = 0.

Then there exists a solution w of the problem (PK ) such that:
Morse(w) ≤ k,

where Morse(w) is the Morse index of w.
Moreover, for generic K , it holds

#Nk ≥
∣∣∣∣∣∣1 −

∑
τp∈F∞;ι(τp)≤k−1

(−1)ι(τp)

∣∣∣∣∣∣ ,

where Nk denotes the set of solution of (PK ) having their Morse indices less or equal k.

Proof The proof going along with the proof of Theorem 1.1, we will sketch the differences. Keeping the
notation of the proof of Theorem 1.1, we observe that, since

∀τp ∈ F∞, such that ι(τp) = k, there holds μk(τp) = 0,

we may assume that the deformation of C∞
k along any pseudogradient flow of −J , avoids all critical points at

infinity having their Morse indices equal to k. It follows then from (4.3) that C(X∞
k ) retracts by deformation

onto
Z∞
k := X∞

k

⋃ ⋃
w;∇ J (w)=0;w dominated by C(X∞

k )

Wu(y). (5.1)

Now the remainder of the proof is identical to the proof of Theorem 1.1. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
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