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Abstract In this article, we investigate the direct problem of approximation theory in the variable exponent
Smirnov classes of analytic functions, defined on a doubly connected domain bounded by two Dini-smooth
curves.

Mathematics Subject Classification 30E10 · 41A20 · 41A25 · 46E30

1 Introduction

Generally, variable exponent Lebesgue spaces are a natural generalization of the classical Lebesgue spaces L p,
1 < p < ∞, replacing the constant p with a function p (.). The direct and inverse theorems of approximation
theory in the variable exponent Smirnov classes of analytic functions, defined on the simply connected domains
with Dini-smooth boundaries, were obtained by Israfilov and Testici [7,8].

In this work, rational approximation problem in variable exponent Smirnov classes of functions defined
on a doubly connected domain is investigated.

2 Basic definitions and some notations

Suppose that G is an arbitrary doubly connected domain in the complex plane C, bounded by two rectifiable
Jordan curves L1 and L2. Without loss of generality, we may assume that the closed curve L2 is in the
closed curve L1 and 0 ∈ intL2. Let G0

1 := intL1, G∞
1 := ext L1, G0

2 = intL2, G∞
2 := ext L2, D :=

{w ∈ C : |w| < 1}, D− := {w ∈ C : |w| > 1} and γ0 := ∂D := {w ∈ C : |w| = 1}.
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We denote byw = φ(t) (w = φ1(t)) the conformal mapping of G∞
1 (G0

2) onto domain D− which satisfies
the conditions

φ(∞) = ∞, lim
t→∞

φ(t)

t
> 0,

(
φ1(0) = ∞, lim

t→0
tφ1(t) > 0

)
,

and let ψ and ψ1 be the inverse mappings of φ and φ1, respectively.
Throughout this paper, we assume that the letters c1,c2,. . . always remain to denote positive constants that

may different at each occurrence.

Definition 2.1 Let Γ be some rectifiable Jordan curve, p(.) : Γ → [1, ∞) be some Lebesgue measurable
function. By L p(.)(Γ ), we denote the class of all Lebesgue measurable functions f , such that

I p(.)( f ) :=
∫

Γ

| f (ς)|p(ς)|dς | < ∞.

L p(.)(Γ ) becomes a Banach space with respect to the norm

‖ f ‖L p(.)(Γ ) := inf

{
λ > 0 : I p(.)

(
f

λ

)
� 1

}
.

Let F be some Jordan rectifiable curve Γ ⊂ C or the segment [0, 2π] and let |F | denote the Lebesgue
measure of F . We define the classes of functions P(F ), P log(F ) and P

log
0 (F ) as

P(F ) :=
{
p : 1 � p− := ess inf

t∈F
p(t) � p+ := ess sup

t∈F
p(t) < ∞

}
,

P log(F ) :=
{
p ∈ P(F ) : ∃c > 0, ∀t1, t2 ∈ F : |p(t1) − p(t2)| ln

( |F |
|t1 − t2|

)
� c

}
,

P
log
0 (F ) := {

p ∈ P log(F ) : p− > 1
}
.

Detailed information on variable exponent Lebesgue space can be found in the books [1,2].

Definition 2.2 Let a finite simply connected domain U with the rectifiable Jordan curve boundary Γ in the
complex plane C be given, and let Γr be the image of circle {w ∈ C : |w| = r, 0 < r < 1} under some
conformal mapping of D onto U . By E1(U ), we denote the class of analytic functions f in U which satisfy

∫
Γr

| f (t)| |dt | < ∞

uniformly in r .
It is known that every function of class E1(U ) has nontangential boundary values almost everywhere on

Γ and the boundary function belongs to L1(Γ ) [3, pp. 438–453].

Definition 2.3 Let a finite simply connected domain U with the rectifiable Jordan curve boundary Γ in the
complex planeC be given, and let p(.) ∈ P

log
0 (Γ ). The variable exponent Smirnov class of analytic functions

is defined as:

E p(.)(U ) :=
{
f ∈ E1(U ) : f ∈ L p(.)(Γ )

}
.

Definition 2.4 Let L = L1 ∪ L−
2 and p(.) ∈ P

log
0 (L). The variable exponent Smirnov class with respect to

the doubly connected domain G is defined as:

E p(.)(G) :=
{
f ∈ E1(G) : f ∈ L p(.)(L)

}
.

For f ∈ E p(.)(G), the norm E p(.)(G) can be defined as:

‖ f ‖E p(.)(G) := ‖ f ‖L p(.)(L) .
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Definition 2.5 We define the modulus of continuity of a function g ∈ L p(.)(γ0) by the relation

Ω(g, δ)p(.) := sup
0<θ�δ

‖g(.) − σθg(.)‖L p(.)(γ0)
,

where σθg(w) := 1
θ

∫ θ

0 g(weit )dt, w ∈ γ0, 0 < θ < π .

Definition 2.6 Let Γ be a rectifiable Jordan curve in the complex planeC. For a given t ∈ Γ and f ∈ L1(Γ ),
the operator defined by

SΓ ( f )(t) := lim
ε→0+

1

2π i

∫
Γ ∩{ς : |ς−t |>ε}

f (ς)

ς − t
dς

is called the Cauchy singular operator.

Definition 2.7 A smooth Jordan curve Γ is called Dini-smooth, if
∫ δ

0

Ω(σ, s)

s
ds < ∞, δ > 0,

where σ(s) is the angle, between the tangent line of Γ and the positive real axis expressed as a function of
arclength s, with the modulus of continuity Ω(σ, s).

Kokilashvili and Samko proved in [11] that, if Γ is a Dini-smooth curve, then the operator SΓ is bounded
in L p(.)(Γ ) with p(.) ∈ P

log
0 (Γ ), i.e., there exists a positive constant c1 such the following inequality holds

for any f ∈ L p(.)(Γ )

‖SΓ ( f )‖L p(.)(Γ ) � c1‖ f ‖L p(.)(Γ ). (1)

To prove our main theorem, we need the following lemma. It can be found in [3, p. 431].

Lemma 2.8 Let f ∈ L1(Γ ). Then, the functions f + : intΓ → C and f − : extΓ → C defined by

f +(t) := 1

2π i

∫
Γ

f (ς)

ς − t
dς, t ∈ intΓ, f −(t) := 1

2π i

∫
Γ

f (ς)

ς − t
dς, t ∈ extΓ

are analytic in intΓ and extΓ , respectively, and satisfy the following formulas f −(∞) = 0:

f +(t) = SΓ f (t) + 1

2
f (t), f −(t) = SΓ f (t) − 1

2
f (t),

f (t) = f +(t) − f −(t)

a.e. on Γ .

The level lines of the domains G0
1 and G0

2 are defined for r, R > 1 by

Cr := {t : |φ(t)| = r}, CR := {t : |φ1(t)| = R}.
The Faber polynomials Φk(t) of degree k are defined by the relation

ψ ′(w)

ψ(w) − t
=

∞∑
k=0

Φk(t)

wk+1 , t ∈ G0
1, w ∈ D−,

and have the following integral representations [12]:
If t ∈ intCr , then

Φk(t) = 1

2π i

∫
Cr

φk(ς)

ς − t
dς = 1

2π i

∫
|w|=r

ψ ′(w)wk

ψ(w) − t
dw. (2)

And for t ∈ extCr , we have

Φk(t) = φk(t) + 1

2π i

∫
Cr

φk(ς)

ς − t
dς. (3)
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Similarly, the Faber polynomials Φ̃k(1/t) of degree k with respect to 1/z are defined by the relation

ψ ′
1(w)

ψ1(w) − t
=

∞∑
k=0

Φ̃k(1/t)

wk+1 , t ∈ G∞
2 , w ∈ D−,

and satisfy the following relations:
If t ∈ intCR , then

Φ̃k(1/t) = φk
1(t) − 1

2π i

∫
CR

φk
1(ς)

ς − t
dς. (4)

And in case t ∈ extCR , we obtain

Φ̃k(1/t) = − 1

2π i

∫
CR

φk
1(ς)

ς − t
dς = − 1

2π i

∫
|w|=R

ψ ′
1(w)wk

ψ1(w) − t
dw. (5)

If f (t) is a function in E1(G), then f (t) has the following formula [13]:

f (t) =
∞∑
k=0

akΦk(t) +
∞∑
k=1

ãkΦ̃k(1/t), (6)

where

ak = 1

2π i

∫
|w|=r1

f (ψ(w))

wk+1 dw, 1 < r1 < r, k = 0, 1, 2, . . . ,

and

ãk = 1

2π i

∫
|w|=R1

f (ψ1(w))

wk+1 dw, 1 < R1 < R. (7)

In case if G is an annulus domain, then the series Eq. (6) becomes the Laurent series for the function f (t).
Taking the first n terms of the series Eq. (6), we obtain the rational function

Rn( f, t) :=
n∑

k=0

akΦk(t) +
n∑

k=1

ãkΦ̃k(1/t). (8)

For large values of n and if f ∈ E p(.)(G), wewill prove that such a rational function Rn( f, t) approximated
the function f (t) arbitrarily closely.

If L1 and L2 are Dini-smooth, then by [15, pp. 321–456], it follows that

0 < c2 ≤ |ψ ′(w)| ≤ c3 < ∞, 0 < c4 ≤ |ψ ′
1(w)| ≤ c5 < ∞, (9)

where c2, c3, c4 and c5 are positive constants.
Let Li (i = 1, 2) be a Dini-smooth curve, we define the following functions f0 = f ◦ψ for f ∈ L p(.)(L1)

with p ∈ P log(L1), f1 = f ◦ ψ1 for f ∈ L p(.)(L2) with p ∈ P log(L2), p0 = p ◦ ψ for p ∈ P log(L1) and
p1 = p ◦ ψ1 for p ∈ P log(L2).

From [7], it follows that f0 ∈ L p0(.)(γ0) with p0 ∈ P
log
0 (γ0) and f1 ∈ L p1(.)(γ0) with p1 ∈ P

log
0 (γ0).

Further that we obtain f +
0 ∈ E p0(.)(D), f −

0 ∈p0(.) (D−), f +
1 ∈ E p1(.)(D) and f +

1 ∈ E p1(.)(D−) such that
f −
0 (∞) = ∞, f −

1 (∞) = 0 and the following relations hold a. e. on γ0

f0(t) = f +
0 (t) − f −

0 (t), (10)

f1(t) = f +
1 (t) − f −

1 (t). (11)

The following lemma was proved in [7].
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Lemma 2.9 Let g ∈ E p(.)(D) with p ∈ P
log
0 (γ0). If

∑n
k=0 akw

k is the n th partial sum of the Taylor series
of g at the origin, then the following estimate

‖g(w) −
n∑

k=0

akw
k‖L p(.)(γ0)

� c6 Ω(g, 1/n)p(.)

holds, where c6 is a positive constant.

In the literature, there are sufficiently wide investigations relating to the approximation problems in the
simply connected domains. For example, the problems of approximation theory for Smirnov classes with
variable exponent, weighted Smirnov classes, weighted Smirnov Orlicz classes and weighted rearrangement
invariant Smirnov classes were studied in [4–8]. But the approximation problems in the doubly connected
domains were not investigated sufficiently wide.

In this work, we study the direct theorem of approximation theory in the variable exponent Smirnov classes,
defined in the doubly connected domains bounded by two Dini-smooth curves.

Similar problems in Smirnov classes, Smirnov Orlicz classes and weighted rearrangement invariant
Smirnov classes were obtained in [9,10,14].

3 The main result

Our main result is given in the following theorem.

Theorem 3.1 Let G be a finite doubly connected domain with the Dini-smooth boundary, L = L1 ∪ L−
2 ,

L p(.)(L) be a Lebesgue space with variable exponent p ∈ P
log
0 (L). If f is a function in E p(.)(G), then for

every n ∈ N the estimate

‖ f − Rn( f, .)‖E p(.)(G) � c7
[
Ω( f0, 1/n)p0(.) + Ω( f1, 1/n)p1(.)

]
holds, where c7 is a positive constant and Rn( f, .) is the rational function defined by Eq. (8).

Proof Let f ∈ E p(.)(G), then f0 ∈ L p0(.)(γ0), f1 ∈ L p1(.)(γ0) and putting φ(ς) and φ1(ς) in place of w in
Eqs. (10) and (11), respectively, we obtain

f (ς) = f +
0 (φ(ς)) − f −

0 (φ(ς)), ς ∈ L1, (12)

f (ς) = f +
1 (φ1(ς)) − f −

1 (φ1(ς)), ς ∈ L2. (13)

We suppose that t ∈ ext L1, then using the relation (3), we have

n∑
k=0

akΦk(t) =
n∑

k=0

akφ
k(t) + 1

2π i

∫
L1

∑n
k=0 akφ

k(ς)

ς − t
dς,

and by the relation Eq. (12)

n∑
k=0

akΦk(t) =
n∑

k=0

akφ
k(t) + 1

2π i

∫
L1

∑n
k=0 akφ

k(ς) − f +
0 (φ(ς))

ς − t
dς

+ 1

2π i

∫
L1

f (ς)

ς − t
dς + 1

2π i

∫
L1

f −
0 (φ(ς))

ς − t
dς.

Since f −
0 (φ(ς)) ∈ E p0(.)(G∞

1 ), we get

1

2π i

∫
L1

f −
0 (φ(ς))

ς − t
dς = − f −

0 (φ(t)).
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So, we reach the following relation:
n∑

k=0

akΦk(t) =
n∑

k=0

akφ
k(t) + 1

2π i

∫
L1

∑n
k=0 akφ

k(ς) − f +
0 (φ(ς))

ς − t
dς

+ 1

2π i

∫
L1

f (ς)

ς − t
dς − f −

0 (φ(t)). (14)

Now for t ∈ extL2, and using the relation Eqs. (5) and (13), we obtain
n∑

k=1

ãkΦ̃k(1/t) = − 1

2π i

∫
L2

∑n
k=1 ãkφ

k
1(ς)

ς − t
dς

= 1

2π i

∫
L2

f +
1 (φ1(ς)) − ∑n

k=0 ãkφ
k
1(ς)

ς − t
dς − 1

2π i

∫
L2

f (ς)

ς − t
dς. (15)

Since ext L1 ⊂ ext L2, the relation Eqs. (14) and (15) are valid for t ∈ extL1, and give
n∑

k=0

akΦk(t) +
n∑

k=1

ãkΦ̃k(1/t) =
n∑

k=0

akφ
k(t) − f −

0 (φ(t))

− 1

2π i

∫
L1

f +
0 (φ(ς)) − ∑n

k=0 akφ
k(ς)

ς − t
dς

− 1

2π i

∫
L2

f +
1 (φ1(ς)) − ∑n

k=0 ãkφ
k
1(ς)

ς − t
dς.

Limiting as t → z ∈ L1 along non-tangential path outside L1 for almost every z ∈ L1, we get

f (z) −
n∑

k=0

akΦk(z) −
n∑

k=1

ãkΦ̃k(1/z) = f +
0 (φ(z)) −

n∑
k=0

akφ
k(z)

+1

2

(
f +
0 (φ(z)) −

n∑
k=0

akφ
k(z)

)
+ SL1

(
f +
0 (φ(z))−

n∑
k=0

akφ
k(z)

)

− 1

2π i

∫
L2

f +
1 (φ1(ς))−∑n

k=1 ãkφ
k
1(ς)

ς − z
dς. (16)

Using Eq. (16), Minkowski’s inequality and the relation Eq. (1), we have

‖ f − Rn( f, .)‖L p(.)(L1)
� c8 ‖ f +

0 (w) −
n∑

k=0

akw
k‖L p0(.)(γ0)

+ c9 ‖ f +
1 (w) −

n∑
k=0

ãkw
k‖L p1(.)(γ0)

. (17)

From the relation Eq. (17), and using Lemma 2.9, we get

‖ f − Rn( f, .)‖L p(.)(L1)
� c10

[
Ω( f0, 1/n)p0(.) + Ω( f1, 1/n)p1(.)

]
. (18)

For t ′ ∈ intL2, by the relation Eqs. (3) and (13), we get
n∑

k=1

ãkΦ̃k(1/t
′) =

n∑
k=1

ãkφ
k
1(t

′) − 1

2π i

∫
L2

∑n
k=0 ãkφ

k
1(ς)

ς − t ′
dς

=
n∑

k=1

ãkφ
k
1(t

′) − 1

2π i

∫
L2

∑n
k=0 ãkφ

k
1(ς) − f +

1 (φ1(ς))

ς − t ′
dς

− 1

2π i

∫
L2

f (ς)

ς − t ′
dς − f −

1 (φ1(t
′)). (19)
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And for t ′ ∈ intL1, from (2) and (12), we have

n∑
k=1

akΦk(t
′) = 1

2π i

∫
L1

∑n
k=1 akφ

k(ς)

ς − t ′
dς

= 1

2π i

∫
L1

∑n
k=1 akφ

k(ς) − f +
0 (φ(ς))

ς − t ′
dς + 1

2π i

∫
L1

f (ς)

ς − t ′
dς. (20)

Since intL2 ⊂ intL1, the relation Eqs. (19) and (20) are valid for t ′ ∈ intL2, and give

n∑
k=0

akΦk(t
′) +

n∑
k=1

ãkΦ̃k(1/t
′) = 1

2π i

∫
L1

∑n
k=0 akφ

k(ς) − f +
0 (φ(ς))

ς − t ′
dς

− 1

2π i

∫
L2

∑n
k=1 ãkφ

k
1(ς) − f +

1 (φ1(ς))

ς − t ′
dς

− f −
1 (φ1(t

′)) +
n∑

k=1

ãkφ
k
1(t

′).

Limiting as t ′ → z ∈ L2 along non-tangential path inside L2 for almost every z ∈ L2, we get

f (z) −
n∑

k=0

akΦk(z) −
n∑

k=1

ãkΦ̃k(1/z) = f +
1 (φ1(z)) − 1

2

(
n∑

k=1

ãkφ
k
1(z) − f +

1 (φ1(z))

)

− SL2

(
n∑

k=1

ãkφ
k
1(z) − f +

1 (φ1(z))

)

− 1

2π i

∫
L1

∑n
k=0 akφ

k(ς) − f +
0 (φ(ς))

ς − z
dς. (21)

Using Eq. (21), Minkowski’s inequality, and the relation Eq. (1), we obtain

‖ f − Rn( f, .)‖L p(.)(L2)
� c11 ‖ f +

1 (w) −
n∑

k=1

ãkw
k‖L p1(.)(γ0)

+ c12 ‖ f +
0 (w) −

n∑
k=0

akw
k‖L p0(.)(γ0)

. (22)

From the relation Eq. (22), and using Lemma 2.9, we get

‖ f − Rn( f, .)‖L p(.)(L2)
� c13

[
Ω( f0, 1/n)p0(.) + Ω( f1, 1/n)p1(.)

]
. (23)

Since L = L1 ∪ L−
2 , and f ∈ E p(.)(G), we get

‖ f − Rn( f, .)‖L p(.)(L) � ‖ f − Rn( f, .)‖L p(.)(L1)
+ ‖ f − Rn( f, .)‖L p(.)(L2)

.

Then taking into account the relation Eqs. (18) and (23), we reach

‖ f − Rn( f, .)‖E p(.)(G) � c7
[
Ω( f0, 1/n)p0(.) + Ω( f1, 1/n)p1(.)

]
.

Thus, the theorem is proved. ��
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