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Abstract We study the complete intersection property and the algebraic invariants (index of regularity, degree)
of vanishing ideals on degenerate tori over finite fields. We establish a correspondence between vanishing ideals
and toric ideals associated to numerical semigroups. This correspondence is shown to preserve the complete
intersection property, and allows us to use some available algorithms to determine whether a given vanishing
ideal is a complete intersection. We give formulae for the degree, and for the index of regularity of a complete
intersection in terms of the Frobenius number and the generators of a numerical semigroup.
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1 Introduction

Let K = IF; be a finite field with g elements and let vy, ..., v, be a sequence of positive integers. Consider
the degenerate projective torus

X o= {[(x)", ..., x)]lx; € K* forall i} ¢ P" !,

parameterized by the monomials xfl, .., X", where K* = F,\{0} and P"~! is a projective space over the
field K. This set is a multiplicative group under componentwise multiplication. If v; = 1 for all i, X is justa
projective torus.
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Let S = K[t1, ..., ta] = ®72,Sa be a polynomial ring over the field K with the standard grading. Recall
that the vanishing ideal of X, denoted by I (X), is the ideal of S generated by the homogeneous polynomials
that vanish on X. To study 7 (X), we will associate with this a semigroup S and a toric ideal P that depend on
Vi, ..., U, and the multiplicative group of IF,.

In what follows 8 denotes a generator of the cyclic group (K*, -), d; denotes o(8"'), the order of ¥ for
i =1,...,n,and S denotes the semigroup Nd| + - - - + Nd,,. If dy, .. ., d,, are relatively prime, S is called a
numerical semigroup. As is seen in Sect. 3, the algebra of 7 (X) is closely related to the algebra of the toric
ideal of the semigroup ring

KIS1= K[y, ..., y" c K[yl,

where K[y] is a polynomial ring. Recall that the toric ideal of K[S], denoted by P, is the kernel of the
following epimorphism of K -algebras

0: S=KIt,....t.] — K[S], [+ £O0, .y,

Thus, S/P =~ K[S]. Since K[y;] is integral over K[S] we have ht(P) = n — 1. The ideal P is graded if
one gives degree d; to variable ;. For n = 3, the first non-trivial case, this type of toric ideals were studied by
Herzog [14]. For n > 4, these toric ideals have been studied by many authors [2,4,5,8,9,23].

In this paper, we relate some of the algebraic invariants and properties of / (X) with those of P and S. We
are especially interested in the degree and the regularity index, and in the complete intersection property.

One of the most well known properties that P and 7 (X) have in common is that both are Cohen—Macaulay
graded lattice ideals of dimension 1 [14,19].

The contents of this paper are as follows. In Sect. 2, we introduce some of the notions that will be needed
throughout the paper.

A key fact that allows us to link the properties of P and 7(X) is that the homogeneous lattices of these

ideals are closely related (Proposition 3.2). If g1, ..., g is a set of generators for P consisting of binomials,
then i1y, ..., hy, is a set of generators for / (X), where Ay is the binomial obtained from g after substituting #;
by tid’ fori =1, ..., n (Proposition 3.3). As a consequence if n = 3, then / (X) is minimally generated by 2 or

3 binomials (Corollary 3.4). If 7(X) is a complete intersection, one of our main results shows that a minimal
generating set for /(X) consisting of binomials corresponds to a minimal generating set for P consisting of
binomials and viceversa (Theorem 3.6). As a consequence / (X) is a complete intersection if and only if P is
a complete intersection (Corollary 3.7).

We show a formula for the degree of S/I(X) (Lemma 3.11). The Frobenius number of a numerical
semigroup is the largest integer not in the semigroup. For complete intersections, we give a formula that
relates the index of regularity of S/7 (X) with the Frobenius number of the numerical semigroup generated by
o(B"), ..., 0(B "), where r is the greatest common divisor of d, ..., d, (Corollary 3.13).

The Frobenius number occurs in many branches of mathematics and is one of the most studied invariants in
the theory of semigroups. A great deal of effort has been directed at the effective computation of this number,
see the monograph of Ramirez-Alfonsin [18].

The complete intersection property of P has been nicely characterized, using the notion of a binary tree
[2,4] and the notion of suites distinguées [S]. For n = 3, there is a classical result of [14] showing an algorithm
to construct a generating set for P. Thus, using our results, one can obtain various classifications of the com-
plete intersection property of I (X). Furthermore, in [2] an effective algorithm is given to determine whether
P is a complete intersection. This algorithm has been implemented in the distributed library cimonom.lib [3]
of Singular [11]. Thus, using our results, one can use this algorithm to determine whether 7 (X) is a complete
intersection (see Example 3.14). If 1(X) is a complete intersection, this algorithm returns the generators of
P and the Frobenius number. As a byproduct, we can construct interesting examples of complete intersection
vanishing ideals (see Example 3.16).

We show how to compute the vanishing ideal / (X) using the notion of saturation of an ideal with respect
to a polynomial (Proposition 3.18).

Itis worth mentioning that our results could be applied to coding theory. The algebraic invariants of S/ (X)
occur in algebraic coding theory as we now briefly explain. An evaluation code over X is a linear code obtained
by evaluating the linear space of homogeneous d-forms of S on the set of points X C P"~!. A linear code
obtained in this way, denoted by Cx(d), has length |X| and dimension dimg (S/I(X))4. The computation
of the index of regularity of S/7(X) is important for applications to coding theory: for d > reg S/1(X) the
code Cx(d) coincides with the underlying vector space K IXI and has, accordingly, minimum distance equal
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to 1. Thus, potentially good codes Cx (d) can occur only if 1 < d < reg (S/1(X)). The length, dimension
and minimum distance of evaluation codes Cx(d) arising from complete intersections have been studied in
[6,10,12,15,16,20,21].

For all unexplained terminology and additional information, we refer to [7] (for the theory of lattice ideals),
[22,24] (for commutative algebra and the theory of Hilbert functions).

2 Preliminaries

We continue to use the notation and definitions used in Sect. 1. In this section, we introduce the notions of
degree and regularity via Hilbert functions, and the notion of a lattice ideal.
The Hilbert function of S/1(X) is given by Hy (d) := dimg (Sq/1(X) N Sg4), and the Krull-dimension of
S/1(X) is denoted by dim(S/7(X)). The unique polynomial
k=1
hx() =Y cit' € Qlr]

i=0

of degree k — 1 = dim(S/1(X)) — 1 such that hx(d) = Hx(d) for d > 0 is called the Hilbert polynomial
of §/1(X). The integer cx—1(k — 1)!, denoted by deg(S/I (X)), is called the degree of S/I(X). According to
[13, Lecture 13], hx(d) = | X| ford > |X| — 1. Hence

|X| = hx(d) = co = deg(S/1(X))
for d > | X| — 1. Thus, | X] is the degree of S/1(X).

Definition 2.1 The index of regularity of S/I1(X), denoted by reg(S/1(X)), is the least integer £ > 0 such
that hx(d) = Hx(d) ford > ¢£.

The index of regularity of S/1(X) is equal to the Castelnuovo Mumford regularity of S/ (X) because this
ring is Cohen—Macaulay of dimension 1.

Remark 2.2 The Hilbert series of S/1(X) can be written as

o0

- ho+hit+---+ het”

Fx() = 3 Hy(iyh = 0H LT
i=0

where ho, ..., h, are positive integers. The number r is the regularity index of S/1(X) and hg+ - - - + h, is the
degree of S/1(X) (see [24, Corollary 4.1.12]). The same observation holds for any graded Cohen—Macaulay
ideal I C S of height n — 1.

Recall that a binomial in S is a polynomial of the form ¢ — t°, where a, b € N" and where, if @ =
(ai,...,a,) € N', we set

=" e S.

A binomial ideal is an ideal generated by binomials.
Given ¢ = (¢;) € 7", the set supp(c) = {i|c; # 0} is the support of c. The vector ¢ can be written as
¢ =cT — ¢, where ¢ and ¢~ are two non-negative vectors with disjoint support. If # is a monomial, with

a = (a;) € N, the set supp(t?) = {t;| a; > 0} is called the support of t¢.
Definition 2.3 A subgroup £ of Z" is called a lattice. A lattice ideal is an ideal of the form
(L) =" =1 JaeLhCS

for some lattice £ in Z". A lattice L is called homogeneous if there is an integral vector w with positive entries
such that (w, a) = 0 fora € L.

Definition 2.4 An ideal I C S is called a complete intersection if there exists g, ..., gn such that [ =
(g1, ---,8&n), where m is the height of 1.
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Remark 2.5 A graded binomial ideal / C S is a complete intersection if and only if / is generated by a set of
homogeneous binomials g1, ..., g,, with m = ht(), and any such set of homogeneous generators is already
a regular sequence (see [24, Proposition 1.3.17, Lemma 1.3.18]).

Lemma 2.6 Let S = K|t1, ..., t,] be a polynomial ring with the standard grading. If I is a graded ideal of
S generated by a homogeneous regular sequence f1, ..., fu—1, then
n—1

reg(S/1) = Z(deg(ﬁ) — 1) and deg(S/I) = deg(f1)---deg(fn—1).

i=1

Proof We set §; = deg(f;). By Villarreal [24, p. 104], the Hilbert series of S/ is given by

oA =) IS A4+ +070
(I—nm (1—1) :

Thus, by Remark 2.2, reg(S/I) = Zf;ll (8; — 1) and deg(S/I) =61 ---6p—1. O

Fi(t) = 2.1)

3 Complete intersections and algebraic invariants

We continue to use the notation and definitions used in Sects. 1 and 2. In this section, we study vanishing
ideals over degenerate projective tori. We study the complete intersection property and the algebraic invariants
of vanishing ideals. We will establish a correspondence between vanishing ideals and toric ideals associated
to semigroups of N.

Let D be the non-singular matrix D = diag(dj, ..., d,). Consider the homomorphisms of Z-modules:

$ZZH—>Z, e,~r—>di,
D:Z"—)Z", e,-r—>d,~el-.

If ¢ = (¢;) € R", we set |c] = >/, ¢;. Notice that [D(c)| = ¥(c) for any ¢ € Z". There are two
homogeneous lattices that will play a role here:

L1 =ker(y) and L = D(ker(y)).

The map D induces a Z-isomorphism between £1 and L. It is well known [24] that the toric ideal P is the
lattice ideal of L. Below, we show that 7 (X) is the lattice ideal of L.

Lemma 3.1 The map t* — t* s tP@ — tP®) induces a bijection between the binomials t* — t” of P whose
/ / ! !
terms 1%, t” have disjoint support and the binomials t* —t*" of I (X) whose terms t® , t” have disjoint support.

Proof If f = t* — ¥ is a binomial of P whose terms have disjoint support, then a — b € £ and the terms of
g = tP@ — PO have disjoint support because

D(a)) D(b)).

supp(t“) = supp(t and supp(tb) = supp(?
Thus, |D(a)| = ¥ (a) = ¥ (b) = |D(b)|. This means that g = 1@ — (P®) js homogeneous in the standard
grading of S. As (8Y)% = 1 for all i, it is seen that g vanishes at all points of X. Hence, g € I(X) and the
map is well defined.

The map is clearly injective. To show that the map is onto, take a binomial f’ = @ — ¥ in I(X) with

a’ = (aj), b’ = (b)) and such that ¢ and ¢ have disjoint support. Then, (8%)% % = 1 for all i because

f' vanishes at all points of X. Hence, since the order of B is d;, there are integers cy, ..., ¢, such that
a; — b} = ¢;d; for all i. Since f’ is homogeneous, one has |a’| = |b'|. It follows readily that ¢ € £ and
a’ — b’ = D(c). We can write ¢ = ¢t — ¢~. As a’ and b’ have disjoint support, we get @’ = D(c") and
b’ = D(c™). Thus, the binomial f = <" — < isin P and maps to 1@ — O

Proposition 3.2 P = I (L) and [ (X) = I (L).
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Proof As mentioned above, the first equality is well known [24]. Since 7 (X) is a lattice ideal [19], it is gen-
erated by binomials of the form L (this follows using that #; is a non-zero divisor of S/ (X) for all 7).
To show the second equality, take 14 — 19~ in I(X). Then, by Lemma 3.1,a* —a~ € Land 1*" — 1% isin
1(L). Thus, I(X) C I(L). Conversely, take f = t¢" — 9" in I(£) witha® — a~ in £. Then, there is ¢ € £,
such that at — a~ = D(c™ — ¢7). Then, " — 1< isin P and maps, under the map of Lemma 3.1, to f.
Thus, f € I(X). This proves that I (£) C I1(X). O
Proposition 3.3 If P = ({t% — t%}!" ), then 1(X) = ({tP@) — PGy ),

Proof Weset g; = t% —t% and h; = tP@) —¢P®) fori = 1, ..., n.Notice that h; is equal to g; (t91, . .., %),
the evaluation of g; at (tld' e tfl[”). By Lemma 3.1, one has the inclusion (41, ..., h;) C I(X). To show the
reverse inclusion take a binomial 0 # f € I(X). We may assume that f = t@" — 19" Then, by Lemma 3.1,
there is g = <" — ¢ in P such that f= D) _ D), By hypothesis we can write g = > /L | fig; for
some f1, ..., fi, in S. Then, evaluating both sides of this equality at (tldl e t,‘,z”), we get

m m
+ -~ d d d
f=tP0 =P ey = ey =D ik,
i=1 i=1

where f/ = fi(t!", ..., ") foralli. Then, f € (hy, ..., hy). O
Corollary 3.4 Ifn = 3, then 1 (X) is minimally generated by at most 3 binomials.

Proof By aclassical theorem of Herzog [14], P is generated by at most 3 binomials. Hence, by Proposition 3.3,
I (X) is generated by at most 3 binomials. O

Given a subset I C S, its variety, denoted by V (1), is the set of all a € A%, such that f(a) = 0 for all
f € I, where A’ is the affine space over K. Given a binomial g = ¢ — t?, we set g = a — b. If B is a subset
of Z", (B) denotes the subgroup of Z" generated by B.

Proposition 3.5 [4, Proposition 2.5] Let B = {g1, ..., gn—1} be a set of binomials in P. Then, P = (B) if
and only if the following two conditions hold:

() Ly = (g1, ... 8n-1), where L; = ker(i)).

(i) V(gi,...,gn-1.5) ={0}fori=1,...,n

We come to the main result of this section.

Theorem 3.6 (a) If I (X) is a complete intersection generated by binomials hy, . .., h,_1, then P is a complete
intersection generated by binomials g1, . .., gn—1 such that h; is equal to g; (tfll e tf,l”)for alli. (b) If P is
a complete intersection generated by binomials g1, . .., gn—1, then 1 (X) is a complete intersection generated
by binomials hy, ..., h,_1, where h; is equal to g; (tfl, e t,'j")for alli.

Proof (a) Since t; is a non-zero divisor of §/1(X) for all k, it is not hard to see that the monomials of 4; have

.. .. . + - . . .
disjoint support for all i, i.e., we can write h; = t% —t% fori = 1,...,n — 1. We claim that the following
two conditions hold.

+

(i) £L={a1,...,an—1), where q; = a;" — a; and L is the lattice that defines 7 (X).
@) V(hy,...,hy—1,t;) ={0} fori =1,...,n.

As I(X) is generated by hy, ..., h,_1, by Lopez and Villarreal [17, Lemma 2.5], condition (i) holds. The
binomial tl.q_l — t,‘{_l is in 1 (X) for all i because ]F;; is a group of order ¢ — 1. Thus, V(I (X), t;) = {0} for
all i. From the equality (hy, ..., h,—1,t) = (I (X), t;), we get

V(hi, ..., hy—1,1;) = VU (X), ;) = {0}.
Thus, (ii) holds. This completes the proof of the claim.

By (i) and Proposition 3.2, there are by, ..., b,_1 in L] = ker(y) such that a; = D(b;) for all i. Accord-
ingly ai+ = D(bi+) anda; = D(b; ) foralli. We set g; = tbiJr —tb foralli. Clearly, all the g;’s are in P and
h; isequal to g; (tld‘ ey tf,l”) for all i. Next, we prove that P is generated by g, ..., g,—1. By Proposition 3.5
it suffices to show that the following two conditions hold:
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@) Ly ={b1,...,by_1), where L] = ker(y).
Gi") V(gi,...,gn—1,) ={0}fori =1,...,n.

First we show (i'). Since by, ..., b,_; are in L1, we need only show the inclusion “C”. Take y € ker(y/),
then D(y) € L, and by (i) it follows that y € (by, ..., by_1).

Next we show (ii’). For simplicity of notation, we may assume that i = n. Take ¢ in the variety
V(gi,...,&—1,1) and write ¢ = (c1, ..., ¢;). Then, ¢, = 0 and g;(c) = cbi+ — b =0forall i, were cbi+

.ot . . . . .
means to evaluate the monomial ¢ at the point c. Let i be a fixed but arbitrary integer in {1, ...,n — 1}.
We can write

bi =bl —b = b, ....b})—(b;,....b;)
anda; = a; —a; =(ail,...,a;)—(ai_l,...,al-_n).Then

+ + = -
hi (ci)l S eeey C};") = (Clljl)ail e (Cz”)ain —_ (c;)l)ail e (C;L)n)ain

+ + . -
_ cvldlb” vypdnb;, Cvldlb“ o c:ljﬂdﬂhin.

= i b 3.1)

We claim that h;(c}", ..., ¢;") = 0. To show this we consider two cases.

Case (I): b;; > 0. Then, as g;(c) = cbi+ —cPi =0and cbi+=0, one has ¢” = 0. Hence, there is Jj such
thatb;; > O and ¢; = 0. Thus, by Eq. (3.1), hi(cl', ... c") =0.

Case (II): b; = 0. If ¢; = 0 for some b;; > 0, then ¢” = 0 because gi(c) = 0. Hence, there is k such
that ¢y = 0 and b;; > 0. Thus, by Eq. (3.1), hi(c}", ..., cy") = 0. Similarly, if ¢; = 0 for some b > 0,

then ¢/ = 0 because gi(c) = 0. Hence, there is k such that ¢y = 0 and b;;( > 0. Thus, by Eq. (3.1),
hi(c¥1 sy o) = 0. We may now assume that cj #0if b;; > Q, and ¢y, # 0if b, > 0. Let B be a generator
of the cyclic group (F*, -). Any ¢; # 0 has the form ¢; = B/¢. Thus, using that (B¥)4i = 1, we get that
S+ -
(cjf)dfbu = 1if b; > 0 and (cjf)dfbff = 1if b; > 0. Hence, by Eq. (3.1), hi(c}', ..., ¢;") = 0, as required.
This completes the proof of the claim.
As hi(c}', ..., c") = 0foralli, the point ¢’ = (c}', ..., ¢,")isin V(hy, ..., hy_1, ). By (ii), the point
¢’ es zero. Hence, ¢ = 0 as required. This completes the proof of (ii’). Hence, P is a complete intersection

generated by g1, ..., gn—1-
(b) It follows from Proposition 3.3. O

Using the notion of a binary tree, a criterion for complete intersection toric ideals of affine monomial curves
is given in [4]. In [2] an effective algorithm is given to determine whether P is a complete intersection. If P
is a complete intersection, this algorithm returns the generators of P and the Frobenius number.

In our situation, the next result allows us to: (A) use the results of [4,5,14] to give criteria for complete
intersection vanishing ideals over a finite field, (B) use the effective algorithms of [2] to recognize complete
intersection vanishing ideals over finite fields and to compute its invariants (see Example 3.14).

Corollary 3.7 1(X) is a complete intersection if and only if P is a complete intersection.

Proof Assume that I(X) is a complete intersection. By Remark 2.5, there are binomials A1, ..., h,_; that
generate / (X). Hence, P is a complete intersection by Theorem 3.6. The converse follows by similar reasons.
O

Lemma 3.8 Ifr = gcd(d, ...,d,) and d] = o(B""), then d; = rd; and ged(dy, ..., d,) = 1.

Proof 1t follows readily by recalling that o(8"%) = o(B")/ gcd(r, o(BY)). O

/

In what follows X’ will denote the degenerate torus in P! parameterized by xf ..., x", where v = ry;
and r = ged(dy, ..., d,). Below, we relate 1(X) and I (X’).

Proposition 3.9 The vanishing ideal 1(X) is a complete intersection if and only if I (X') is a complete inter-
section.

Springer



Arab J Math (2013) 2:189-197 195

Proof Let P and P’ be the toric ideals of K [yii‘, e y;j"] and K [yld‘, e yf"], respectively, where d] =
o(B"V) for all i. It is not hard to see that P = P’. Then, by Theorem 3.6, P is a complete intersection if and
only if 7(X) is a complete intersection and P’ is a complete intersection if and only if I (X’) is a complete

intersection. Thus, I (X) is a complete intersection if and only if 7 (X’) is a complete intersection. O
Definition 3.10 The set X* := {(x", ..., x,")|x; € K* foralli} C K" is called an affine degenerate torus
parameterized by x;"', ..., x,".

Lemma 3.11 |X*| = d; - - d, and deg(S/1(X)) = |X| = di - - dy/ ged(dy, .. ., dy).

Proof Let S; = (BY) be the cyclic group generated by B%. The set X* is equal to the Cartesian product
S1 x -+ x Sy,. Hence, to show the first equality, it suffices to recall that |S;| is o(B8""), the order of 8Vi. Notice
that any element of X* can be written as (B, ..., (Bin)U) for some integers iy, . .., iy. The kernel of the
epimorphism of groups X* — X, x > [x], is equal to

{ro o) € BNy € (B) NN (B}

Hence, | X*|/| N7_, (BY)| = |X|. Since (B") is a subgroup of K* for all i and K™ is a cyclic group, one has
| N, (BY)| = ged(dy, ..., dy) (see for instance [1, Theorem 4, p. 4]). Thus, the second equality follows. O

Definition 3.12 If S is a numerical semigroup of N, the Frobenius number of S, denoted by g(S), is the largest
integer not in S.

Consider the semigroup 8" = Nd| + - - - + Nd,,, where d/ = o("") fori = 1,...,n. By Lemma 3.8, one
has ged(d], ..., d)) = 1,i.e., S8’ is a numerical semigroup. Thus, g(S’) is finite. If the toric ideal of K[S'] is
a complete intersection, then g(S’) can be expressed entirely in terms of d/, . . ., d,’1 [4, Remark 4.5].

Corollary 3.13 (i) deg(S/I(X)) =dy---d,/ged(dy, ..., dy).
@i1) If I(X) is a complete intersection, then

regS/1(X) = ged(d. ..., dy)g(S) + D di — (n —1).
i=1

Proof Part (i) follows at once from Lemma 3.11. Next, we prove (ii). Let P and P’ be as in the proof of
Proposition 3.9. With the notation above, by Lemma 3.8, we get that d; = rd; for all i. The toric ideals P
and P’ are equal but they are graded differently. Recall that P and P’ are graded with respect to the gradings
induced by assigning deg(;) = d; and deg(#;) = d; for all i, respectively. Let g1, ..., g,—1 be a generating
set of P = P’ consisting of binomials. Then, by Theorem 3.6, I (X) is generated by h1, ..., h,_1, where h;

is g; (tij‘, e t,‘,i") for all i. Accordingly, I (X') is generated by i, ..., h),_,, where h is g; (tf‘, e t,a,i’/’) for
all i. If D; = deg(h;) and D] = deg(h}), then D; = r D/ for all i. As P’ is a complete intersection generated
by g1...., gn—1 and degp/(g;) = le for all i, using [4, Remark 4.5], we get

n—1 n—1 n

g8 =D Dj =D dl = (Di/r)— D (di]r).
i=1 i=1

i=1 i=1

Therefore, using the equality reg S/1(X) = Zf;ll (D; — 1) (see Lemma 2.6), the formula for the regularity
follows. O

Example 3.14 To illustrate how to use the algorithm of [2] we consider the degenerate torus X, over the field
F,, parameterized by x;", ..., x;}S, where v; = 1,500, v = 1,000, v3 = 432, v4 = 360, v5 = 240, and
g = 54,001. In this case, one has

di1 =36, dr =154, d3 =125, ds=150, ds=225.

Using [2, Algorithm CI, p. 981], we get that P is a complete intersection generated by the binomials

3 2 3 2 3 8.3 3
S1=1H —1t, =1t} —15, & =13 —lls5, g4 =11 —1,
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and we also get that the Frobenius number of S is 793. Hence, by our results, the vanishing ideal 7 (X) is a
complete intersection generated by the binomials

hy = 1‘1108 _ t2108, hy = tiSO _ tngO’ hy = t 41_5015225 hy = l1288I2162 _ tZ‘SO,

the index of regularity and degree of S/1(X) are 1,379 and 8,201,250,000, respectively.

The next example is interesting because if one chooses vy, .. ., v, at random, it is likely that 7 (X) will be
generated by binomials of the form #" — ¢!

Example 3.15 Let IF, be the field with ¢ = 211 elements. Consider the sequence v = 42, v, = 35, v3 = 30.
In this case, one has dy = 5, dy = 6, d3 = 7. By a well known result of Herzog [14], one has

P=(3—nn3.tf — i3, tin — 13).
Hence, by our results, / (X) = (t t1 t3, tl t2 tg , t115t26 t21) and this ideal is not a complete inter-

section. The index of regularity and the degree of S/I(X) are 25 and 210 res ectlvely The Frobenius number

of § is equal to 9. Notice that the toric relations t30 t230, t35 t3 s t2 2 do not generate [ (X).

The next example was found using Theorem 3.6. Without using this theorem it is very difficult to construct
examples of complete intersection vanishing ideals not generated by binomials of the form £ — #'".

Example 3.16 LetF, be the field with g = 271 elements. Consider the sequence vy = 30, vo = 135, v3 = 54.
In this case, one has d| = 9,dy = 2, d3 = 5. The ideals P and / (X) are complete intersections given by

P=(—133,55 —13) and I(X)= (1] — 1585, 15° — £3°).
By Lemma 2.6, the index of regularity of S/7(X) is 17 and by Corollary 3.13 the Frobenius number of S is 3.
The computation of the vanishing ideal. In this part we show how to compute the vanishing ideal using the

notion of saturation of an ideal with respect to a polynomial.
The next lemma is easy to show.

Lemma 3.17 [fc;; := lem{d;, d;} = lem{o(BY), 0(BY))}, then 1, — tj."f' e 1(X).

The set of toric relations T = {tl.clij — t;'i"‘ : 1 <i, j <n}doesnot generate I (X), as is seen in Example 3.15.
If v; = 1 foralli, thenc;; =¢ — 1foralli, j and /(X) is generated by 7.
For an ideal I C S and a polynomial & € § the saturation of I with respect to & is the ideal

(I: h™®) :={f € S|fh* € I for some k > 1}.
Proposition 3.18 Let I’ be the ideal (t;" " | 1 < i < j < n), wherec;j=lem{d;, d;}. If ged(dy, ..., dp) =1,
then 1(X) = (I': (11 - - - 1,)™).
Proof We claim that £ = (c;je; — c;jjej|1 <i < j < n). By Villarreal [24, Proposition 10.1.8], we get
= ((dj/ ged(di, dj))ei — (di/ ged(di, dj))ej| 1 <i < j <n).

Thus, the claim follows from the equality £ = D(L;). The inclusion “D>” follows readily using that ¢#; is
a non-zero divisor of S/I(X) for all i because I(X) is a lattice ideal containing I’ (see Lemma 3.17). To
show the inclusion “C”, take a binomial f = ¢ — P e 1(X). By Proposition 3.2, I(X) = I(L). Thus,
a — b € L. Using the previous claim and [17, Lemma 2.3], there is § € N” such that t5f e I'. Hence,
fed: (@ t)™). O
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