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Abstract
We classify all 2-term L∞-algebras up to isomorphism. We show that such L∞-
algebras are classified by a Lie algebra, a vector space, a representation (all up to
isomorphism) and a cohomology class of the corresponding Lie algebra cohomology.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 The category of 2-term L∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 The fundamental example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Main classification theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

L∞-algebras are generalizations of Lie algebras. They are chain complexes of vector
spaces on which there is a graded anti-symmetric bracket which satisfies Jacobi-
like identities. They were introduced in the early 1990s and their applications have
become numerous over the last thirty years [14]. In theoretical physics, L∞-algebras
are often an appropriate underlying structure to encode the gauge parameters and the
field equations of a field theory [5]. Particular examples of such field theories include
closed bosonic string theories, higher Chern-Simons theories and local prequantum
field theories [2, 11, 16].
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In classical string theory, another similar structure can also be considered: a Lie
2-algebra. This structure categorifies that of a Lie algebra [1]. This generalization of a
Lie algebra is a natural consequence of replacing point particles in classical mechanics
by strings. Whereas point particles can be represented canonically by an object in a
category, it is natural to represent strings by a morphism in another suitable 2-category
[2]. As both an L∞-algebra and a Lie 2-algebra describe classical string theory, it is
natural to assume that there is a connection between them. This connection was proven
by Baez and Crans in 2004. They showed in [1] that the categories of semistrict Lie 2-
algebras and of 2-term L∞-algebras are equivalent. Moreover, they also proved some
primary results into the classification of Lie 2-algebras. One of those results is [1,
Theorem 57], in which they state that there is a one-to-one correspondence between
equivalence classes of Lie 2-algebras and isomorphism classes of triples consisting
of a Lie algebra g, a representation (ρ, V ) of g, and a 3-cocycle in the Lie algebra
cohomology on g with values in V .

They do not use this result to classify all semistrict Lie 2-algebras up to isomor-
phism, however. More recent research has been more focused on string Lie 2-algebras
and on applying this structure to string theory than on further classification [8, 10, 13].
Consequently, further classification of semistrict Lie 2-algebras has not been done yet.

The previous result does however indicate what classification up to isomorphism
might look like. As an equivalence of semistrict Lie 2-algebras implies that the two
considered structures are isomorphic on homology, the vector spaces that are modded
out by taking homology cannot be retrieved from the previously mentioned isomor-
phism classes of triples. A natural suggestion would thus be to include those in the
classification data. By the first isomorphism theorem, those vector spaces must be
isomorphic. This would thus require us to extend the isomorphism classes of triples
to those of quadruples.

In this paper, we show that this suffices to classify all 2-term L∞-algebras up to
isomorphism. As it was proven in [1] that the categories of 2-term L∞-algebras and
semistrict Lie 2-algebras are equivalent, our classification of 2-term L∞-algebras will
also classify all semistrict Lie 2-algebras. We choose to prove our statements in terms
of 2-term L∞-algebras, as they allow for simpler and more explicit calculations. We
show that the isomorphism classes of all 2-term L∞-algebras are given by isomorphic
quadruples of a Lie algebra, a vector space, a representation, and a cohomology class
of the given Lie algebra cohomology.

In Sect. 2, we will recall the category of 2-term L∞-algebras and highlight the
involved equations, as well as giving some examples of objects and morphisms. In
Sect. 3, we will prove our classification statements in three steps. Firstly, we will
introduce elementary concepts from Lie algebra cohomology and then we give a
type of example of 2-term L∞-algebras. Secondly, we show that every 2-term L∞-
algebra is isomorphic to a 2-term L∞-algebra of the type considered in the example
and, thirdly, that those examples are unique up to isomorphic quadruples of a Lie
algebra g, a vector spaceU , a representation (ρ, V ), and an element in the Lie algebra
cohomology H3(g, ρ, V ). We will also show how this result relates to [1, Theorem
57]. We conclude by discussing some possible paths for future classification.
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2 The category of 2-term L∞-algebras

A2-term L∞-algebra is an L∞-algebra concentrated in degree one and zero.We recall
the notions of a 2-term L∞-algebra and a morphism between two of them, and we will
give examples for both. We choose our conventions so that our definitions of coincide
with (suitable restrictions of those in) [6, 7]. If not explicitly mentioned, we assume
all maps between vector spaces are linear.

Definition 2.1 A 2-term L∞-algebra is a graded vector space L = L0 ⊕ L1 with

1. a differential d : L1 → L0;
2. a bracket [·, ·] : L ∧ L → L of degree 0 such that

d([x, v]) = [x, d(v)] (1)

and

[d(u), v] = [u, d(v)] (2)

for x ∈ L0 and u, v ∈ L1;
3. a Jacobiator J : L0 ∧ L0 ∧ L0 → L1 such that

d(Jx,y,z) = [x, [y, z]] − [[x, y], z] − [y, [x, z]] (3)

and

Jd(v),y,z = [v, [y, z]] − [[v, y], z] − [y, [v, z]] (4)

for x, y, z ∈ L0 and for v ∈ L1 (note that we write Jx,y,z := J (x ∧ y ∧ z)),

such that the following equation holds:

∑

σ∈Sh(1,3)
(−1)σ [xσ(1), Jxσ(2),xσ(3),xσ(4) ]

−
∑

σ∈Sh(2,2)
(−1)σ J[xσ(1),xσ(2)],xσ(3),xσ(4) = 0 (5)

for x1, x2, x3, x4 ∈ L0, where

Sh(m, n) := {σ ∈ Sm+n | σ(i) < σ(i + 1) for all 1 ≤ i ≤ m + n − 1, i �= m}

for m, n ∈ N.

It is worthwhile to note that the bracket and the Jacobiator can also be seen as a chain
map and a chain homotopy on their respective chain complexes. The interested reader
can find more about this in [12]. Furthermore, we note for the reader familiar with
[6, 7] that the sign involved in Eq. (5) is the ordinary permutation sign, in contrast
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to the Koszul sign used in [6, 7]. This is due to the fact that the other signs that
are absorbed into the Koszul sign are identically one in the 2-term L∞-algebra case.
Normally, these additional signs would appear as a consequence of permutingmultiple
odd degree elements, but, by degree considerations, such terms are already zero.

Example 2.2 A simple example of a 2-term L∞-algebra can be given as follows. Let
H be the algebra of quaternions, and for z ∈ H, let Re(z) and Im(z) denote the real and
imaginary part of z respectively, that is, Re(1) = 1, Im(i) = i, Im(j) = j, Im(k) = k
and Im(1) = Re(i) = Re(j) = Re(k) = 0. Then for v ∈ H, the graded vector space
H ⊕ H is a 2-term L∞-algebra, with

1. a differential d = Re : H → H;
2. a bracket [·, ·] : H ⊕ H ∧ H ⊕ H → H ⊕ H given by

[a ⊕ b, c ⊕ d] = Im(Im(a)Im(c)) ⊕ Im(Im(a)Im(d) + Im(b)Im(c));

3. a Jacobiator J : �3
H → H determined by

J (1, i, j) = 0; J (1, i,k) = 0; J (1, j,k) = 0; J (i, j,k) = Im(v).

The next two examples come from [1, 3] respectively.

Example 2.3 Let g be a Lie algebra with Lie bracket [·, ·]g, and let k ∈ R. The skeletal
string 2-term L∞-algebra consists of a graded vector space gk := g ⊕ R with

1. a differential d = 0 : R → g;
2. a bracket [·, ·] : gk ∧ gk → gk given by

[x, y] = [x, y]g

and

[x, v] = 0

for x, y ∈ g and v ∈ R;
3. a Jacobiator J : �3gk → R given by

J (x, y, z) = 〈x, [y, z]〉,

where 〈·, ·〉 is the Killing form on g.

Example 2.4 Let g be a Lie algebrawith Lie bracket [·, ·]g, and let k ∈ R. Furthermore,
define the (real) vector spaces

P0g = { f ∈ C∞([0, 2π ], g) | f (0) = 0},
�g = { f ∈ C∞(R/2πZ, g) | f (0) = 0},
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and the quotient map q : [0, 2π ] → R/2πZ. Moreover, note that P0g is a Lie algebra
with the Lie bracket given by

[ f , g]P0g := (θ �→ [ f (θ), g(θ)]g).

The strict string 2-term L∞-algebra consists of a graded vector space Pkg :=
P0g ⊕ (�g ⊕ R) with

1. a differential

d : �g ⊕ R → P0g

f ⊕ k �→ q∗( f )

2. a bracket [·, ·] : Pkg ∧ Pkg → Pkg given by

[ f , g] = [ f , g]P0g

and

[ f , h ⊕ l] = [ f , q∗(h)]P0g ⊕ 2k
∫ 2π

0
〈 f (θ), h′(θ)〉dθ

for f , g ∈ P0g and h ⊕ l ∈ �g ⊕ R, where 〈·, ·〉 is the Killing form on g;
3. a Jacobiator J = 0 : �3P0g → �g ⊕ R.

It is proven in [3] that gk and Pkg are equivalent as 2-term L∞-algebras. It is not
hard to show that both 2-term L∞-algebras are not isomorphic, but, for expository
purposes, we postpone this to the end of the paper.

Definition 2.5 Let (L, d, [·, ·], J ) and (L ′, d ′, [·, ·]′, J ′) be two 2-term L∞-algebras.
A 2-term L∞-algebra morphism from L to L ′ is a pair (φ,	), with

• a map φ : L → L ′ of degree 0 such that

φ(d(v)) = d ′(φ(v)) (6)

for v ∈ L1;
• a map 	 : L0 ∧ L0 → L ′

1 such that

d ′(	(x ∧ y)) = φ([x, y]) − [φ(x), φ(y)]′ (7)

and

	(d(v) ∧ y) = φ([v, y]) − [φ(v), φ(y)]′ (8)

for x, y ∈ L0 and v ∈ L1,
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such that the following equation holds:

φ(Jx1,x2,x3) − J ′
φ(x1),φ(x2),φ(x3) =

∑

σ∈Sh(1,2)
(−1)σ

([φ(xσ(1)),	xσ(2),xσ(3)]′

+ 	xσ(1),[xσ(2),xσ(3)]
)

(9)

for x1, x2, x3 ∈ L0, where 	x1,x2 := 	(x1 ∧ x2).

Again, the maps φ and 	 are a chain map and chain homotopy on their respective
chain complexes.More information on this can be found in [11]. Similarly as in Eq. (5),
the Koszul sign the authors of [6, 7] used in the general version of Eq. (9) reduces to
a permutation sign due to the lack of non-trivial elements of degree higher than one.

As a morphism between 2-term L∞-algebras consists of two different maps, it
might not be evident how to compose them. We will thus give the description of
composition of said morphisms in the following definition.

Definition 2.6 Let (L, d, [·, ·], J ), (L ′, d ′, [·, ·]′, J ′) and (L ′′, d ′′, [·, ·]′′, J ′′) be three
2-term L∞-algebras, and let

(φ,	) : (L, d, [·, ·], J ) → (L ′, d ′, [·, ·]′, J ′)

and

(φ′,	′) : (L ′, d ′, [·, ·]′, J ′) → (L ′′, d ′′, [·, ·]′′, J ′′)

be two 2-term L∞-algebra morphisms. The composition of (φ,	) and (φ′,	′) is
(φ′ ◦ φ,
	′,	), where 
	′,	 is the map


	′,	 : L0 ∧ L0 → L ′′
1

x ∧ y �→ 	′
φ(x),φ(y) + φ′(	x,y).

It is clear from this definition that the identity morphism is given by (id, 0).
It is shown in [8] that a morphism of 2-term L∞-algebras (φ,	) is an isomor-
phism of 2-term L∞-algebras if φ is a linear isomorphism, as the inverse morphism
is given by (φ−1,	′), where 	′ : L ′

0 ∧ L ′
0 → L1 is given by 	′(x, y) =

−φ−1	(φ−1(x), φ−1(y)).

Example 2.7 Consider the 2-term L∞-algebra H ⊕ H from Example 2.2. Then the
two maps

1. φ : H ⊕ H → H ⊕ H determined by

φ(1 ⊕ 0) = 1 ⊕ 0; φ(i ⊕ 0) = j ⊕ 0; φ(j ⊕ 0) = k ⊕ 0; φ(k ⊕ 0) = i ⊕ 0;
φ(0 ⊕ 1) = 0 ⊕ 1 φ(0 ⊕ i) = 0 ⊕ j; φ(0 ⊕ j) = 0 ⊕ k; φ(0 ⊕ k) = 0 ⊕ i,

and
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2. 	 : �2
H → H determined by

	(1 ∧ i) = 0; 	(1 ∧ k) = 0; 	(j ∧ k) = Re(v(j − k))i;
	(1 ∧ j) = 0; 	(i ∧ j) = Re(v(i − j))k; 	(k ∧ i) = Re(v(k − i))j

form an automorphism of 2-term L∞-algebras on H ⊕ H.

3 Classification

In this section, we will give the full classification procedure of 2-term L∞-algebras.
For the sake of clarity, this section is split into two subsections.

3.1 The fundamental example

In this subsection, we will define some important aspects of Lie algebra cohomology
as in [1] and we give an example of a 2-term L∞-algebra using this cohomology. This
type of example will be quintessential in the two proofs in the next subsection.

Let g be a Lie algebra with Lie bracket [·, ·]g, and let (ρ, V ) be a Lie algebra repre-
sentation of g. We then define the cochain complex C(g, ρ, V ) by setting Cn(g, ρ, V )

to be the vector space of linear maps f : �ng → V and by setting the differential δ to
be

(δ f )(x1, . . . , xn+1) :=
∑

σ∈Sh(1,n)

(−1)σ ρ(xσ(1)) f (xσ(2), . . . , xσ(n+1))

−
∑

σ∈Sh(2,n−1)

(−1)σ f ([xσ(1), xσ(2)]g, xσ(3), . . . , xσ(n+1))

(10)

for f ∈ Cn(g, ρ, V ). It has been already proven in [4] that δ2 = 0. We call the
cohomology of this complex H(g, ρ, V ).

Definition 3.1 An n-cocycle is an element f ∈ Cn(g, ρ, V ) such that δ f = 0.

Definition 3.2 Let g and h be two Lie algebras and let (ρ, V ) and (σ,W ) be a Lie
algebra representation of g and of h respectively. We say that J ∈ Cn(g, ρ, V ) and
K ∈ Cn(h, σ,W ) are cohomologous if there exists a Lie algebramorphismψ : g → h
and an intertwiner t : V → W and a linear map 	 : �n−1g → W such that

t(J (x1, . . . , xn)) − K (ψ(x1), . . . , ψ(xn)) = (δ	)(x1, . . . , xn) (11)

for all x1, . . . , xn ∈ g, where δ in Eq. (11) belongs to the cochain complex C(g, σ ◦
ψ,W ).

Note that stating that J and K are cohomologous is equivalent to the stating that
t ◦ J and ψ∗K are representatives of the same cohomology class in H(g, σ ◦ ψ,W ).
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Using those definitions from Lie algebra cohomology, we give a type of example of
2-term L∞-algebra, which will play a crucial role in the further classification. In the
following lemma and the remainder of the article, we will use the following notation
for the sake of clarity. If U and V are vector spaces, and x ∈ U ⊕ V , we denote the
projection of x on U by xU .

Lemma 3.3 Let g be a Lie algebra with Lie bracket [·, ·]g, let U be a vector space, let
(ρ, V ) be a Lie algebra representation of g, and let J̃ be a 3-cocycle of (ρ, V ) on g.

We then define the graded vector space L = Lg,U ,ρ, J̃ by setting L0 := g ⊕ U and
L1 := V ⊕U. We furthermore define the linear maps

1. d : L1 → L0 given by d(v) = vU ;
2. [·, ·] : L ∧ L → L given by [x, y] = [xg, yg]g, by [x, v] = −[v, x] = ρ(xg)vV

and by [u, v] = 0;
3. J : L0 ∧ L0 ∧ L0 → L1 by Jx,y,z := J̃xg,yg,zg

for x, y, z ∈ L0 and u, v ∈ L1. Then (L, d, [·, ·], J ) is a 2-term L∞-algebra.

Proof Let x, y, z, w ∈ L0 and u, v ∈ L1. Some simple observations, such as the fact
that d(V ) = 0 and that d(L1)

g = 0, yield that

d([x, v]) = d
(
ρ(xg)vV

)
= 0 = [xg, d(v)g]g = [x, d(v)],

and that

[d(u), v] = ρ(d(u)g)vV = 0 = −ρ(d(v)g)uV = [u, d(v)].

By furthermore noting that [x, y] = [x, y]g and using the Jacobi identity on g, we
also find that

d(Jx,y,z) = d( J̃ (xg, yg, zg)) = 0 = [xg, [yg, zg]g]g
− [[xg, yg]g, zg]g − [yg, [xg, zg]g]g

= [xg, [y, z]g]g − [[x, y]g, zg]g
− [yg, [x, z]g]g = [x, [y, z]] − [[x, y], z] − [y, [x, z]].

Similarly, by also using that (ρ, V ) is a representation on g and that [x, v] = [x, v]V ,
we obtain

Jd(v),y,z = J̃ (d(v)g, yg, zg) = 0 = −ρ([yg, zg]g)vV
− ρ(zg)ρ(yg)vV + ρ(yg)ρ(zg)vV

= −ρ([y, z]g)vV + ρ(zg)[v, y]V − ρ(yg)[v, z]V
= [v, [y, z]] − [[v, y], z] − [y, [v, z]].

Moreover, we find that

[x, Jy,z,w] = ρ(xg)Jy,z,w
V = ρ(xg) J̃yg,zg,wg

123



Classification of 2-term L∞-algebras

and that

J[x,y],z,w = J̃[x,y]g,zg,wg = J̃[xg,yg]g,zg,wg ,

giving us for x1, x2, x3, x4 ∈ L0 that

∑

σ∈Sh(1,3)
(−1)σ [xσ(1), Jxσ(2),xσ(3),xσ(4) ] −

∑

σ∈Sh(2,2)
(−1)σ J[xσ(1),xσ(2)],xσ(3),xσ(4)

=
∑

σ∈Sh(1,3)
(−1)σ ρ(xσ(1)

g) J̃xσ(2)
g,xσ(3)

g,xσ(4)
g

−
∑

σ∈Sh(2,2)
(−1)σ J̃[xσ(1)

g,xσ(2)
g]g,xσ(3)

g,xσ(4)
g

= δ J̃ (x1
g, x2

g, x3
g, x4

g),

which is equal to zero as J̃ is a 3-cocycle. This proves that Eqs. (1)–(5) hold. ��

In this construction, the vector space U appears twice: once in degree 0, and once
in degree 1. It should be clear from the context in which degree elements of U reside.
If this is not the case, we will explicitly mention the relevant degrees.

Example 3.4 Example 2.2 can be viewed as a 2-term L∞-algebra of the shape of
Lemma 3.3. First, we note that the imaginary part of H, Im(H), is a Lie algebra with
bracket [a, b] := Im(Im(a)Im(b)), which is isomorphic to so(3). By setting g equal to
Im(H), by setting U equal to the real part of H, by setting (ρ, V ) equal to the adjoint
representation of Im(H), and by setting J̃ : �3Im(H) → Im(H) to be the map that
sends i ∧ j ∧ k to Im(v) ∈ Im(H), we obtain H ⊕ H from Example 2.2 as Lg,U ,ρ, J̃ .

Now we will show that each 2-term L∞-algebra gives rise to a 2-term L∞-algebra
in the shape of these described in Lemma 3.3.

Lemma 3.5 Let (L = L0 ⊕ L1, d, [·, ·], J ) be a 2-term L∞-algebra and fix a vector
space decomposition L0 ⊕ L1 = (g ⊕ im(d)) ⊕ (ker(d) ⊕ U ). Then consider the
linear isomorphism

f : ker(d) ⊕U → ker(d) ⊕ im(d)

v ⊕ u �→ v ⊕ d(u)

and the map

h : L0 → U

x �→ f −1(x im(d)).

Then the following statements hold:
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1. g is a Lie algebra with bracket

[·, ·]g : g ∧ g → g

[y, z]g = [y, z]g;

2. the map

ρ : g → gl(ker(d))

ρ(x)(v) = [x, v]ker(d).

is a Lie algebra representation of g on ker(d);
3. the map

J̃ : g ∧ g ∧ g → ker(d)

x1 ∧ x2 ∧ x3 �→ Jx1,x2,x3
ker(d) −

∑

σ∈Sh(1,2)
(−1)σ [xσ(1), h([xσ(2), xσ(3)])]ker(d)

is a 3-cocycle of (ρ, ker(d)) on g.

Proof 1. Note that the bracket is antisymmetric by definition. Furthermore, we find
that

[x, [y, z]g]g − [[x, y]g, z]g − [y, [x, z]g]g = ([x, [y, z]g] − [[x, y]g, z] − [y, [x, z]g])g
= ([x, [y, z]] − [[x, y], z] − [y, [x, z]])g = d(Jx,y,z)

g = 0,

for x, y, z ∈ g, so [·, ·]g satisfies the Jacobi identity and is thus a Lie bracket. Note
that the second equality stems from the fact that, by Eq. (1), [x, w]g = [x, d(u)]g =
(d([x, u]))g = 0 for u ∈ L1 and w = d(u).

2. For x, y, z ∈ g and v ∈ ker(d), Eq. (1) implies that d([x, v]) = [x, d(v)] = 0, so
[x, v] ∈ ker(d). Subsequently, we obtain that

(
ρ([y, z]) − ρ(y)ρ(z) + ρ(z)ρ(y)

)
(v) = ρ([y, z])(v) − ρ(z)([v, y]) + ρ(y)([v, z])

= −[v, [y, z]] + [[v, y], z] + [y, [v, z]] = −Jd(v),y,z = 0,

proving that (ρ, ker(d)) is a representation.
3. For u ∈ U and z ∈ L0, we note that, by applying Eq. (1), we obtain

h([x, d(u)]) = h(d([x, u])) = [x, u]U = [x, h(d(u))]U . (12)
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For x1, x2, x3, x4 ∈ g, using Eqs. (12), (3) and (4) yields

∑

σ∈Sh(1,3)
(−1)σ [xσ(1), Jxσ(2),xσ(3),xσ(4)

U ]

=
∑

σ∈Sh(1,3)
(−1)σ [xσ(1), h(d Jxσ(2),xσ(3),xσ(4) )]

=
∑

σ∈Sh(1,1,2)
(−1)σ [xσ(1), h([xσ(2), [xσ(3), xσ(4)]])]

=
∑

σ∈Sh(1,1,2)
(−1)σ ([xσ(1), h([xσ(2), [xσ(3), xσ(4)]g])]

+ [xσ(1), h([xσ(2), [xσ(3), xσ(4)]im(d)])])

=
∑

σ∈Sh(1,1,2)
(−1)σ ([xσ(1), h([xσ(2), [xσ(3), xσ(4)]g])]

+ [xσ(1), [xσ(2), h([xσ(3), xσ(4)])]U ])

and

∑

σ∈Sh(2,2)
(−1)σ J[xσ(1),xσ(2)]im(d),xσ(3),xσ(4)

=
∑

σ∈Sh(2,2)
(−1)σ Jd(h([xσ(1),xσ(2)])),xσ(3),xσ(4)

=
∑

σ∈Sh(2,2)
(−1)σ [h([xσ(1), xσ(2)]), [xσ(3), xσ(4)]]

+
∑

σ∈Sh(1,1,2)
(−1)σ [xσ(1), [xσ(2), h([xσ(3), xσ(4)])]]

with

Sh(1, 1, 2) = {σ ∈ S4 | σ(3) < σ(4)}.

As a direct consequence of Eq. (1), we find that

[[x1, x2]im(d), h([x3, x4])]ker(d) = 0.

In turn, we then yield that
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δ J̃ (x1, x2, x3, x4)

=
∑

σ∈Sh(1,3)
(−1)σ [xσ(1), Jxσ(2),xσ(3),xσ(4)

ker(d)]

−
∑

σ∈Sh(1,1,2)
(−1)σ [xσ(1), [xσ(2), h([xσ(3), xσ(4)])]ker(d)]

−
∑

σ∈Sh(2,2)
(−1)σ J[xσ(1),xσ(2)]g,xσ(3),xσ(4)

+
∑

σ∈Sh(2,2)
(−1)σ [[xσ(1), xσ(2)]g, h([xσ(3), xσ(4)])]

+
∑

σ∈Sh(1,1,2)
[xσ(1), h([xσ(2), [xσ(3), xσ(4)]g])]

=
∑

σ∈Sh(1,3)
(−1)σ

([xσ(1), Jxσ(2),xσ(3),xσ(4)
ker(d) + Jxσ(2),xσ(3),xσ(4)

U ])ker(d)

−
∑

σ∈Sh(2,2)
(−1)σ

(
J[xσ(1),xσ(2)]g,xσ(3),xσ(4)

+ J[xσ(1),xσ(2)]im(d),xσ(3),xσ(4)

)ker(d)

=
( ∑

σ∈Sh(1,3)
(−1)σ [xσ(1), Jxσ(2),xσ(3),xσ(4) ] −

∑

σ∈Sh(2,2)
(−1)σ J[xσ(1),xσ(2)],xσ(3),xσ(4)

)
ker(d),

which is zero as J satisfies Eq. (5), proving that J̃ is a 3-cocycle of g on (ρ, ker(d)).
��

If we use the newly found Lie algebra, representation and 3-cocycle from Lemma
3.5 in the construction given in Lemma 3.3, we can create a new 2-term L∞-algebra.

Corollary 3.6 Let L be a 2-term L∞-algebra and fix a vector space decomposition
(g⊕ im(d)) ⊕ (ker(d) ⊕U ). Moreover, let g (as a Lie algebra), (ρ, ker(d)) and J̃ as

in Lemma 3.5. Then Lg,im(d),ρ, J̃ is a 2-term L∞-algebra. ��

3.2 Main classification theorems

In this subsection, we will prove the main classification theorems for 2-term L∞-
algebras. In the first theorem, we prove that every 2-term L∞-algebra is isomorphic
to one in the shape of these from Lemma 3.3. We will do this by proving a proposition
which states that the structure of a 2-term L∞-algebra can be transferred to an iso-
morphic graded vector space, for which the new differential, bracket and Jacobiator
are uniquely determined by a given isomorphism of graded vector spaces and a given
linear map. This is a special case of the Homotopy Transfer Theorem, which states that
the structure of a 2-term L∞-algebra can be transferred to any of its homotopy retracts
[9]. In general, the 2-term L∞-algebra structure induced by the Homotopy Transfer
Theorem is not isomorphic to the aforementioned structure, but both structures are
rather isomorphic on homology. We will focus on the situation in which the homotopy
retract is linearly isomorphic to the 2-term L∞-algebra. In this case, the transferred
structure is isomorphic to the induced one as 2-term L∞-algebras.

Proposition 3.7 Let (L, d, [·, ·], J ) be a 2-term L∞-algebra, let L ′ = L ′
0 ⊕ L ′

1 be
a graded vector space, and let φ : L → L ′ be a graded linear isomorphism and
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let 	 : L0 ∧ L0 → L ′
1 be a linear map. Then (L ′, d ′, [·, ·]′, J ′), with d ′, [·, ·]′ and J ′

uniquely definedbyEqs. (6)–(9), is a 2-term L∞-algebra isomorphic to (L, d, [·, ·], J ).

Proof Applying theHomotopy Transfer Theorem from e.g. [9] to the homotopy retract

(L0 ⊕ L1, d) (L ′
0 ⊕ L ′

1, d
′)0

φ

φ−1

yields that (L ′, d ′, [·, ·]′, J ′) is a 2-term L∞-algebra and that (φ,	) : L → L ′ is a
morphism of 2-term L∞-algebras. As φ is already an isomorphism of vector spaces,
(φ,	) is an isomorphism of 2-term L∞-algebras. ��

This proposition supports the intuition that transporting a given 2-term L∞-algebra
via a supposed isomorphism of 2-term L∞-algebras induces another 2-term L∞-
algebra, which is automatically isomorphic to the given one. Also note that for any
linear graded isomorphism φ : L → L ′, any linear map 	 : L0 ∧ L0 → L ′

1 induces
a 2-term L∞-algebra structure on L ′ which are all isomorphic to L , as the maps d ′,
[·, ·]′ and J ′ will change accordingly.

Theorem 3.8 Let (L, d, [·, ·], J ) 2-term L∞-algebra with vector space decomposition

L = (g⊕ im(d)) ⊕ (ker(d) ⊕U ). Then (L, d, [·, ·], J ) is isomorphic to Lg,im(d),ρ, J̃ .

Proof Set L ′ := L0 ⊕ (ker(d) ⊕ im(d)) and define f and h as in Lemma 3.5. By
Proposition 3.7, we find that the map

φ := id ⊕ f : L0 ⊕ L1 → L ′
0 ⊕ L ′

1

is a graded linear isomorphism and that

	 : L0 ∧ L0 → L ′
1

	(x ∧ y) := ([x im(d), h(y)] + [xg, h(y)] + [h(x), yg])ker(d) + [x, y]im(d)

is a linear map. Note that the first term in this expression is antisymmetric by Eq. (2),
as is the sum of the next two.

By Proposition 3.7, we find that (L ′, d ′, [·, ·]′, J ′), with d ′, [·, ·]′ and J ′ uniquely
defined by Eqs. (6)–(9), is a 2-term L∞-algebra isomorphic to (L, d, [·, ·], J ). We will
now show that this 2-term L∞-algebra is identically Lg,im(d),ρ, J̃ .

For x, y, z ∈ L0, v ∈ L1 and w ∈ L ′
1, we find that

[x, y]′ = [φ(x), φ(y)] = φ([x, y]) − d ′(	(x ∧ y)) = [x, y] − [x, y]im(d)

= [x, y]g = [xg, yg]g,

where the last equality follows from Eq. (1).
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Moreover, we also obtain from Eqs. (1) and (2) that

[ f (v), y]′ = [φ(v), φ(y)]′ = φ([v, y]) − 	(d(v) ∧ y)

= f ([v, y]) − ([d(v)im(d), h(y)] + [d(v)g, h(y)] + [h(d(v)), yg])ker(d) − [d(v), y]im(d)

= [v, y]ker(d) + d([v, y]) − ([d(v), h(y)] + [h(d(v)), yg])ker(d) − [d(v), y]
= [v, y]ker(d) − ([h(d(v)), yim(d)] + [h(d(v)), yg])ker(d)

= [v − h(d(v)), y]ker(d) = [vker(d), y]ker(d) = [vker(d), yg]ker(d).

and thus that [w, y]′ = [wker(d), yg]ker(d). Using those equations, we also obtain that

im(d) � d J ′
x,y,z = [xg, [yg, zg]g]g − [[xg, yg]g, zg]g − [yg, [xg, zg]g]g ∈ g,

and as im(d) ∩ g = 0, we find that d J ′
x,y,z = 0. Similarly, we have that

J ′
d(w),y,z = [wker(d), [yg, zg]g]ker(d) − [[wker(d), yg]ker(d), zg]ker(d)

− [yg, [wker(d), zg]ker(d)]ker(d)

= J ′
d(wker(d)),y,z = 0.

Combining the results from those two equations with Eq. (9), we also find that

J ′
x1,x2,x3 = J ′

xg1 ,xg2 ,xg3
ker(d)

=
(
φ(Jx1g,x2g,x3g)

−
∑

σ∈Sh(1,2)
(−1)σ [φ(xσ(1)

g),	xσ(2)
g,xσ(3)

g]′ + 	xσ(1)
g,[xσ(2)

g,xσ(3)
g]

)
ker(d)

= Jx1g,x2g,x3g
ker(d) −

∑

σ∈Sh(1,2)
(−1)σ [xσ(1)

g, h([xσ(2)
g, xσ(3)

g])]ker(d).

As the expressions for the differential, bracket and Jacobiator coincide, we conclude
that L ′ is identically Lg,im(d),ρ, J̃ . ��
Remark 3.9 Given a general 2-term L∞-algebra (L, d, [·, ·], J ), it is clear from both
constructions that the skeletal 2-term L∞-algebra obtained from (L, d, [·, ·], J ) in [1,
Proposition 51] is equal to Lg,0,ρ, J̃ , with g, ρ and J̃ as in Lemma 3.5.

We note that the above construction of Lg,0,ρ, J̃ depends on a vector space decom-
position of L . At first sight, this might lead to different 2-term L∞-algebras, but as
Theorem 3.10 will show, this is not the case.

In the next theorem, we will prove that two 2-term L∞-algebras in the shape con-
structed in Lemma 3.3 are isomorphic if and only if their underlying Lie algebras,
vector spaces and representations are isomorphic, and if their 3-cocycles are cohomol-
ogous. Whereas it is quite straightforward to give a 2-term L∞-algebra isomorphism
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using the isomorphisms of the corresponding Lie algebras et cetera, it is a more intri-
cate exercise to retrieve such morphisms form a 2-term L∞-algebra isomorphism.
This is mostly due to the fact that a 2-term L∞-algebra isomorphism does not have
to transport the Lie algebra underlying the first 2-term L∞-algebra to the Lie algebra
underlying the second. We solve this problem by first considering the image of the Lie
algebra under the 2-term L∞-algebra isomorphism and subsequently projecting onto
the Lie algebra underlying the second 2-term L∞-algebra.

Theorem 3.10 Let L := Lg,U ,ρ, J̃ and L ′ := Lg′,U ′,ρ′, J̃ ′
be two 2-term L∞-algebras

from Lemma 3.3. Then L and L ′ are isomorphic if and only if the following four
statements hold:

1. g and g′ are isomorphic Lie algebras;
2. U and U ′ are isomorphic vector spaces;
3. (ρ, V ) and (ρ′, V ′) are isomorphic representations;
4. J̃ and J̃ ′ are cohomologous under the isomorphisms of 1. and 3.

Proof In this proof, we denote the differential, bracket and Jacobiator of L and of L ′
by d, [·, ·], J and by d ′, [·, ·]′, J ′ respectively.

⇐First assume that 1.-4. hold. Thenwehave aLie algebra isomorphismχ : g → g′,
a linear isomorphism f : U → U ′, an intertwiner g : V → V ′ and a linear map
	̃ : g ∧ g → V ′ such that

g( J̃x1,x2,x3) − J̃ ′
χ(x1),χ(x2),χ(x3) = (δ	̃)(x1, x2, x3)

for x1, x2, x3 ∈ g.
Then we define φ := (χ ⊕ f ) ⊕ (g ⊕ f ) : L → L ′ and

	 : L0 ∧ L0 → L ′
1

	(x, y) : = 	̃(xg, yg).

For x, y, z ∈ L0 and v ∈ L1, we find, by decoding the definitions of the given objects
and maps, that

φ([y, z]) − [φ(y), φ(z)]′ = φ([yg, zg]g) − [φ(y)g
′
, φ(z)g

′ ]g′

= χ([yg, zg]g) − [χ(yg), χ(zg)]g′ = 0 = d ′(	̃yg,zg) = d ′(	y,z).

and that

φ([v, y]) = −φ(ρ(yg)vV ) = −g(ρ(yg)vV )

= −ρ′(χ(yg))g(vV ) = −ρ′(φ(y)g
′
)φ(v)V

′ = [φ(v), φ(y)]′.

The latter equation implies that

φ([v, y]) − [φ(v), φ(y)]′ = 0 = 	̃d(v)g,yg = 	d(v),y .
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Moreover, it is not hard to see that further unfolding of definitions yields that

	̃[xg,yg]g,zg = 	̃[x,y]g,zg = 	[x,y],z

and that

ρ′(φ(xg))	̃yg,zg = ρ′(φ(x)g
′
)	̃yg,zg = [φ(x), 	̃yg,zg ]′ = [φ(x),	y,z]′.

Combining those last two results gives us that

φ(Jx1,x2,x3) − J ′
φ(x1),φ(x2),φ(x3) = g( J̃x1g,x2g,x3g) − J̃ ′

φ(x1)g
′
,φ(x2)g

′
,φ(x3)g

′

= g( J̃x1g,x2g,x3g) − J̃ ′
χ(x1g),χ(x2g),χ(x3g) = (δ	̃)(x1

g, x2
g, x3

g)

=
∑

σ∈Sh(1,2)
(−1)σ ρ′(φ(xσ(1)

g))	̃xσ(2)
g,xσ(3)

g −
∑

σ∈Sh(2,1)
(−1)σ 	̃[xσ(1)

g,xσ(2)
g]g,xσ(3)

g

=
∑

σ∈Sh(1,2)
(−1)σ

([φ(xσ(1)),	xσ(2),xσ(3) ]′ + 	xσ(1),[xσ(2),xσ(3)]
)

for x1, x2, x3 ∈ L0. The above calculations prove that (φ,	) is a 2-term L∞-algebra
morphism, and as φ is invertible, it is even an isomorphism of 2-term L∞-algebras.

⇒ Now assume that L and L ′ are isomorphic 2-term L∞-algebras, and let (φ,	)

denote an isomorphism between them. Note that by Eq. (6), we have for u ∈ U in
degree 0 that

φ(u) = φ(d(u)) = d ′(φ(u)),

which proves that φ(U ) ⊆ U ′ in degree 0. Analogously, we find that φ−1(U ′) ⊆ U ,
which proves that φ(U ) = U ′ and thus that U and U ′ are isomorphic vector spaces.

If we let v ∈ V , we obtain that d ′(φ(v)) = φ(d(v)) = φ(0) = 0, which implies
that φ(v) ∈ V ′. Analogously, we find that φ−1(v′) ∈ V for v′ ∈ V ′, and combining
this with the previous observation gives us that φ(V ) = V ′.

As this implies that g′ ⊕U ′ = L ′
0 = φ(g⊕U ) = φ(g)⊕U ′, it is a simple exercise

in linear algebra to deduce that

π : φ(g) → g′

x �→ xg
′

(where we view x ∈ g′ ⊕U ′)

is a linear isomorphism. If we let x, y ∈ g, we have thatφ([x, y])−π(φ([x, y])) ∈ U ′,
and thus that

U ′ � d ′(	(x, y)) = φ([x, y]) − [φ(x), φ(y)]′
= φ([x, y]) − [φ(x), φ(y)]′ + π(φ([x, y])) − π(φ([x, y]))
= π(φ([x, y])) − [φ(x), φ(y)]′︸ ︷︷ ︸

∈g′

⊕ φ([x, y]) − π(φ([x, y]))︸ ︷︷ ︸
∈U ′

.

(13)
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By the uniqueness of the direct sum decomposition, we obtain that

π(φ([x, y])) − [φ(x), φ(y)]′ = 0.

This gives us that

π(φ([x, y]g)) = π(φ([x, y])) = [φ(x), φ(y)]′
= [φ(x)g

′
, φ(y)g

′ ]g′ = [π(φ(x)), π(φ(y))]g′ .

We thus obtain that g and g′ are isomorphic Lie algebras, as

τ := π ◦ φ|g : g → g′

is a Lie algebra isomorphism. If we let v ∈ V and y ∈ g, we also find that

0 = 	(d(v), y) = φ([v, y]) − [φ(v), φ(y)]′ = −φ(ρ(y)v) + ρ′(φ(y)g
′
)φ(v),

that is,

φ(ρ(y)v) = ρ′(φ(y)g
′
)φ(v) = ρ′(π(φ(y)))φ(v) = ρ′(τ (y))φ(v).

This proves that ρ and ρ′ are isomorphic representations.
Furthermore, for x1, x2, x3 ∈ g, we have that

[φ(x1),	x2,x3 ]′ = ρ′(φ(x1)
g′

)	x2,x3
V ′ = ρ′(τ (x1))	x2,x3

V ′
.

By Eq. (13) and the Jacobi identity on g, we obtain that

d ′
⎛

⎝
∑

σ∈Sh(2,1)
(−1)σ 	[xσ(1),xσ(2)],xσ(3)

⎞

⎠ =
∑

σ∈Sh(2,1)
(−1)σ φ([[xσ(1), xσ(2)], xσ(3)])U

′

= φ

⎛

⎝
∑

σ∈Sh(2,1)
(−1)σ [[xσ(1), xσ(2)]g, xσ(3)]g

⎞

⎠U ′ = 0,

from which we conclude that

φ( J̃x1,x2,x3 ) − J̃ ′
φ(x1),φ(x2),φ(x3)

=
∑

σ∈Sh(1,2)
(−1)σ [φ(xσ(1)), 	xσ(2),xσ(3) ]′ −

∑

σ∈Sh(2,1)
(−1)σ 	[xσ(1),xσ(2)],xσ(3)

=
∑

σ∈Sh(1,2)
(−1)σ ρ′(τ (xσ(1)))	xσ(2),xσ(3)

V ′ −
∑

σ∈Sh(2,1)
(−1)σ 	[xσ(1),xσ(2)]g,xσ(3)

V ′

= (δ(r ◦ 	|g∧g))(x1, x2, x3),

where r : L ′
1 → V ′ is the projection. This proves that J̃ and J̃ ′ are cohomologous. ��
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For a given 2-term L∞-algebra, [1, Proposition 51] gives an equivalent skeletal 2-
term L∞-algebra and [1, Theorem55] yields aLie algebrag, Lie algebra representation
ρ of g and 3-cocycle of ρ on g corresponding to that skeletal 2-term L∞-algebra. Sim-
ilarly, Theorem 3.8 also yields a Lie algebra, Lie algebra representation and 3-cocycle
corresponding to the same 2-term L∞-algebra. By Remark 3.9, those Lie algebras,
Lie algebra representations and 3-cocycles coincide. As [1, Theorem 57] states that
two skeletal 2-term L∞-algebras are equivalent if and only if their corresponding
Lie algebras and Lie algebra representations are isomorphic and their corresponding
3-cocycles are cohomologous, we can use Theorem 3.10 to come to the following
conclusion.

Corollary 3.11 Two equivalent 2-term L∞-algebras are isomorphic if and only if the
images of their differentials are isomorphic vector spaces. ��
UsingCorollary 3.11,we can immediately conclude that the skeletal string 2-term L∞-
algebra from Example 2.3 and the strict string 2-term L∞-algebra from Example 2.4
are not isomorphic, as the image of the differential of the former is zero-dimensional,
and the image of the latter has an uncountablymany basis elements.Another equivalent
2-term L∞-algebra can be found in [15], and it too can be shown to be non-isomorphic
to either of the previous examples by looking at the image of the respective differential.

Determining if 2-term L∞-algebras are isomorphic can by done by either using [1,
Theorem 57] and Corollary 3.11, or by Lemma 3.5, Theorem 3.8 and Theorem 3.10.
This completes the classification procedure.

4 Discussion

In this article, we have classified all 2-term L∞-algebras, and thus also all semistrict
Lie 2-algebras [1]. We have found that a 2-term L∞-algebra is a combination of a Lie
algebra with a vector space, a representation and a cohomology class. This implies
that all further classification for 2-term L∞-algebras can be done solely in terms of Lie
algebras and their representation theory. The procedure explained in this article can
be interpreted as an extension of a former approach to obtain a clear view of all 2-term
L∞-algebras in terms of more familiar and more studied objects. Even though the
isomorphism classes of 2-term L∞-algebras are more restrictive than the equivalence
classes, the only additional data that is required to distinguish isomorphism classes is
the vector space that ismoddedout by taking homology.Hence, it can be concluded that
the category of 2-term L∞-algebras is an enrichment of the category of Lie algebras,
and this can simplify our thinking about 2-term L∞-algebras and thus about semistrict
Lie 2-algebras as well.

The question remains, though, if it is possible to find a similar type of classification
for hemistrict Lie 2-algebras or more general L∞-algebras. In a further attempt to
classify more L∞-algebras, the suggested direction would be to classify all 3-term
L∞-algebras in a similar vein as the classification in this article. This is more involved,
as a 3-term L∞-algebra has a (non-zero) differential in two different degrees, so, by
taking homology, there are multiple vector spaces that are modded out which have to
be taken into account. Moreover, morphisms of 3-term L∞-algebras contain a new
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map of degree 2 which has to satisfy more equalities and which does at least at first
sight not appear to allow for a characterization of 3-term L∞-algebras as simple as
the characterization of 2-term L∞-algebras.

This article could still shed a light on possible ways creating new examples and
classifications of more general L∞-algebras and we hope that this article assists in
further understanding and classification of L∞-algebras in the near future.
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