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Abstract
Wedefine an E∞-coalgebra structure on the chains ofmultisimplicial sets.Our primary
focus is on the surjection chain complexes of McClure-Smith, for which we construct
a zig-zag of complexity preserving quasi-isomorphisms of E∞-coalgebras relating
them to both the singular chains on configuration spaces and the Barratt–Eccles chain
complexes.
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1 Introduction

The cochain complex of a simplicial set is equipped with the classical Alexander–
Whitney product defining the ring structure in cohomology. This cochain level
structure has several explicit extensions to an E∞-algebra [5, 17, 26] encoding commu-
tativity and associativity up to coherent homotopies. The importance of E∞-algebras
in homotopy theory is well known. For example, Mandell showed that finite type
nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-
isomorphic as E∞-algebras [16]. Our first objective is to define a natural product
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276 A. M. Medina-Mardones et al.

together with an E∞-algebra extension on the cochains of multisimplicial sets [11].
These are generalizations of simplicial sets which are useful for concrete computa-
tions since they can model homotopy types using fewer cells. For example, the proof
of the non-formality of the cochain algebra of planar configuration spaces [30] used a
simplicial model and the Alexander–Whitney product on its cochains. By using a mul-
tisimplicial model and the product defined here, these computations become simpler
and faster, paving the way for extending this result to higher dimensions.

Multisimplicial sets are contravariant functors from products of the simplex cat-
egory � to Set. Explicitly, for any positive integer k the category mSet(k) of k-fold
multisimplicial sets is the presheaf category Fun((�op)×k, Set). There is a notion of
geometric realization for multisimplicial sets, which results in a CW complex having,
for each non-degenerate multisimplex, a cell modeled on a product of geometric sim-
plices �n1 × · · · × �nk . We are interested in modeling homotopy types algebraically,
for which we consider the composition of the geometric realization and the functor of
cellular chains C. This composition defines N : mSet(k) → Ch, the functor of (nor-
malized) chains. In §2.5 we define a lift of N to the category of E∞-coalgebras, and,
consequently, a lift of the functor of cochains to the category of E∞-algebras.We do so
using the finitely presented E∞-prop introduced in [17] and its monoidal properties.
Specifically, using the isomorphism

C(�n1 × · · · × �nk ) ∼= C(�n1) ⊗ · · · ⊗ C(�nk ),

we extend the image of the prop generators constructed in [17] from the chains of
standard simplices to those of standard multisimplices. These generators are the
Alexander–Whitney coproduct, the augmentation map, and an algebraic version of
the join product. The resulting E∞-coalgebra structure generalizes those defined in
[5, 17, 26] for simplicial chains and in [14] for cubical chains. As an application, we
study the Steenrod construction for multisimplicial chains in §2.7 emphasizing the
explicit nature of our construction.

Let us now focus on the relationship between multisimplicial and simplicial the-
ories. The restriction to the image of the diagonal inclusion �op → (�op)×k of any
k-fold multisimplicial set X defines its associated diagonal simplicial set XD. There
is a natural homeomorphism of realizations |X | ∼= |XD| [28]. Under this homeo-
morphism the cells of |XD| arise from those of |X | through subdivision, a procedure
described algebraically by the Eilenberg–Zilber quasi-isomorphism

EZ : N(X) → N(XD).

The functor induced by the diagonal restriction has a right adjointN (k), the multisim-
plicial nerve of a simplicial set. This pair of functors defines a Quillen equivalence
between the model categories of k-fold multisimplicial and of simplicial sets. Further-
more, there is a natural inclusion

I : N(Y ) → N(N (k)Y )
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Multisimplicial chains and configuration spaces 277

which is also a quasi-isomorphism. On one hand, the EZ map preserves the counital
coalgebra structure, but it does not respect the higher E∞-structure.1 On the other,
the map I is an E∞-coalgebra quasi-isomorphism as proven in §3.3. We use this fact
to prove in §3.4 that, for any topological space X, the linear map from its singular
simplicial chains to its singular k-fold multisimplicial chains, given by precomposing

a continuous map (�n → X) with the projection (�n × �0 × · · · × �0 π1−→ �n),
induces a natural quasi-isomorphism of E∞-coalgebras.

In the second part of the paper, we use these constructions to study amultisimplicial
model of the canonical filtration

Con fr (R
1) ⊆ Con fr (R

2) ⊆ · · ·

of the spaceCon fr (R∞) of r distinct ordered points inR∞ = colim(R1 ⊆ R
2 ⊆ · · · ).

Concretely, for any integer r , McClure and Smith [26] introduced a chain complex
X (r) of Z[Sr ]-modules with a filtration

X1(r) ⊆ X2(r) ⊆ · · ·

and showed that X (r) is connected to the singular chains of Con fr (R∞) via a zig-
zag of filtration preserving Sr -equivariant quasi-isomorphisms. Presumably it was
observed by both McClure–Smith and Berger–Fresse that X (r) can be interpreted as
the chains of an r -fold multisimplicial set Sur(r), which we introduce in §4.2 with a
filtration

Sur1(r) ⊆ Sur2(r) ⊆ · · ·

so that N Surd(r) ∼= Xd(r). There is an operad structure on {Xd(r)}r≥1 for each d ≥ 1,
but we do not focus on it since it is not induced from one at the multisimplicial level.
By the constructions in §2 the complex N Sur(r) is equipped with an E∞-coalgebra
structure, which we connect to the singular chains of Con fr (R∞) via an explicit
zig-zag of filtration preserving Sr -equivariant quasi-isomorphisms of E∞-coalgebras.

In a similar way, Berger and Fresse [5] studied a chain complex E(r) of Z[Sr ]-
modules with a filtration

E1(r) ⊆ E2(r) ⊆ · · · .

This complex comes from the chains on a simplicial set introduced by Barratt and
Eccles [2] equipped with a filtration

E1(r) ⊆ E2(r) ⊆ · · ·

due to Smith [31]. (As before we disregard the operadic structure.) Since E(r) is
induced from a simplicial set, it is endowed with an E∞-coalgebra structure, and

1 The Alexander–Whitney chain homotopy inverse to EZ is not a coalgebra map in general.
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278 A. M. Medina-Mardones et al.

it is not hard to see that the zig-zag of filtration preserving Sr -equivariant quasi-
isomorphisms used to compare it to the singular chains of Con fr (R∞) respects this
higher structure. Consequently, X (r) and E(r) can be related by an explicit zig-zag
of such maps.

It is desirable to have a direct map between the multisimplicial and simplicial
models. Berger–Fresse constructed two such filtrations preserving Sr -equivariant
quasi-isomorphisms

TR : N E(r) → N Sur(r) and TC : N Sur(r) → N E(r).

The first one, introduced in [5, 1·3], is unfortunately not a coalgebramap. Thereforewe
will focus on the second one, which was introduced in [4]. Our contribution, presented
in §4.4, is the construction of a factorization

TC : N Sur(r)
EZ−→ N Sur(r)D

N(tc)−−−→ N E(r),

up to sign, where the secondmap is induced from a filtration preserving Sr -equivariant
weak-equivalence of simplicial sets. Therefore, we prove that TC is a coalgebra map
since EZ is one.

2 Multisimplicial algebraic topology

2.1 Multisimplicial sets

Let us consider an arbitrary positive integer k. The k-fold multisimplex category �×k

is the k-fold Cartesian product of the simplex category �. The category

mSet(k) = Fun
(
(�×k)op, Set

)

is referred to as the category of k-fold multisimplicial sets. We remark that mSet(1)

and mSet(2) are the categories of simplicial and bisimplicial sets respectively. A rep-
resentable k-fold multisimplicial sets is denoted by �n1,...,nk .

Explicitly, a k-fold multisimplicial set X consists of a collection of sets

Xm1,...,mk = X
([m1] × · · · × [mk]

)

indexed by k-tuples of non-negative integers (m1, . . . , mk) together with face maps

d j
i : Xm1,...,m j ,...,mk → Xm1,...,m j −1,...,mk

and degeneracy map

s j
i : Xm1,...,m j ,...,mk → Xm1,...,m j +1,...,mk
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Multisimplicial chains and configuration spaces 279

for 1 ≤ j ≤ k and 0 ≤ i ≤ m j such that, referring to j as the direction of these
maps, two of them satisfy the simplicial identities when they have the same direction
and commute when they do not. An element of Xm1,...,mk is called an (m1, . . . , mk)-
multisimplex and it is said to be degenerate if it is in the image of a degeneracy map.

2.2 Geometric realization

We will use the following model of the topological simplex:

�n = {
(t1, . . . , tn) ∈ [0, 1]n | t1 ≥ · · · ≥ tn

}

with

δi (t1, . . . , tn) =

⎧
⎪⎨

⎪⎩

(1, t1, . . . , tn) i = 0,

(t1, . . . , ti , ti , . . . , tn) 0 < i < n,

(t1, . . . , tn, 0) i = n,

and

σi (t1, . . . , tn) = (t1, . . . , t̂i , . . . , tn).

The geometric realization functor

|−| : mSet(k) → Top

is the Yoneda extension of the functor defined on representable objects by

|�n1,...,nk | = �n1 × · · · × �nk .

Explicitly, for a k-fold multisimplicial set X we have

|X | ∼=
∐

�n1 × · · · × �nk × Xn1,...,nk /∼

where

(�t1, . . . , �t j , . . . , �tk, d j
i (x)) ∼ (�t1, . . . , δi (�t j ), . . . , �tk, x),

(�t1, . . . , �t j , . . . , �tk, s j
i (x)) ∼ (�t1, . . . , σi (�t j ), . . . , �tk, x),

which equips |X | with a canonical cellular structure.
The geometric realization functor has a right adjoint

Sing(k) : Top → mSet(k)
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280 A. M. Medina-Mardones et al.

defined on a topological space X, as usual, by the expression

Sing(k)(X)n1,...,nk = Top(�n1 × · · · × �nk ,X).

2.3 Algebraic realization

The functor of chains

N : mSet(k) → Ch,

is the Yoneda extension of the functor defined on representable objects by

N
(�n1,...,nk

) = N(�n1) ⊗ · · · ⊗ N(�nk ).

It is naturally isomorphic to the composition of the geometric realization functor and
the functor of cellular chains with respect to the canonical cellular structure.

Explicitly, for a k-foldmultisimplicial set X thek-moduleN(X)n is freely generated
by the non-degenerate (n1, . . . , nk)-multisimplices with n1 + · · · + nk = n. The
differential ∂ : N(X)n → N(X)n−1 is given on one such basis element by

∂(x) =
k∑

j=1

n j∑

� j =1

(−1)n1+···+n j−1+� j d j
� j

(x).

For any topological space X the chain complex N Sing(k)(X) is denoted S(k)(X)

and referred to as the k-fold singular chains of X.

2.4 Coalgebra structure

A counital coalgebra structure on a chain complex C is a pair of chain maps� : C →
C ⊗ C and ε : C → k satisfying

(id ⊗ ε) ◦ � = id = (ε ⊗ id) ◦ � .

The tensor product of two counital coalgebras C and C ′ is itself a counital coalgebra
with structure maps given by

C ⊗ C ′ � ⊗�′−−−−→ (C ⊗ C) ⊗ (C ′ ⊗ C ′) τ−→ (C ⊗ C ′) ⊗ (C ⊗ C ′),

C ⊗ C ′ ε ⊗ ε′−−−→ k ⊗ k
∼=−→ k,

where τ transposes the second and third factors.
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Multisimplicial chains and configuration spaces 281

For each n ∈ N, the complex N(�n) is naturally equipped with a counital coalgebra
structure defined by:

�
([v0, . . . , vm]) =

m∑

i=0

[v0, . . . , vi ] ⊗ [vi , . . . , vm],

ε
([v0, . . . , vq ]) =

{
1 if q = 0,

0 if q > 0.

We will refer to it as the Alexander–Whitney structure.
Using the tensor product structure, we deduce a natural counital coalgebra structure

on the chains of representable multisimplicial sets

N
(�n1,...,nk

) = N(�n1) ⊗ · · · ⊗ N(�nk )

and, via a Yoneda extension, one on the chains of general multisimplicial sets.
Explicitly, for a k-fold multisimplicial set X and (m1, . . . , mk)-multisimplex x let

Im1,...,mk = {(i1, . . . , ik) | 0 ≤ i j ≤ m j , ∀ j = 1, . . . , k},

then

�(x) =
∑

I∈Ik,x

(−1)
∑

1≤l<h≤k ih(ml−il ) x�(i1,...,ik ) ⊗ (m1−i1,...,mk−ik )�x

where the front (i1, . . . , ik)-face of x is the multisimplex

x�(i1,...,ik ) = X(Fi1 , . . . , Fik )(x) ∈ Xi1,...,ik

with Fi j : [i j ] → [n j ] defined by Fi j (h) = h, and the back (i1, . . . , ik)-face of x is
the multisimplex

(i1,...,ik )�x = X(Bi1 , . . . , Bik )(x) ∈ Xi1,...,ik

with Bi j : [i j ] → [n j ] defined by B j (h) = h + m j − i j .

2.5 E∞-extension

AnM-bialgebra is a counital coalgebra (C,�, ε) together with a degree 1 linear map
∗: C ⊗ C → C satisfying

∂ (c1 ∗ c2) − ∂ c1 ∗ c2 + (−1)|c1|c1 ∗ ∂ c2 = ε (c1)c2 − ε (c2)c1,

ε (c1 ∗ c2) = 0,
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282 A. M. Medina-Mardones et al.

for all c1, c2 ∈ C . As proven in [17], the collection of all maps {C → C⊗r }r∈N
generated by�, ε and ∗make C into an E∞-coalgebra, that is to say, a coalgebra over
certain operad UM that is a cofibrant resolution of the terminal operad.

As proven in [25], the counital coalgebra structure on the tensor product of two
M-bialgebras C and C ′ can be naturally extended to anM-bialgebra structure using

(C ⊗ C ′) ⊗ (C ⊗ C ′) τ−→ C ⊗ C ⊗ C ′ ⊗ C ′ ε ⊗ id⊗∗+∗⊗ id⊗ ε−−−−−−−−−−−−−→ C ⊗ C ′.

For any integer n, the join product ∗: N(�n)⊗2 → N(�n) is the natural degree 1
linear map defined by

[
v0, . . . , vp

] ∗ [
vp+1, . . . , vq

] =
{

(−1)p sign(π)
[
vπ(0), . . . , vπ(q)

]
if vi �= v j for i �= j,

0 if not,

where π is the permutation that orders the vertices. It is proven in [17] that on the
chains of representable simplicial sets the Alexander–Whitney structure together with
the join product make N(�n) into a naturalM-bialgebra and, consequently, a natural
E∞-coalgebra. We mention that this structure is induced by one present at the level
of geometric realizations [21].

Using the tensor product structure, we deduce a natural M-bialgebra structure on
the chains of representable multisimplicial sets

N
(�n1,...,nk

) = N(�n1) ⊗ · · · ⊗ N(�nk ),

and consequently, a natural E∞-coalgebra structure, which extends along the Yoneda
inclusion to the chains on any multisimplicial set X .

Explicitly, for two basis elements of N
(�n1,...,nk

)
we have

(x1 ⊗ · · · ⊗ xn) ∗ (y1 ⊗ · · · ⊗ yn) =
n∑

i=1

x<i ε(y<i ) ⊗ xi ∗ yi ⊗ ε(x>i ) y>i ,

where, with the convention x<1 = x>n = 1 ∈ k,

z<i = z1 ⊗ · · · ⊗ zi−1,

z>i = zi+1 ⊗ · · · ⊗ zn .

We remark that since the category of M-bialgebras is not cocomplete, we do not
necessarily have an M-bialgebra structure on N(X) for a general multisimplicial set
X . An example for which such structure does not exist is given by one such X whose
geometric realization consists of just two points.

2.6 Cubical comparison

Since the complex of chains of the k-fold multisimplicial set �1 × · · · × �1 is iso-
morphic to the chains on the standard cubical set �k , it is natural to compare the
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Multisimplicial chains and configuration spaces 283

M-bialgebra structure defined here with that presented in [14], defining an E∞-
structure on cubical chains. As counital coalgebras N(�1 × · · · × �1) and N(�k)

are isomorphic, and, denoting the product of theM-bialgebra defined there by ∗̃, we
have

x ∗̃ y = (−1)|x |x ∗ y

under this chain isomorphism. The sign convention used here is more natural, used
for example to endow Adams’ cobar construction with the structure of a monoidal
E∞-coalgebra [25].

2.7 Steenrod construction

In [32], Steenrod introduced natural operations on the mod 2 cohomology of spaces,
the celebrated Steenrod squares

Sqk :H−n H−n−k

[α] [
(α ⊗ α)�n−k

]
,

via an explicit construction of natural linear maps �i : N(X) → N(X) ⊗ N(X) for
any simplicial set X , satisfying up to signs the following homological relations

∂ ◦�i + �i ◦ ∂ = (1 + T )�i−1,

with the convention �−1 = 0. These so-called cup-i coproducts appear to be fun-
damental, as they are axiomatically characterized [22] and induce the nerve of strict
infinity categories [18]. A description of cup-i coproducts for multisimplicial sets
can be deduced from our E∞-coalgebra structure. As presented in [23], it is given
recursively by

�0 = �,

�i = (∗ ⊗ id) ◦ (23) ◦ (�i−1 ⊗ id) ◦ �.

Steenrod also introduced operations on the mod p cohomology of spaces when
p is an odd prime [33, 34]. To define these effectively, generalization of the
cup-i coproducts were introduced in [13]. After the present work, these so-called
cup-(p, i) coproducts are defined on multisimplicial chains, and their formulas are
explicit enough to be implemented in the computer algebra system2ComCH [20],where
constructions of Cartan and Adem coboundaries [8, 9, 19] for multisimplicial sets can
also be found.

2 https://comch.readthedocs.io/en/latest/
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3 Comparison with the simplicial theory

Wewill use sSet to denote the category of 1-foldmultisimplicial setsmSet(1) referring
to its objects and morphisms as simplicial sets and simplicial morphisms as usual.

3.1 Diagonal simplicial set

For any k ∈ N, the diagonal

�op D−→ (�op)×k ∼=−→ (�×k)op

induces a functor

(−)D : mSet(k) → sSet

explicitly defined on a k-fold multisimplicial set X by

XD
m = Xm,...,m, di = d1i ◦ · · · ◦ dk

i , si = s1i ◦ · · · ◦ sk
i .

It is straightforward to verify that

(�n1,...,nk
)D ∼= �n1 × · · · × �nk

as simplicial sets.
The functor (−)D : mSet(k) → sSet admits a right adjointN (k) : sSet → mSet(k),

defined, as usual, by the expression

N (k)(Y )m1,...,mk = sSet
(�m1 × · · · × �mk , Y

)
.

These functors define a Quillen equivalence. A proof of this fact can be given using
[15, Proposition 1.6.8] or adapting that in [24, Proposition 1.2].

3.2 Eilenberg–Zilber map

Recall that an (n1, . . . , nk)-shuffle σ is a permutation in Sn satisfying

σ(1) < · · · < σ(n1),

σ (n1 + 1) < · · · < σ(n1 + n2),

...

σ (n − nk + 1) < · · · < σ(n),
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Multisimplicial chains and configuration spaces 285

where n = n1 + · · · + nk . We denote the set of such permutations by Sh(n1, . . . , nk).
For any σ ∈ Sh(n1, . . . , nk) the inclusion

iσ : �n → �n1 × · · · × �nk

is defined by the assignment

(x1, . . . , xn) �→ (xσ−1(1), . . . , xσ−1(n)).

If e is the identity permutation,wedenote ie simply as i. The set { i σ |σ ∈Sh(n1, . . . , nk)}
defines a triangulation of �n1 × · · · × �nk making it isomorphic, in the category of
cellular spaces, to the geometric realization of the simplicial set �n1 × · · · × �nk .
Using this identification, the identity map induces a cellular map

ez : �n1 × · · · × �nk → ∣∣�n1 × · · · × �nk
∣∣,

whose induced chain map

EZ : N(�n1,...,nk ) → N
(�n1 × · · · × �nk

)

agrees, under the natural identifications, with the traditional Eilenberg–Zilber map.
For a multisimplicial set X , the induced chain map EZ : N(X) → N(XD) is explic-

itly given on an (n1, . . . , nk)-multisimplex x by

EZ(x) =
∑

σ∈Sh(n1,...,nk )

sign(σ ) X(σ1, . . . , σk)(x)

where, for � ∈ {1, . . . , k}, the morphisms σ� : [n] → [n�] are defined by the following
property: for each j ∈ {0, . . . , n − 1} there is exactly one � ∈ {1, . . . , k} such that
σ�( j + 1) = σ�( j) + 1 and σi ( j + 1) = σi ( j) for all i �= �.

Geometrically this collection (σ1, . . . , σk) represents a sequence of (a1 +· · ·+ak)

moves in a lattice of integral points with k-coordinates, starting at the origin and
moving in a single direction at each stage until the point (a1, . . . , ak) is reached. The
associated permutation sends j + 1 to a1 + · · · + a�−1 + σ�( j + 1).

Theorem 3.2.1 For every multisimplicial set X the map EZ : N(X) → N(XD) is a
quasi-isomorphism of counital coalgebras.

Proof The fact that EZ is quasi-isomorphism follows from it being induced from a sub-
division map. To prove it is a coalgebra map, it suffices to assume X is a representable
multisimplicial sets �n1,...,nk . In this case N(�n1,...,nk ) = N(�n

1) ⊗ · · · ⊗ N(�n
k ),

N((�n1,...,nk )D) ∼= N(�n1 × · · · × �nk ) and EZ agrees with the usual Eilenberg–
Zilber map, which is known to be a coalgebra map [10, (17.6)]. ��

We remark that the Eilenberg–Zilber map is not a morphism of E∞-coalgebras.
For example, as shown in [14, §5.4], we have

�1 ◦ EZ
([0, 1] ⊗ [0, 1]) �= EZ⊗2 ◦�1

([0, 1] ⊗ [0, 1]).
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286 A. M. Medina-Mardones et al.

3.3 Canonical inclusion

We might consider an analogue of the traditional Alexander–Whitney map, a natural
chain homotopy inverse to the usual Eilenberg–Zilber map. Unfortunately, this map
does not preserve coalgebra structures. In this subsection we introduce an alternative
quasi-isomorphism that preserves E∞-coalgebra structures. Let Y be a simplicial set
and n an integer. Consider the function Yn → N (k)Yn,0,...,0 sending a simplex with
characteristic map ζ : �n → Y to the composition

�n × �0 × · · · × �0 π1−→ �n ζy−→ Y .

These functions induce a chain map

I : N(Y ) → N(N (k)Y )

and we have the following.

Theorem 3.3.1 The canonical inclusion I : N(Y )→N(N (k)Y ) is a quasi-isomorphism
of E∞-coalgebras for any simplicial set Y .

Proof The structure-preserving properties of this map are immediate. It remains to be
shown that it induces a homology isomorphism. Consider the composition of quasi-
isomorphisms

N(N (k)Y )
EZ−→ N

(
(N (k)Y )D

) → N(Y )

where the second map is induced by the counit of the adjunction. We will now verify
that it is left inverse to I. Consider a simplex y with characteristic map ζ : �n → Y .

The multisimplex I(y) is given by the simplicial map �n ×�0 ×· · ·×�0 π1−→ �n ζ−→
Y . Since the only (n, 0, . . . , 0)-shuffle is the identity, the simplex EZ ◦ I(y) is the
simplicial map

ζ ◦ π1 : �n × �n × · · · × �n → Y .

Finally, the image of this simplex under the counit is the evaluation of [n] × · · · × [n]
on ζ ◦ π1 which gives ζ [n] = y as claimed. ��

3.4 Singular chains

Theorem 3.4.1 Let X be a topological space. The chain map

S(X) → S(k)(X),

defined by precomposing a continuous map (�n → X) with the projection

�n × �0 × · · · × �0 π1−→ �n,
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is a quasi-isomorphism of E∞-coalgebras.

Proof This map factors as the composition of two quasi-isomorphisms of E∞-
coalgebras. The first is I : S(X) → N(N (k) Sing(X)), which was studied in §3.3.
The second is induced by a multisimplicial isomorphism

N (k) Sing(X) → Sing(k)(X)

defined as follows.Using the adjunction of §2.2, any simplicialmap�n1×· · ·×�nk →
Sing(X) corresponds canonically to a continuousmap |�n1 × · · · × �nk → X|, which
precomposing with ez gives a continuous map �n1 × · · · × �nk → X. It is not hard
to see that every such map arises this way since ez is a homeomorphism. ��

4 Models of configuration spaces

We are interested in modeling algebraically the Sr -equivariant homotopy type of the
space of configurations of r labeled and distinct points in Euclidean d-dimensional
space. Multisimplicial sets can be used to provide an explicit chain complex model
with a small number of generators, which, using the E∞-structure defined in this paper,
retains all homotopical information by Mandell’s theorem [16].

In the initial subsection, we revisit Berger’s method for identifying spaces that
are homotopy equivalent to Euclidean configuration spaces. This approach utilizes a
filtration indexed by a complete graph poset. In the second subsection, we construct
the multisimplicial model and show that is equipped with such a filtration. In the third
subsection, we recall the construction of the simplicial Barratt–Eccles model and
show that is equipped with a similar filtration. In the fourth subsection, we relate the
multisimplicial and simplicial chain models by an explicit map. In the last subsection,
we give some examples of the sizes of the twomodels, showing that themultisimplicial
is smaller.

4.1 Recognition of configuration spaces

Let Con fr (Rd) denote the configuration space of r -tuples of pairwise disjoint vec-
tors in R

d . This space is equipped with a free action of the symmetric group Sr of
permutations of {1, . . . , r} swapping elements of a r -tuple.

Definition 4.1.1 A complete graph on r vertices is a pair (μ, σ ) with μ a collection
of non-negative integers μi j for all 1 ≤ i < j ≤ r , and σ is an ordering of {1, . . . , r}.
We write σi j for the restriction of the ordering σ to the set {i, j}. Graphically (μ, σ )

is a simple directed graph in the edge corresponding to i < j directed according to
σi j and labeled by μi j . Please consult Fig. 1 for an example. Let us denote the set of
complete graphs with r vertices by K(r) equipped with the poset structure

(μ, σ ) ≤ (ν, τ ) ⇐⇒ ∀i, j (μi j < νi j ) or (μi j , σi j ) = (νi j , τi j )
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Fig. 1 A complete graph on 4
vertices with ordering
σ = (1432) and μ =
(μ12, μ13, μ14, μ23, μ24, μ34) =
(2, 1, 3, 1, 2, 4)

2

1 3

4

2

3

1
2

1

4

for each pair i < j . It is equipped with an exhaustive filtration by subposets

K1(r) ⊂ K2(r) ⊂ · · ·

where Kd(r) consists of those graphs with max(μi j ) < d.

Definition 4.1.2 For a given poset A, a cellular A-decomposition of a topological space
X is a family of subspaces {Xa}a∈A such that:

i. a ≤ b implies Xa ⊆ Xb;
ii. colima∈A Xa = X;
iii. Xa is contractible for each a;
iv.

⋃
a<b Xa ⊂ Xb is a closed cofibration.

The relevance of this notion is the well-known fact that if a topological space X
admits a cellular A-decomposition, then the natural maps

X = colim
A

Xa ← hocolim
A

Xa → |A| (1)

are cellular homotopy equivalences. Please consult [3, §1.7] for a proof.
Let Cd(r) be the space of r little d-dimensional cubes, which is equipped with an

equivariant homotopy equivalence to Con fr (Rd) picking the center of cubes. Brun
and others in [6] show that Cd(r) has a cellular Kex

d (r)-decomposition {Ca}, where
Kex

d (r) is a poset containing the poset Kd(r) and the inclusion of posets induces an
equivariant homotopy equivalence on realizations. For detailed proof, we refer to [7].
Combining these results we have

Proposition 4.1.3 If a space X has a cellular Kd(r)-decomposition, then X is equal
to colimKd (r) Xa and

colim
Kd (r)

Xa hocolim
Kd (r)

Xa |Kd(r)|

|Kex
d (r)| hocolim

Kex
d (r)

Cα Cd(r) Con fr (Rd)
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is a zig-zag of equivariant homotopy equivalences.

Definition 4.1.4 Let X be a multisimplicial (or simplicial) set. A K(r)-filtration of X
is a family of (multi)simplicial subsets {Xa} indexed by a ∈ K(r) so that

1. a ≤ b implies Xa ⊆ Xb,
2. |Xa | is a cellular K(r)-decomposition of the realization |X |.
In particular this implies that X = colima∈K(r) Xa . Let Xd = colima∈Kd (r) Xa . There
is a nested sequence

X1 ⊂ X2 ⊂ · · ·

For a given (multi)simplex x ∈ X we will refer to min {d | x ∈ Xd} as the complexity
of x .

4.2 Multisimplicial model

We define for each positive integer r a multisimplicial set Sur(r) equipped with a
K(r)-filtration. The functor of chains applied to the nested sequence

Sur1(r) ⊂ Sur2(r) ⊂ · · ·

will recover the algebraic models

χ1(r) ⊂ χ2(r) ⊂ · · ·

of configuration spaces developed by McClure–Smith [27].
Spaces Y r

0 homeomorphic to |Sur(r)| were studied in the work of McClure–Smith
[26]. The homeomorphism between Y r

0 and |Sur(r)| is described explicitly in the
appendix of [29].

Let Sur(r)be the k-foldmultisimplicial set that has as (m1, . . . , mr )-multisimplices
the surjective maps

f : {1, . . . , m + r} → {1, . . . , r},

where m = m1 + · · · + mr , satisfying that the cardinality of f −1(�) is m� for each
� ∈ {1, . . . , r}.We represent thismultisimplex by the sequence f (1) · · · f (m+r). The
face and degeneracy maps d�

j and s�j act on it by respectively removing and doubling

the ( j + 1)th occurrence of � in the sequence.
Next we define a K(r)-filtration on Sur(r). For i < j , let fi j be the subsequence

of f (1) · · · f (m + r) obtained by omitting all occurrences of elements different from
i and j . For (μ, σ ) ∈ K(r) we say that f ∈ Sur(r)(μ,σ) if for each i < j , either i and
j alternate strictly less than μi j times in the sequence fi j , or they do so exactly μi j

times and the ordering formed by the first occurrences of i and j in fi j agrees with
σi j .
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The surjection f has complexity d or less if the alternation number of each fi j is
less than d + 1, i.e., if the non-degenerate dimension of fi j in Sur(2) is d or less for
each i < j . We notice that the action of Sr on Sur(r) preserves the nested sequence

Sur1(r) ⊂ Sur2(r) ⊂ · · · .

For the proof that |Sur(r)| has indeed an induced cellular K(r)-decomposition we
refer to Lemma 14.8 in [27]. Applying the functor of singular chains to the zig-
zag of Proposition 4.1.3 produces a zig-zag of equivariant quasi-isomorphisms of
UM-coalgebras connecting S |Surd(r)| and SCon fr (Rd). We can extend it using
the following zig-zag of maps of the same kind S |Surd(r)| ∼= S |Surd(r)D| →
N (Surd(r)D) → N (N (r)(Surd(r)D)) ← N Surd(r). The first map is induced by
the homeomorphism ||Surd(r) ∼= ||Surd(r)D , the second by the unit of the Quillen
equivalence between simplicial sets and topological spaces, the third is the comparison
map of §3.3, and last one is induced by the unit of the Quillen equivalence between
multisimplicial sets and simplicial sets.

As announced in the introduction, this construction relates the chains on the multi-
simplicial model of configuration space and its singular chains via an explicit zig-zag
of equivariant quasi-isomorphisms of E∞-coalgebras.

4.3 Simplicial model

Wewill recall the definition of the Barratt–Eccles simplicial set E(r) for r ∈ Nwhich
comes equipped with a K(r)-filtration. Applying the functor of chains to the nested
sequence

E1(r) ⊂ E2(r) ⊂ · · ·

will provide the algebraic models

E1(r) ⊂ E2(r) ⊂ · · ·

of configuration spaces studied by Berger and Fresse in [5].
The n-simplices of E(r) are tuples of n +1 elements of the symmetric group Sr . Its

face anddegeneracymaps are definedby removing anddoubling elements respectively.
There is an operad structure on these simplicial sets, but we do not consider it here.

Next we recall a K(r)-filtration on E(r). For i < j and σ in Sr let σi j be the asso-
ciated permutation in S2. Given (μ, σ ) ∈ K(r) then an element w = (w0, . . . wn) ∈
E(r)n , w ∈ E(r)(μ,σ) if for each i < j , the cardinality of {� | (w�)i j �= (w�+1)i j } is
either less than μi j or equal to it and (w0)i j = σi j .

In particular w has complexity d or less if for each i < j the non-degenerate
dimension of wi j = ((w0)i j , . . . , (wn)i j ) in E(2) is d or less for all i < j . We notice
that the action of Sr on E(r) preserves the nested sequence

E1(r) ⊂ E2(r) ⊂ · · · .
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For a proof that this is a K(r)-filtration we refer to Example 2.8 in [3]. Please consult
[3, 12, 31] for more details.

Applying the functor of singular chains to the zig-zag of Proposition 4.1.3 pro-
duces a zig-zag of equivariant quasi-isomorphisms of UM-coalgebras connecting
S |Ed(r)| and SCon fr (Rd). Using the unit of the Quillen equivalence extends this
zig-zag to one relating N Ed(r) and SCon fr (Rd), which can be combined with the
zig-zag constructed in the previous subsection. As announced in the introduction, this
construction relates the chains on themultisimplicial model of configuration space and
those the simplicial model via an explicit zig-zag of equivariant quasi-isomorphisms
of E∞-coalgebras.

4.4 Table completion

It is desirable to have a direct Sr -equivariant quasi-isomorphism between these alge-
braic models. Two filtration preserving quasi-isomorphisms were constructed by
Berger–Fresse

TR : N E(r) → N Sur(r) and TC : N Sur(r) → N E(r).

The first one, introduced in [5, 1·3], is not a coalgebra map, as the reader familiar with
its definition can easily verify. We will focus on the second one which was introduced
in [4] and termed table completion. We will construct a factorization up to signs

TC : N Sur(r)
EZ−→ N Sur(r)D

N(tc)−−−→ N E(r),

where the second map is induced from a simplicial map defined below. This factoriza-
tion proves that TC is a coalgebra map since both factors are. We warn the reader that
since EZ does not respect the E∞-coalgebra structure, neither does TC. For example,
we have

�1 ◦ TC
(
12312) �= TC⊗2 ◦�1

(
12312

)
.

Let us give amore explicit descriptionof the simplicial set Sur(r)D.Eachm-simplex
corresponds to a map

f : {1, . . . , rm + r} → {1, . . . , r},

satisfying that the cardinality of f −1(�) is m +1 for each � ∈ {1, . . . , r}. We represent
this simplex by the sequence f (1) · · · f (rm+r). The i th face and degeneracymaps act
on it respectively by removing or doubling the i th occurrence of each � ∈ {1, . . . , r}
in f (1) · · · f (rm + r).

The restriction to the diagonal defines a K(r)-filtration of Sur(r)D and a nested
sequence

Sur1(r)D ⊂ Sur2(r)D ⊂ · · ·
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on Sur(r)D that is preserved by the action of Sr on Sur(r)D. In terms of cellular
K(r)-decompositions, given (μ, σ ) ∈ K(r) then f ∈ Sur(r)D(μ,σ ) if for each i < j ,
either i and j alternate strictly less than μi j times in the sequence fi j , or they do so
exactly μi j times and the ordering formed by the first occurrences of i and j in fi j

agrees with σi j .
Since the complexity of an element is unchanged by degeneracy maps, it can easily

be seen that EZ : N Sur(r) → N Sur(r)D preserves K(r)-filtrations.
Let us now define the simplicial map tc. For f as above, let

tc( f ) = (σ0, . . . , σm)

with σ j represented by the subsequence of f containing the ( j + 1)st occurrence of
each � ∈ {1, . . . , r}. For example, we have

tc(122333112) = (123, 231, 312).

For every surjection f ∈ Sur(r)m1,...,mr , as described in [3, §1.2.2], there is a
collection of elements (k0, . . . , km−1), called caesuras, where m = m1 + · · · + mr

and k j ∈ {1, . . . r}, j ∈ {0, . . . , m −1}. The caesuras are the elements of the sequence
representing f which are not the last occurrence of a value k = 1, . . . , r . The caesuras
of f define a collection of morphisms π� : [m] → [m�], � ∈ {1, . . . , r} such that
for j ∈ {0, . . . , m − 1}, πk j ( j + 1) = πk j ( j) + 1 and π�( j + 1) = π�( j) for
all � �= k j . We can interpret these morphisms geometrically, as in §3.2. Then the
collection (π1, . . . , πr ) defines a permutation ϑ f ∈ Sm such that ϑ f ( j + 1) = a1 +
· · · + ak j −1 + πk j ( j + 1), for j ∈ {0, . . . , m − 1}.
Theorem 4.4.1 The simplicial map tc : Sur(r)D → E(r) satisfies

TC( f ) = sign(ϑ f )(N(tc) ◦ EZ)( f )

and induces a weak equivalence

tcd : Surd(r)D → Ed(r)

for every r , d ∈ N.

Before providing the proof of this theorem we briefly recall the definition of T C
from [4]. For each f ∈ Sur(r)m1,...,mr there is a certain map of simplicial sets

τ f : �m1 × · · · × �mr → E(r).

Observe that a map into E(r) is completely determined by its restriction to the 0-
simplexes. The 0-simplexes of �m1 × · · · × �mr are r -tuples (n1, . . . , nr ) such that
0 ≤ ni ≤ mi , for i = 1, . . . , r . The map τ f is determined by the requirement that the
permutation τ f (n1, . . . , nr ) is the subsequence of f where one picks the (ni + 1)st

entry of the value i , for each i = 1, . . . , r .
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As seen in §3.2 each maximal non-degenerate simplex

σ ∈ (�m1 × · · · × �mr )m

is determined by a (m1, . . . , mr )-shuffle, and equivalently by a sequence ki ∈
{1, . . . , r}, i = 0, . . . , m − 1. The fundamental simplex of f is the maximal non-
degenerate simplex corresponding to the sequence (k0, . . . , km−1) of the caesuras of
f . The homomorphism T C( f ) is defined as the sum, with signs, of the simplexes
τ f (σ ), where σ runs over all maximal non-degenerate simplices of the domain. The
sign of each summand is positive if and only if the natural orientation of the corre-
sponding simplex agrees with that of the fundamental simplex.

Proof of Theorem 4.4.1 It is clear that tc is a simplicial map. Let

f̂ : �m1,...,mr → Sur

be the map sending the only non-degenerate (m1, . . . , mr )-multisimplex s to f . We
claim that

τ f = tc ◦ f̂ D,

where we identify

(�m1,...,mr )D ∼= �m1 × · · · × �mr .

Namely f̂ D coincides with τ f on 0-simplexes and tc0 is the identity. Observe that
E Z(s) is the signed sum of all maximal non-degenerate simplices σ where the sign
takes care of the orientation. By naturality N( f̂ D) sends EZ(s) to EZ( f ) and so

TC( f ) = ±N(τ f )(EZ(s)) = ±N(tc)(N( f̂ D)(EZ(s)) = ±N(tc)(EZ( f )).

Comparing with the definition of TC we see that the sign in the equation is exactly the
sign of θ f .

We now prove the filtration compatibility of tc. Let f ∈ Sur(r)D be an m-simplex
and denote

tc( f ) = w = (w0, . . . , wm) ∈ E(r)m .

Suppose that in fi j i and j alternate μi j times, and in wi j i and j alternate μ′
i j times.

We will prove that μ′
i j ≤ μi j .

Suppose without loss of generality that i occurs before j in fi j , that starts with i
repeated h times, followed by j repeated l times, and then by i again (or terminating).
If the sequence terminates then h = l = k and μi j = μ′

i j = 0. For h < l let f̄i j be
the subsequence of fi j obtained taking out the first h values of i and of j . Let μ̄i j be
the number of variations in f̄i j and μ̄′

i j the number of variations in tc( f̄i j ).

Then f̄i j starts with j , μi, j = 1 + μ̄i j , and μ′
i j = 1 + μ̄′

i j .
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If h ≥ l and l < r let f̄i j be the subsequence of fi j obtained taking out the first l
values of i and j . Then f̄i j starts with i , μi, j = 1+ μ̄i j , and μ′

i j = μ̄′
i j . By induction

on the length of sequences, we obtain that μ′
i j ≤ μi j . Moreover, tc is compatible with

orderings: the first occurrences of i and j form the ordering (w1)i j that is the first
permutation of tc( fi j ). This concludes the proof of filtration compatibility.

Regarding the maps tcd : Surd(r)D → E(r)d we can express source and target as
(homotopy) colimits of contractible simplicial sets along the poset of complete graphs,
so we have a commutative diagram

hocolimKd (r)Sur(μ,σ )(r)D hocolimKd (r)E(r)(μ,σ)

Surd(r)D E(r)d

Where the vertical and top arrows are weak equivalences, and so the bottom map is
a weak equivalence. ��

We remark that, as informed to us by the referee, the tc map appears in [1, Exam-
ple 3.10(b)] in the context of the simplicial condensation of the lattice path operad.

4.5 Counting generators

We would like to stress that the number of non-degenerate multisimplices in Surd(r)

is much smaller than the number of non-degenerate simplices in Ed(r). For example,

P2,4
χ (x) = 24(1 + 6x + 10x2 + 5x3)

P2,4
E (x) = 24(1 + 23x + 104x2 + 196x3 + 184x4 + 86x5 + 16x6)

and

P3,3
χ (x) = 6(1 + 3x + 7x2 + 9x3 + 6x4 + x5)

P3,3
E (x) = 6(1 + 5x + 25x2 + 60x3 + 70x4 + 38x5 + 8x6)

where

Pd,r
χ (x) =

∑

n

rank(χd(r)n) · xn,

Pd,r
E (x) =

∑

n

rank(Ed(r)n) · xn .

This makes the multisimplicial approach substantially more efficient than the sim-
plicial one when performing computations. A calculation of obstruction to formality
similar to that in [30] took a full day with the simplicial model, and few seconds with
the multisimplicial model.
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