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Abstract
We introduce a construction that produces from each bialgebra H an operad AssH
controlling associative algebras in the monoidal category of H -modules or, briefly,
H -algebras. When the underlying algebra of this bialgebra is Koszul, we give explicit
formulas for the minimal model of this operad depending only on the coproduct of H
and the Koszul model of H . This operad is seldom quadratic—and hence does not fall
within the reach of Koszul duality theory—so our work provides a new rich family
of examples where an explicit minimal model of an operad can be obtained. As an
application, we observe that if we take H to be the mod-2 Steenrod algebra A, then
this notion of an associative H -algebra coincides with the usual notion of anA-algebra
considered by homotopy theorists. This makes available to us an operad AssA along
with its minimal model that controls the category of associative A-algebras, and the
notion of strong homotopy associative A-algebras.

Keywords Quasi-free resolutions · Koszul duality · Minimal models · Perturbation
theory

Mathematics Subject Classification 18D50 · 16S15 · 18M70 · 18G55

1 Introduction

Finding (possibly non-minimal) models for operads allows us understand the homo-
topy theory of their (co)algebras and, in particular, define their deformation complexes
in the same spirit as is done with commutative, associative and Lie algebras, for exam-
ple. In particular, finding a suitable model for an operad allows us to define its algebras
up to homotopy, as it has been done, for example, for associative [37,38], commu-
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176 P. Tamaroff

tative, Lie [25], Gerstenhaber and Poisson [17], and BV algebras [14,16,40], among
others.

It is well known that if H is a bialgebra, the category of left H -modules admits
an internal tensor product—the so called diagonal action of H—coming from its
coproduct: if V andW are left H -modules, we define an action so that for each h ∈ H
and each v ⊗ w ∈ V ⊗ W , using Sweedler notation,

h(v ⊗ w) = h(1)v ⊗ h(2)w.

In this way, it makes sense to consider associative algebras in the category HMod
of left H -modules. If H is cocommutative, this category is symmetric monoidal, and it
also makes sense to consider commutative associative algebras in the same monoidal
category. Our first contribution is producing a functor

H �−→ AssH

that assigns to each weight graded bialgebra H a weight graded operad AssH so that
an associative algebra in HMod is the same as an AssH -algebra. The idea of producing
functors from certain “amenable” categories to study operads and related structures,
or even producing endofunctors on operads themselves, has already appeared several
times in the literature, see [9–11] and [12, Chapter 4].

Unraveling the definitions, we see that the way the associative product x1x2 of an
AssH -algebra and an operation Th coming from h ∈ H behave with respect to each
other is dictated by the coproduct of H : using Sweedler notation, we require that

Th(x1x2) = Th(1) (x1)Th(2) (x2).

The first observation to make is that this relation is not quadratic, since the right
hand side has three operators. As a result, the study of the operadAssH falls outside the
scope of the theory of Koszul duality, which is our go-to tool to study the homotopy
theory of quadratic operads. To remedy this, we apply the methods of word operads of
Dotsenko [10] and ideas coming from perturbation theory similar to those of Vallette
and Merkulov [28, Theorem 40] to show how to obtain the minimal model of AssH
from an associated quadratic operad qAssH in case H is Koszul. Moreover, we show
how to construct a Gröbner basis of AssH in case H admits one, which shows in
particular that qAssH admits a quadratic Gröbner basis in case H admits one.

To build our intuition, one can think that this operad codifies the cases when the
action of H is trivial, effectively allowing us to split the study of qAssH into the study
of H -modules and Ass-algebras: the minimal model of qAssH is generated by the
desuspension of the ns sequence

H
¡ ⊗ Ass

¡
.

With this at hand, we apply techniques coming from pertubation theory coupled
with an Ansatz coming from the theory of rewriting systems to describe the minimal
model of AssH , which is generated by the same ns sequence and incorporates some

123



Resolutions of operads via Koszul (bi)algebras 177

higher order terms in its differential. Our work will show that this perturbation—
although in general incorporating terms of arbitrarily high order—can be controlled
completely through the Koszul model of H and its coproduct.

Theorem Suppose that the underlying algebra of H is Koszul. There exists a quasi-free
resolutionM(AssH ) −→ AssH such that

• the underlying operad is of M(AssH ) is equal to underlying operad of the Koszul
resolution M(grAssH ),

• the differential of M(AssH ) is obtained from the differential ofM(grAssH ) by a
perturbation that lowers the weight induced by the external weight grading.

Moreover, this differential is homogeneous for the internal weight grading induced
fromAssH , and the pertubation depends only on theKoszul differential and the iterated
coproduct coming from H. ��

The takeaway is thatwe can explicitly describe the differential of theminimalmodel
of AssH provided we can do this for the Koszul model of H and its coproduct. This
problem, pertaining to the domain of algebras and coalgebras, is usually a simpler
problem to tackle, so our result gives a useful bridge to solve from a much familiar
problem a seemingly more complicated one. The theory of Koszul duality for usual
associative algebras, on the other hand, has existed for almost five decades since its
inception in [34], and now extensive literature and methods exist to deal with them
and with many of their variants; see for example [13,20,24,26,33].

We also show that in case H is Koszul and primitively generated, this operad does
fall within a formalism to study pertubations of Koszul (pr)operads in [26] if the
algebra underlying H is Koszul, then AssH is homotopy Koszul, and hence admits a
minimal model of the same size of an associated Koszul (quadratic) operad qAssH .
It is important to point out that the main example we are interested in, the Steenrod
algebra mod 2, does not fall within this more restrictive class of bialgebras, since
it is not primitively generated. On the other hand, we can apply this last method to
universal envelopes of Lie algebras, for example.

To illustrate our technique, we apply our methods to recover all the results of
[6], where the author considers associative algebras with a tower of higher order
derivations and describes its deformation complex. In this case, we show that the
bialgebra controlling this operad is free as an algebra—whichmakes the determination
of its Koszul dual and differential completely trivial—and give explicit formulas for
its minimal model. Similar articles [5,7,8] can be dealt with in the same way.

Wealso apply our formalism to themod-2Steenrod algebraA: studying the category
of associative algebras in the category of left A-modules, usually called simply A-
algebras, and in particular, the so called unstableA-algebras, is a classical problem in
(unstable) homotopy theory. Our formalism assigns to each A-algebra a deformation
complexwhose differential depends only on a very small part of the differential coming
from the minimal model of AssA. It is important to note that if we instead want to
consider the operad ComA controlling commutative algebras in A-modules, we need
to consider simplicial resolutions instead, since we are working with the commutative
operad in positive characteristic [4,15,31]. We intend to pursue these ideas in the
future.
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Notation and conventions. In what follows k is a field, and all unadorned ⊗ and hom
are with respect to this base field.We assume the reader is familiar with the elements of
operads as presented, for example, in [26, Chapters 5 and 6]. We are mainly interested
in non-symmetric and, in particular, Ass is the non-symmetric operad governing asso-
ciative algebras. We refer the reader to [26] for a useful and comprehensive reference
on the basic theory of algebraic operads. With our mind in future applications, where
we intend to replace Ass with a symmetric operad, we present our results in a way
they easily generalize to this case.

2 Some preliminaries on operads and algebras

2.1 Monomial orders and word operads

Let us recall the essential facts from [10], that produces for us a functor M �−→ WM

from monoids to (symmetric) operads that, as explained there, can be used to produce
useful orderings of shuffle tree monomials and, with them, Gröbner basis for operads.

Definition 2.1 Let M be a monoid. We define the word operad WM associated to M
so that, for each finite set I , we have WM (I ) = MI . For each map f : I −→ n we
define

γ f : WM (n) × WM ( f ) −→ WM (I )

so that for each i ∈ I , we have γ f (x; y1, . . . , yn)(i) = x( f (i))y f (i)(i).

Put differently, composing a tuple x = (x1, . . . , xn) ∈ WM (n) of elements with a
tuple of elements y = (y1, . . . , ym) ∈ WM (m) at the j th place, produces for us the
element

x ◦ j y = (x1, . . . , x j−1, x j y1, . . . , x j ym, x j+1, . . . , xn) ∈ WM (m + n − 1).

The key feature of this functor is that it maps ordered monoids to ordered shuffle
operads. To state the result, let us recall the following definitions.

Definition 2.2 An ordered monoid M is a monoid equipped with a partial order for
which the multiplication of M is increasing in each of its arguments with respect to
this order. Similarly, an ordered shuffle operad P is a shuffle operad so that for each
n ∈ N the component P(n) comes equipped with a partial order in such a way that
the composition map of P is increasing in each of its arguments with respect to these
orders.

To illustrate, this condition means in particular that if we take two operations μ1 ≺
μ2 of the same arity t then for any tuple (ν1, . . . , νt ) ∈ P(s1) × · · · × P(st ), we have
that

γP(μ1, ν1, . . . , νt ) ≺ γP(μ2, ν1, . . . , νt )
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Resolutions of operads via Koszul (bi)algebras 179

for the corresponding partial order in P(s1 +· · ·+ st ). An analogous remark holds for
the other arguments of γP. In the case of a monoid M , we require that if x, y, z ∈ M
and x ≺ y, then xz ≺ yz and zx ≺ zy.

We can now state the following result, which we reproduce from Proposition 1.6 in
[10]. It gives us a convenient gadget to produce ordered shuffle operads from ordered
monoids. Naturally, producing the latter is a rather simpler task than producing the
former.

Proposition 2.3 The functor M �−→ WM restricts to a functor from ordered monoids
to ordered shuffle operads if we endowWM with the induced lexicographical order of
tuples. ��

The ordered monoid that will be of interest to us is the monoid QM of “quantum
monomials”, as in [10, Theorem 2.1]. It is defined by

QM = 〈x, y, q | xy = qyx, qx = xq, qy = yq〉.

Observe that each element in this monoid admits a unique expression in the form
xk ylqm where k, l,m ∈ N. Define an order so that xk ylqm ≺ xk

′
yl

′
qm

′
if k > k′ or

k = k′ and l < l ′, or k = k′ and l = l ′ and m < m′. Observe, in particular, that if
k > k′ then xk ≺ xk

′
.

Lemma 2.4 This order makes QM into an ordered monoid.

Proof See Lemma 2.2 in [10]. ��

2.2 Distributive laws and Koszul duality

Let P = F(V , R) be a quadratic operad, and let us recall from [26, Definition 7.4.4,
Theorem 7.4.6] the following definition (or theorem, depending on the preference of
the reader):

Definition 2.5 The operad P is Koszul if and only if the homology of its bar construc-
tion B(P) is concentrated in syzygy degree zero.

We remind the reader that B(P) is the free cooperad on the suspension sP of the
kernel P of the augmentation ofP, and that the syzygy degree of an element x ∈ B(P)

is the difference n1 − n2 where n1 is the homological degree of x and n2 is the total
weight of elements appearing in its internal vertices.

We now recollect the standard facts about distributive laws [1,27], these are useful
algebraic gadgets that allow us to decompose a given operad P into two constituent
suboperadsP′ andP′′. Once this is done, information aboutP′ andP′′ can be translated
into information about P.

Definition 2.6 Let P′ and P′′ be ns operads. A distributive law is a map

λ : P′′ ◦ P′ −→ P′ ◦ P′′

123
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for which the following identities hold:

λ(1 ◦ γP′) = (γP′′ ◦ 1)(1 ◦ λ)(λ ◦ 1), λ(γP′′ ◦ 1) = (1 ◦ γP′)(λ ◦ 1)(1 ◦ λ).

We also require that λ respects the units: λ(1◦ηP′) = ηP′′ ◦1 and λ(ηP′′ ◦1) = 1◦ηP′ .

The following is proven in [26, Proposition 8.6.2].

Proposition 2.7 If λ is a distributive law between P′ and P′′ then the sequence P′ ◦P′′
admits a composition making it an operad given by

γλ = (γP′′ ◦ γP′)(1 ◦ λ ◦ 1). ��

One of the useful features of distributive laws is they behave well with Koszul
duality when they are obtained from a distributive law for the respective quadratic
data. To define these, let us take quadratic presentations P′ = F(V ′)/(R′) and P′′ =
F(V ′′)/(R′′). A rewriting rule between V and W is a map

λ : V ′′ ◦(1) V
′ −→ V ′ ◦(1) V

′′.

Consider the graph Rλ = {t − λ(t) : t ∈ V ′′ ◦(1) V ′} ⊆ F(V ′ ⊕ V ′′)(2). We define the
quadratic operad

P = P′ ∨λ P
′′ = F(V ⊕ V ′)/(R′, R′′, Rλ).

One can check that we have maps of sequences

π : P′ ◦ P′′ −→ P, π ′ : P′′ ◦ P′ −→ P.

Proposition 2.8 If the map π is an isomorphism of sequences, then the composition
λ = π−1π ′ : P′′ ◦ P′ −→ P′ ◦ P′′ defines a distributive law between P′ and P′′, and
the map π determines an isomorphism of operads.

The shinning example of an operad obtained from a distributive law is the following.
Let us consider the commutative operad Com and the Lie operad Lie where V ′ = 〈μ〉
is generated by a symmetric associative operation x1x2 and V ′′ = 〈β〉 is generated by
an antisymmetric Lie bracket [x1, x2]. Consider the rewriting rule defined by

[x1x2, x3] ∈ V ′′ ◦(1) V
′ �−→ x1[x2, x3] + x2[x1, x3] ∈ V ′ ◦(1) V

′′.

The Poisson operad is exactly given by Com∨λ Lie, and one can show, by a cardinality
argument, that the map π : Com ◦ Lie −→ Pois is indeed an isomorphism. The
following result then implies that the Poisson operad is Koszul, see [26, Proposition
8.6.9]:

Lemma 2.9 IfP′ andP′′ are Koszul operads any operadP obtained from them through
a distributive law between their quadratic data is also Koszul, and conversely. ��
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We also recall that Gröbner basis criterion to check for Koszulness.

Proposition 2.10 Any operad that admits a quadratic Gröbner basis is Koszul. ��

2.3 Perturbation theory

Let us now consider a weight graded operad P = F(W )/(S) where the space of
relations is contained inF(W )≥2. Let us also write S2 = π2(S)where π2 : F(W ) −→
F(W )(2) is the projection. With this at hand, we consider a class of presentations that
are obtained, in a precise sense, by taking a Koszul operad and adding “higher order
terms” to the relations:

Definition 2.11 We say that a presentation of a weight graded operad P = F(W )/(S)

is homotopy Koszul if the following three conditions hold:

(1) The quadratic operad qP = F(W )/(S2) is Koszul.
(2) The ns sequences qP and P are isomorphic.
(3) There is an extra grading on P by finite dimensional symmetric sequences.

Let us write M(P) for a choice of minimal quasi-free resolution M(P) −→ P in
the category of weight graded operads.

Theorem 2.12 If a P admits a homotopy Koszul presentation, then it also admits a
weight graded minimal model M(P) such that:

• the underlying free operad of M(P) is equal to that of M(qP) and,
• the differential is obtained from the differential of M(qP) that lowers the filtration
degree induced by the extra weight grading.

Proof See Theorem 40 in [28]. ��
To illustrate the idea of these “perturbative”methods at the level of associative alge-

bras, let us consider the algebra GP = T V /(R) of cohomology operations of Singer
[36, Section 5]. It is defined overF2 by a countable family of generators t, s0, s1, s2, . . .
of respective degrees 1, 1, 2, 4, . . ., along with a family of homogeneous relations R
whose leading quadratic terms R2 are the following

s2i , [s0, t] = t2, [si , s j ] = 0, [si+1, t] = 0 for j > i ≥ 0.

By further discarding the term t2—for example, by considering the lexicographical
order where t < s0 < s1 < · · ·—we see that the quadratic algebra qGP = T (V )/(R2)

is Koszul. Since bothGP and qGP admit linear bases given by “admissible”monomials
[36, Lemma 5.3]

tksi1 · · · sir , for k ≥ 0 and 0 ≤ i1 < · · · < ir ,

we see that Singer’s algebra GP is homotopy Koszul. The main result in that section
is a determination of the Quillen homology of GP [36, Proposition 5.6].
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Recall wewriteM(P) for a choice of minimal quasi-free resolutionM(P) −→ P in
the category of (weight) graded operads. The following theorem shows that if P is an
operad for which we knowM(P) and if Q is another operad with the same underlying
symmetric sequence as P, then we can produce M(Q) from M(P). Our main interest
lies in the case when P is Koszul, and Q can be filtered in such a way that the graded
operad associated to Q is equal to P.

Theorem 2.13 Suppose that P and Q are isomorphic as symmetric sequences. Then
there exists a quasi-free resolution M(Q) −→ Q such that:

• the underlying free operad of M(Q) is equal to that of M(P) and,
• the differential is obtained from the differential of M(P) by a perturbation that
lowers the filtration degree induced by the weight grading.

Proof See the Appendix of [22]. ��

3 The functor from bialgebras to operads

Let us consider a weight graded locally finite bialgebra H with conilpotent comulti-
plication �. We define a map λ : H ◦ Ass −→ Ass ◦ H so that for each h ∈ H and
each n ∈ N we have that

λ(h ⊗ μn) = μn ◦ (h(1), . . . , h(n))

where we use Sweedler notation on the right for the iterated coproduct �(n) of H . In
what follows, it will be useful to note that H ◦Ass = H ⊗Ass since H is concentrated
in arity one.

Lemma 3.1 The map λ induces distributive law between the associative operad Ass
and the associative algebra underlying H.

Proof We have to check that the composition

H ⊗ H ⊗ Ass
1⊗λ−→ H ⊗ (Ass ◦ H)

λ⊗1−→ Ass ◦ (H ⊗ H)
1◦μH−→ Ass ◦ H

is equal to the composition H ⊗ H ⊗ Ass
μH⊗1−→ H ⊗ Ass

λ−→ Ass ◦ H . This is a
direct verification: the first map assigns h′ ⊗ h′′ ⊗ μn to μn ◦ (h′

(1)h
′′
(1), . . . , h

′
(n)h

′′
(n))

while the second one assigns it to μn ◦ ((h′h′′)(1), . . . , (h′h′′)(n)), and this two terms
are equal since � is a map of associative algebras. We also have to check that the
composition

(H ⊗ Ass) ◦ Ass
λ◦1−→ Ass ◦ (H ⊗ Ass)

1◦λ−→ (Ass ◦ Ass) ◦ H
γAss◦1−→ Ass ◦ H

is equal to the composition H ⊗ (Ass ◦ Ass)
1⊗γAss−→ H ⊗ Ass

λ−→ Ass ◦ H . In this
case, the first map assigns the element h ⊗ μn ◦ μm to μm+n ◦ �(n)�(m)(h) while the
second map assigns it to the elementμm+n ◦�(n+m)(h). In view of the coassociativity
of �, these two elements coincide. ��
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Resolutions of operads via Koszul (bi)algebras 183

From this we obtain an operad which we write AssH , with underlying symmetric
sequence (AssH )# = Ass◦H . Wewill call an AssH -algebra an associative H-algebra.
As mentioned in the introduction, it is easy to see that:

Proposition 3.2 The category of AssH -algebras and the category of associative alge-
bras in left H-modules are isomorphic. ��

Our objective is to obtain the minimal model of AssH . It is important to observe
that AssH is defined by quadratic–cubic relations unless the comultiplication of H is
trivial; as such, it falls outside the scope of the theory of Koszul duality. To remedy
this, we consider two approaches:

• the formalismofwordoperads developedbyDotsenko in [10] and someelementary
perturbation theory, which we recalled in Sects. 2.1 and 2.3.

• the notion of homotopy Koszul (pr)operads due to Merkulov and Vallette in [28,
Section 5.4, Theorem 40].

Running conventions In what follows, we will fix a presentation H = T (V )/(R) of
H . In this way, we obtain a presentation of AssH of the form

AssH = F(kμ ⊕ V )/(Rμ, Rλ, R)

where Rμ is the associativity relation ofμ and Rλ is the set of relations between v ∈ V
and μ induced by the distributive law λ : H ⊗ Ass −→ Ass ◦ H . We will mainly be
concerned in the situation when R is quadratic or linear-quadratic. The operad AssH
inherits an internal weight grading (compatible with the operad structure) from that
of H , and admits a filtration degree (for which its relations are not homogeneous) in
which we put H in weight one.

3.1 Main results

Recall thatWQM is the word operad associated to the monoid of quantum monomials,
and that F(kμ⊕V ) is the free operad generated by a binary operationμ and the space
of generators V of the underlying algebra of H .

Define a map f : F(kμ ⊕ V ) −→ WQM such that for each v ∈ V ,

f (v) = (y), f (μ) = (x, x).

Since the operad W
sh
QM is ordered, we obtain an order in Fsh(kμ ⊕ V ) by comparing

images in W
sh
QM. We extend it to a proper monomial order by superposition with the

path-lexicographic order. Let us call the resulting monomial order the quantum order.

Lemma 3.3 The leading terms of the defining relations of the operad

AssH = F(kμ ⊕ V )/(Rμ, Rλ, R)

for the quantum order are:
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• the tree monomials Tv(x1x2) for v ∈ V , the generators of H,
• the tree monomial x1(x2x3) of the associative operad Ass,
• the leading monomials of the defining relations R of T V .

Proof The relators contained in Rλ are of the form

Tv(x1x2) − Tv(1) (x1)Tv(2) (x2)

for v ∈ V . The first summand,which is just v◦1μ,maps to y◦1(x, x) = (yx, yx)while
the other summands map to γ ((x, x); y, y) = (xy, xy), γ ((x, x) : 1, y) = (x, xy) or
γ ((x, x) : 1, y) = (xy, x). Thewaywe have constructedQM implies that xyq = yx is
larger than x and xy. On the other hand, the termsμ◦1μ andμ◦2μmap, respectively,
to (x, x) ◦1 (x, x) = (xx, xx, x) and (x, x) ◦2 (x, x) = (x, xx, xx), and the second
is larger than the first since xx < x . Finally, it is clear that the leading monomials in
the relations R defining H are unaffected. ��
Corollary 3.4 If the defining relations R form a Gröbner basis for H, then the defining
relations R ∪ Rλ ∪ Rμ form a Gröbner basis for AssH .

Proof The normal forms for the leading terms of the previous lemma are:

• the normal forms of H ,
• the left combs in F(μ),
• the the left combs in F(μ) with normal forms of H on their leaves.

This already accounts for every single element of (AssH )# = Ass ◦ H , so we have a
Gröbner basis. Indeed, if we had a non-zero term for an S-polynomial, it would create
for us a linear dependence relation between normal forms, which cannot be. ��

Let us now assume that the relations of R are quadratic, and write qAssH for the
operad qAssH = F(kμ ⊕ V )/(Rμ, R′

λ, R) where we have just kept the leading tree
monomials in Rλ as described in Lemma 3.3. Observe that it is a quadratic operad
which is obtained from Ass and H by the trivial distributive law. The following is
immediate from Lema 2.9 and from the analysis done in Corollary 3.4.

Corollary 3.5 If H is Koszul, then so is the associated quadratic operad qAssH . More-
over, if the defining relations R form a quadratic Gröbner basis, the defining relations
R ∪ R′

λ ∪ Rμ form a quadratic Gröbner basis for qAssH . ��
It is clear that the underlying symmetric sequence of grAssH and AssH are iso-

morphic: they are both isomorphic to Ass ◦ H . In particular, if H is Koszul, then the
Koszul dual cooperad to grAssH has underlying sequence given by

(qAssH )
¡,# = H

¡ ⊗ Ass
¡
.

From Theorem 2.13, we deduce our main theorem.

Theorem 3.6 Suppose that the underlying algebra of H is Koszul. There exists a quasi-
free resolution M(AssH ) −→ AssH such that
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Resolutions of operads via Koszul (bi)algebras 185

• the underlying operad is of M(AssH ) is equal to underlying operad of the Koszul
resolution M(grAssH ),

• the differential of M(AssH ) is obtained from the differential of M(grAssH ) by
a perturbation that lowers the filtration degree induced by the external weight
grading.

Moreover, this differential is homogeneous for the internal weight grading induced
fromAssH , and the pertubation depends only on the Koszul differential and the iterated
coproduct coming from H, and increases the filtration degree. ��

3.2 The primitively generated case

In case H is primitively (finitely) generated—for example, in case we are working
over a field of characteristic zero and H is connected, cocommutative and locally finite
[30, Theorem 5.18]—we have the following result, which provides us with a short-
cut to obtain the theorem above, that by-passes the (perhaps technical) constructions
involving word operads.

Theorem 3.7 If the underlying algebra of H is Koszul and primitively finitely gener-
ated, then the operad AssH is homotopy Koszul in the sense of Merkulov–Vallette.

Proof Let us write AssH = F(W )/(S). To show it is homotopy Koszul, we need to
verify the three conditions in Definition 2.11.

The quadratic operad qAssH is easily described: it consists of an associative oper-
ation μ and one operation Th for each h ∈ Prim(H) subject to the condition that each
of these is a derivation for μ:

Th(x1x2) = Th(x1)x2 + x1Th(x2).

This operad is then obtained from a distributive law between the Koszul algebra H and
the Koszul operad Ass, and is thus Koszul by Lemma 2.9, with underlying symmetric
sequence isomorphic to Ass◦ H . By construction, the ns sequence underlying AssH is
isomorphic to Ass ◦ H . The third condition holds since we assume H is locally finite
dimensional. This gives AssH an internal weight grading which is also locally finite
dimensional, since the distributive law preserves the weight grading of H . ��
Theorem 3.8 Suppose that the underlying algebra of H is Koszul and primitively
generated. There exists a quasi-free resolution M(AssH ) −→ AssH such that

• the underlying operad is of M(AssH ) is equal to underlying operad of the Koszul
resolution M(qAssH ),

• the differential of M(AssH ) is obtained from the differential of M(qAssH ) by
a perturbation that lowers the filtration degree induced by the additional weight
grading.

Moreover, this differential is homogeneous for the internal weight grading induced
fromAssH , and the pertubation depends only on theKoszul differential and the iterated
coproduct coming from H. ��
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As we mentioned in the introduction, the conclusion is that the minimal model of
AssH can be described entirely by familiar objects: the Koszul model of qAssH , that
of the algebra H , and the comultiplication of H .

Proof We need only address the shape of the differential of the minimal model of
AssH . Following [28], we recall one obtains the differential δ as a perturbation δ′ + δ′′
of δ′, the Koszul differential of qAssH . The term δ′′ appears by iterating the rewriting
rule we introduced in Lemma 3.1. More precisely, we can consider the external weight
grading ofAssH obtained by putting H in weight 1, so that this rewriting rule increases
the weight exactly by one. The conilpotence condition on � means this process will
eventually stop, and then the perturbation δ′ will consist of a locally finite sum, where
the term δi will depend only on the iteration �(i) of � and the Koszul differential of
H , as we claimed. ��

3.3 The deformation complex

Let A be an associative algebra in H -modules, and let us recall that the (homotopy
type of) deformation complex of A as an (usual) associative algebra can be computed
as

Def(id : A −→ A) = Der(
BA, A) = hom(BA, A)[−1]

where BA = T c(s A) is the bar construction on A, and the differential is given by
the multiplication of A plus a term [π,−] obtain from the canonical twisting cochain
π : BA −→ A. More generally, if B −→ A is a cofibrant model of A in associative
algebras, one can compute the deformation complex above as the dg Lie algebra of
derivations

Def(id : A −→ A) = Der(B).

The homology of this complex is almost equal to the Hochschild cohomology of A:
we have that

HnDef(id : A −→ A) =
{
HHn+1(A) if n ≥ 1,

Der(A) if n = 0.

More generally, we can consider a map of associative algebras f : A′ −→ A, and
then

HnDef( f : A′ −→ A) =
{
HHn+1(A′, A) if n ≥ 1,

Der(A′, A) if n = 0.

Since it will do us no harm, let us work instead with the unital version of the
deformation complex, whichwewriteC∗(A). It has underlying complex hom(BA, A)

and the usualHochschild differential, andwewriteHH∗(A) for its cohomologygroups.
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Similarly, we write HH∗(H | A) for the cohomology groups of A when viewed as an
H -algebra. Let us now show how to relate these two objects.

Lemma 3.9 Let A be an H-algebra. Then the bar construction BA is a dga coalgebra
in left H-modules.

Proof The action of H on BA is obtained through the diagonal action on the individual
summands A⊗n . The fact that this action commutes with the differential and the
coalgebra structure of BA is just a restatement of Lemma 3.1. ��

From the lemma it follows thatC∗(A) is left dg H -module. If we focus our attention
back on the generators H ¡ ⊗ Ass¡ of the model of AssH , we observe that the unital
deformation complex of an H -algebra A has the form

C∗
H (A) = hom(H

¡ ⊗ BA, A) = hom(H
¡
,C∗(A)).

Ignoring higher order terms in this differential, we obtain the Koszul complex com-
puting the functor Ext∗H (k,−). This observation leads to the following result:

Theorem 3.10 Let A be an H-algebra. Then the Hochschild cohomology groups
HH∗(A) are left H-modules, and there is a first quadrant spectral sequence

Ext pH (k,HHq(A))
p�⇒ HHp+q(H | A)

converging to the cohomology of A as an H-algebra.

Proof Weconsider the filtration degree onM(AssH ) fromTheorem 3.6, which induces
a filtration on the deformation complex C∗

H (A). In the 0th page, the differential is
induced by that ofC∗(A), since the remaining terms of the differential contain elements
of H and hence increase the filtration degree. It follows that

E1 = hom(H !,HH∗(A))

with an induced differential. One can check that this is given by the differential of the
Koszul complex for HH∗(A), since the remaining terms increase the filtration degree
at least by two. Hence, we have that

E2 = Ext∗H (k,HH∗(A)).

Since this spectral sequence is of first quadrant, convergence is guaranteed. ��

3.4 Operads arising from coalgebras

Let us now consider the simpler case that C is a weight graded coalgebra and form the
bialgebra H = T (C): the product is free, and the coproduct is the unique coproduct
that restrict to that C and makes H into a bialgebra; in the literature, this bialgebra
is known as the Hopf algebra of noncommutative symmetric functions, see [19,32].
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Then H ¡ = k ⊕ C is the trivial coalgebra, and its Koszul differential is trivial, so
we can in fact give a very explicit description of the differential of AssH . Let us first
record the formula for the Koszul part δ1 of the differential.

Lemma 3.11 The weight zero part of the differential in the minimal model M(AssH )

is such for each n ∈ N,

δ1(1 ⊗ μn) =
∑

s+t=n+1

(−1)(i+1)t+n(1 ⊗ μs) ◦i (1 ⊗ μt )

δ1(c ⊗ μn) = −
∑

s+t=n+1

(−1)(i+1)t+n

× (
(c ⊗ μs) ◦i (1 ⊗ μt ) + (−1)t (1 ⊗ μs) ◦i (c ⊗ μt )

)
.

Let us now address the higher weight part if the differential. To do this, let us fix an
element c ⊗ μn and some j ≥ 1, and introduce some useful definitions and notation.
We say the tuple �k = (k0, . . . , k j ) is admissible if k0 ≥ j and

|�k| := k0 + · · · + k j = n + j

Let us also define, for any tuple �m = (m1, . . . ,m j ) of positive integers and operations
ν0, ν1 . . . , ν j with ν of arity |ν| at least | �m|

ν0 ◦ �m (ν1, . . . , ν j ) = ν0(1
m1−1, ν1, . . . , 1

m j−1, ν j , 1
|ν|−| �m|)

For such an admissible tuple �k, we define the operation

ν(μn, c, �k) =
∑

| �m|=k0− j

(−1)ε( �m,�k)μk0 ◦ �m (c(1) ⊗ μk1 , . . . , c( j) ⊗ μk j ).

Put differently, we consider all possible ways of placing the operations

c(1) ⊗ μk1 , . . . , c( j) ⊗ μk j

on the leaves of μk0 in this order. Note that the first admissibility condition means
there will always be room to do this (although there may be no free slot at the end)
and the second condition implies the arity of the resulting operation is the same than
that of c ⊗ μn . With this at hand, we have the following result:

Theorem 3.12 For each c ∈ C and each n, j ≥ 2, we have that

δ j (c ⊗ μn) =
∑

�k adm

(−1)δ(n,�k)ν(c, μn, �k)

where the sum runs through admissible tuples of length j + 1.

Remark that the signs ε( �m, �k) and δ(n, �k) can be worked out explicitly.
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Proof Let us observe that δ2 = 0, which shows that this is the minimal model of AssH .
To do this, we will show that the elements in δ2 appear in pairs that cancel. Although
we didn’t make the signs δ and ε explicit, this in fact shows that these signs can be
chosen in a coherent way so that δ2 = 0.

Let us then fix some element c⊗μn and consider the terms appearing in δ2(c⊗μn)

by picking some s, t ∈ N and looking at the terms appearing in

δ1δs+t−1, δs+t−1δ1, and δsδt .

When we apply δ1δs+t−1, we will obtain a sumwith terms of the following six shapes,
where we use a dark dot to denote an element of the form c′ ⊗ μk with c′ ∈ C and a
light dot to denote an element of the form 1 ⊗ μ j , and we use a dotted edge to mark
where we have applied a differential δ0 in the last step. The figures arise as follows:
we applied δ0 on a term of Ass and more than one dark dot was grafted on the leaves
of the resulting operation, exactly one dot was placed in the resulting operation, we
applied δ0 to a dark dot above a light one, we applied δ0 to a light dot and every dark
dot was grafted on the leaves, we applied δ0 to a dark dot above a light one and, finally,
we applied δ0 to a light dot and no dark dot was grafted on its leaves:

Applying δs+t−1δ1 will produce for us a sum with terms of the following three
shapes depending on whether: we apply δs+t−1 to a lone dark dot above a light one,
we apply δs+t−1 to a lone dark dot below a light one and this light dot falls on a dark
dot, and finally if it falls on an identity:
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Finally, applying δsδt will produce for us terms of the unique shape

obtained by applying δs to a dark dot above a light one in “bouquet” produced by δt ;
in this picture there is always at least one dark dot on the leaves of the lowest light
dot, and at least two dark dots in the leaves of the highest light dot.

The fact that � is coassociative implies that the following shapes pair up to cancel:

• the second and third shapes in the first figure,
• the first shape in the first figure and the only shape in the third figure,
• the fourth shape in the first figure and the third shape in the second figure,
• The fourth shape and the fifth shape in the first figure with the first shape and the
second shape in the second figure, respectively.

This gives what we wanted. ��

4 Applications, examples and computations

4.1 Algebras with a tower of derivations

Let us show how to use the methods of the last subsection to recover all the results
in the article [6] of A. Das. As it is done there, consider the operad DasN governing
associative algebras with a tower of “higher order” derivations of height N . These
consist of a vector space V with an associative product, which we write x1x2, along
with N linear operators ∂1, . . . , ∂N : V −→ V such that

∂t (x1x2) − ∂t x1x2 − x1∂t x2 =
∑

a+b=t

∂a(x1)∂b(x2), for t ∈ {1, . . . , N }.

Since it will make no difference in our computations, we will consider the case where
we have an infinite tower of such operators, and write the corresponding operad Das.
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Naturally, Das contains a tower of of suboperads

Ass = Das0 ⊆ Das1 ⊆ · · · ⊆ Das.

We now observe that this operad falls within the formalism we developed in
Sect. 3.4. Indeed, let C be the coalgebra with basis {∂i , i ∈ N0} and coproduct

�(∂n) =
∑

i+ j=n

∂i ⊗ ∂ j ,

and let H = T (C) as before. Then AssH coincides exactly with Das, and if we restrict
our construction to the subcoalgebra CN of C with basis

1 = ∂0, ∂1, . . . , ∂N

we obtain a suboperad of AssH that coincides with DasN .
To address the summand of the differential containing the perturbation, it is enough

that we observe the iterated comultiplication of C is such that for each j ≥ 2,

�( j)(∂n) =
∑
|�i |=n

∂i1 ⊗ · · · ⊗ ∂i j

as the sum runs through all tuples �i = (i1, . . . , i j ) with sum equal to n. It follows that
to compute

Dj−1(∂n ⊗ μm)

we need only consider terms of the form

μk0 ◦ �m (∂1 ⊗ μk1 , . . . , ∂ j ⊗ μk j ).

where �k is admissible for m. In other words, the terms appearing in D(∂n ⊗ μn) are
obtained by decorating an operation of μk0 by operations ∂i j ⊗ μk j so that |�a| = n
and the arities match, that is, k0 + k1 + · · · + k j = n + j .

Let us now fix anDasN -algebra A and consider the corresponding modelM(DasN )

of DasN obtained by keeping elements in M(Das) decorated only by labels in
{1, . . . , N }, and look at the deformation complex

Def(id : A −→ A) = Der(M(DasN )(A), A) = hom(qDas
¡
(A), A)[1].

Note that this is bigraded by arity and internal weight. Moreover, we can write gener-
ators of qDas

¡
(A) by decorated bar elements

[x1| · · · |xn]i
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with the convention that for i = 0 there is no decoration; these last generators corre-
spond to a part of this space which equals BA. In general, such generators correspond
to the arity n cooperation

(∂i ⊗ μn)(x1, . . . , xn)

and they are in bidegree (n, i), where i is the internal weight degree. In this way, we
can specify a derivation by a collection f = ( fi,n) of maps

fi,n : A⊗n −→ A, for i = 0, . . . , N ,

in such away that f acts on a bar termof lengthn decorated by i by fi,n . The differential
is given by precomposition with D : M(Das) −→ M(Das) and the action on A.
Since the projectionM(Das) −→ Das vanishes on non-zero homological degrees, the
differential of some f = ( fm,n) in bidegree (m, n) contains the following terms:

(d f )′[x1| · · · |xn]m =
∑

i+ j=m

∂i (x1) f [x2| · · · |xn] j

+
i−1∑
i=1

(−1)i f [x1| · · · |xi xi+1| · · · |xn]m

+ (−1)n+1
∑

i+ j=m

f [x1| · · · |xn−1]i∂ j (xn)

coming from the non-Koszul higher terms of the form

(1 ⊗ μ2)(∂i ⊗ 1, ∂ j ⊗ μn−1), (1 ⊗ μ2)(∂i ⊗ μn−1, ∂ j ⊗ 1)

and the Koszul terms

(∂m ⊗ μn) ◦i (1 ⊗ μ2), (1 ⊗ μ2) ◦1 (∂m ⊗ μn), (1 ⊗ μ2) ◦2 (∂m ⊗ μn)

in D(∂m ⊗ μn). It is possible that i = 0 or j = 0 in the sums, and this gives the usual
Assc part of the differential. This is the “Hochschild” part of the differential the author
defines in [6].

There are still a second part to the differential corresponding to the part of the
differential of ∂m ⊗ μn where we have μn with differentials grafted at the leaves or at
the root, this survives and gives the term

d f [x1| · · · |xn]m = (−1)n
∑

i1+···+ik=m

f [di1(x1)| · · · |din (xn)]

−(−1)ndm f [x1| · · · |xn].

The differential in the deformation complex is then the difference d ′ − d ′′.

123



Resolutions of operads via Koszul (bi)algebras 193

The gradation of [6] corresponds the totalization of the bigradation that uses the
external weight grading. Hence the entries f0,n, f1,n−1, . . . , fN ,n−1 correspond to the
linear functions f , f1, . . . , fN of [6], but note their differentials are still homogeneous
with respect to the internal weight. In this way, the term

Cn(A) = hom(A⊗n, A) ⊕ hom(A⊗(n−1), A)N

appearing in this paper is in total bidegree n if we totalize the deformation complex
using the bidegree given by external weight and arity.
Other variations. By considering homotopy associative algebras with derivations
where the operators ∂i ⊗ μn vanish for n ≥ 2, we obtain the definition of an A∞-
algebra with higher derivations. In the sameway, by considering homotopy associative
algebras with higher order derivations where the operators μn vanish for n ≥ 2, we
obtain the definition of an associative algebra with a homotopy coherent system of
higher order derivations.

4.2 Lie group actions

Let us consider a Lie group G along with a left λ : G × M −→ M action on a
differentiable manifold M , and as usual write g for the Lie algebra of G. For each
p ∈ M we have a map

σp : G −→ M

and in particular we can define for each X ∈ g the fundamental vector field X#

generated by X by the requirement that for each p ∈ M we have

X#
p = d

dt

∣∣∣∣
t=0

σp(exp(−t X)).

Proposition 4.1 The map ξ : g −→ X(M) such that X �−→ X# defines a g-algebra
structure on the algebra C∞(M) of smooth functions on M.

This proposition then gives us a natural geometrical source of examples of (com-
mutative) associative algebras A in left g-modules. These consist of “half” the amount
of data defining a Lie–Reinhart pair (g, A)—the algebraic avatar corresponding to Lie
algebroids—in the sense we are not requiring g to be a left A-module for which the
following Leibniz rule

[X , aY ] = X(a)Y + a[X ,Y ].

holds for arbitrary X ,Y ∈ g and a ∈ A.
As an example, let us consider the Hopf algebra H = U(g) where g = 〈e, f , h〉 is

the Lie algebra of the Lie group SL(2,C) of complex matrices with determinant equal
to 1, so that
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[h, e] = 2e, [h, f ] = −2 f , [e, f ] = h

This bialgebra admits a PBW basis of the form {ei f j hk : i, j, k ∈ N} and a Koszul
model with generators the exterior coalgebra H ¡ = Sc(sg∗) on the shift of the dual
g∗ = 〈e∗, f ∗, h∗〉 which is nothing but the Chevalley–Eilenberg complex C∗(g) of
g. As such, it is finite dimensional (of dimension 8) and we obtain a (non-minimal)
model of AssH with generators

C∗(g) ⊗ Ass
¡
.

In this case, the non-minimality is due to the appereance of linear terms in the defining
relations of U(g). The spectral sequence above takes the following form:

Theorem 4.2 Let A be an associative g-algebra and let M be an operadic A-module.
There is a convergent spectral sequence

E p,q
2 = H p(g,Hq(A, M))

p�⇒ Hp+q
g (A, M),

where H∗(A, M) is the Hochschild cohomology of A with values in M, H∗(g,−) is
the Lie algebra cohomology functor of g, and H∗

g(A, M) is the operadic cohomology
of A with values in M. ��

It is interesting to compare this spectral sequence with the spectral sequence of
[23]. In that article the authors start with a Lie–Rinehart pair (g, S) [35]. These pairs
are known [21] to admit a universal enveloping algebraU = U (g, S) for which (g, S)-
modules are exactly the left U -modules. Many associative algebras of interest, such
as the Weyl algebras and algebras of differentials forms tangent to a free hyperplane
arrangement, for example, arise as such universal envelopes for suitable choices of g
and S.

One of the main results in that paper (TheoremB) is the following, where H∗
S (g,−)

is the Lie–Rinehart cohomology functor associated to the Lie–Rinehart pair (g, S),
given by the functor Ext∗U (S,−).

Theorem Let (g, S) be a Lie-Rinehart pair such that g is an S-projective module
and let M be an U-bimodule. There exist a U-module structure on H∗(S, M) and a
first-quadrant spectral sequence converging to H∗(U , M) with second page

E p,q
2 = H p

S (g,Hq(S, M))
p�⇒ Hp+q(U , M).

��

4.3 Unstable algebras over the Steenrod algebra

In this section, k is the field of two elements. LetA be the mod-2 Steenrod algebra. It
is generated by the Steenrod squares

1 = Sq0,Sq1,Sq2, . . .

123



Resolutions of operads via Koszul (bi)algebras 195

subject to the Adem relations and is, in fact, a cocommutative Hopf algebra. These
relations say that for each i, j ∈ N such that i < 2 j , we have that

Sqi Sq j =
(
j − 1

i

)
Sqi+ j +

∑
k≥1

(
j − k − 1

i − 2k

)
Sqi+ j−k Sqk .

Its comultiplication is such that for each n ∈ N,

�(Sqn) =
∑

i+ j=n

Sqi ⊗Sq j .

Note that, depending on the parity of the binomial coefficient
( j−1

i

)
, there may appear

a linear term to the right, which makes this presentation of H into a linear-quadratic
one. However, this is enough to obtain, for example, the following well known result
giving a linear basis for A, usually known as the Cartan–Serre basis:

Theorem For each tuple I = (i1, . . . , in), consider themonomialSqI = Sqi1 · · · Sqin .
Then the set of monomials B = { SqI : i j ≥ 2i j+1 for each j } forms a linear basis
of A.

The dual A∗ of A was determined in a well known paper [29] of Milnor:

Theorem (J. Milnor) The dual Hopf algebraA∗ is a free graded commutative algebra
on generators ξ1, ξ2, . . . where for each i ∈ N the element ξi is of degree 2i − 1 and
corresponds to the dual of the monomial Sq2

i−1 · · · Sq2 Sq1 in the Cartan–Serre basis.
Its comultiplication is given by the formula

�(ξk) =
∑

i+ j=k

ξ2
j

i ⊗ ξ j for each k ∈ N.

The underlying algebra of A is inhomogeneous Koszul—in fact, the study of this
quadratic algebra is one of the reasons Priddy [34] introduced the notion of a Koszul
algebra in the first place. Note that Priddy calls “homogeneous Koszul algebras” what
are now usually called Koszul algebras, and calls “Koszul algebras” what are now
called inhomogenous Koszul algebras. One of themain results of [34] is the following:

Theorem (Priddy) The Steenrod algebra A is inhomogenous Koszul. Moreover, the
dg algebraA! is isomorphic to the opposite of the� algebra constructed in [3], which
computes the Yoneda algebra ExtA(k,k). ��

The dg algebra � is generated by symbols λn for n ∈ N0 of cohomological degree
1 and weight n + 1 subject to the family of quadratic relations for m − 1, n ∈ N

∑
i+ j=n

(
i + j

i

)
λi−1+mλ j−1+2m = 0
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and differential so that for each n ∈ N we have

dλn−1 =
∑

i+ j=n

(
i + j

i

)
λi−1λ j−1.

Theorem (Bousfield et al.) The algebra � is equal to the E1 page appearing in the
Adams spectral sequence converging to the2-component of the stable homotopygroups
of spheres. In particular, there is a bigraded isomorphism of algebras

H(�) −→ ExtA(k,k).

��
The discussion above together with our main results show the following:

Theorem 4.3 There is a model of the operadAssA controlling associative algebras in
A-modules with generators s−1A

¡ ⊗ Ass¡ where A¡ is the Koszul dual dg coalgebra
of the inhomogeneous Koszul Steenrod algebra A. ��

It is important to remark that the “correct” Koszul duality theory to consider when
dealing with topological spaces is not the one provided by the self dual pair (Ass,Ass)
but rather by the pair (Com, Lie); see [2]. Hence, one should put efforts in considering
the symmetric operad ComA instead, controlling commutativeA-algebras. Doing this
introduces a complication: in positive characteristic, the homotopy theory of commuta-
tive algebras—and hence, of commutativeA-algebras—requires the use of simplicial
as opposed to dg methods; see, for example, the wonderful monograph [18].

It is also useful to remark that there are other presentations of A in the literature
which, instead of being linear-quadratic, are “perturbative”. By this, we mean they are
obtained from a bona-fide quadratic presentation (of a different algebra) by adding
higher terms, which may be cubic, cuartic, and so forth. For example, in [42], Wall
considers the generators S = {Sq1,Sq2,Sq4, . . .}. The main theorem in that article is
the following.

Theorem (Wall) The Steenrod algebra A is isomorphic to the quotient of the free
associative algebra generated by S subject to relations of the form

Sq2
i
Sq2

i +Sq2
i−1[Sq2i ,Sq2i−1] ∈ A(i − 1) for each i ≥ 0

[Sq2i ,Sq2 j ] ∈ A(i − 1) for each i − j ≥ 2

where A(i) is the subalgebra generated by Sq1,Sq2, . . . ,Sq2
i
. ��

In this way, Wall exhibits A as a pertubation of an algebra which almost looks
like an exterior algebra—the relations missing are of the form [Sq2i ,Sq2i−1]—and
uses this presentation to successfully solve a problem Toda posed in [41]. In fact, in
unpublished work Walker has determined these relations explicitly in terms of the

123



Resolutions of operads via Koszul (bi)algebras 197

antipode χ of A, see Theorem 4.18 in [43]. We point out that a result of Straffin [39]
shows that

χ(Sq2
i
) = Sq2

i +Sq2
i−1

χ(Sq2
i−1

).

For the primitive Sq1 we of course have χ(Sq1) = Sq1, so this and the recursive
formula above gives an efficient way of computing the antipode for the generating set
of Wall. For example, since Sq1 Sq1 = 0 and Sq2 Sq2 = Sq1 Sq2 Sq1, we have that

χ(Sq2) = Sq2, χ(Sq4) = Sq4 +Sq1 Sq2 Sq1

Theorem (Walker) The closed forms of the Wall relations are given by

Sq2
i
Sq2

i = Sq2
i−1[χ(Sq2

i
),Sq2

i−1] for i ≥ 0,

[Sq2i , χ(Sq2
j
)] = χ(Sq2

j+1
)Sq2

i−2 j
for i − j ≥ 2,

where χ is the antipode of A. ��
The way A appears naturally in homotopy theory is as follows. For any topolog-

ical space X the cohomology groups H∗(X ,Z/2) form a (commutative) associative
algebra. Moreover, by virtue of the Cartan relations, that take up the form

Sqn(x � y) =
∑

i+ j=n

Sqi (x) � Sq j (y),

the coproduct of A is compatible with the algebra structure of H∗(X ,Z/2). In other
words, we have the well known observation pioneered by Milnor [29]:

Theorem (Milnor)For each topological space X the cohomology groups H∗(X ,Z/2)
form a commutative associative algebra in left A-modules. ��

These A-algebras, which arise as cohomology algebras of spaces, are unstable
A-algebras, in that they satisfy the additional instability condition that

Sqi (x) =
{
0 for i > |x |,
x2 for i = |x |.

To illustrate, one has the classical example of infinite projective space RP∞, for
which A = H∗(RP∞,Z/2) is a polynomial algebra k[x] with |x | = 1. The action of
A is given by

Sqi (xn) =
(
n

i

)
xn+i for each n, i ∈ N.

To give an example of Corollary 3.4, we will content ourselves with applying it to the
sub-Hopf algebraA(2) ofA generated by Sq1 = x,Sq2 = y and Sq4 = z . Following
the method of Wall or explicitly using the relations of Walker, one can check that:
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Proposition 4.4 The Hopf algebra A(2) has dimension 64 and admits a presentation
with defining relations those of A(1) and the two relations z2 = y[z, y] and [x, z] =
yxy. The set G(2) consisting of the following polynomials forms a Gröbner basis for
A(2):

Leading term Corresponding relation

x2 x2

y2 y2 + xyx
z2 z2 + y[z, y]
zx [z, x] + yxy
yxyx (yx)2 + (xy)2

zyzy (zy)2 + (yz)2 + (xy)2zy + xzyxz
zyxy [z, yxy] + [x, yzy]
zyxzyx (zyx)2 + (xzy)2 + (yxz)2 + (xyx)(zyz)

Proof One can compute the extra relations using Buchberger’s algorithm, and then
check that it gives exactly 64 normal forms, so there cannot be more elements in the
Gröbner basis. ��
Corollary 4.5 The set G(2) ∪ Rμ ∪ Rλ is a finite Gröbner basis for the operad
AssA(2). ��

Note that the results we obtained here about Gröbner bases work equally well for
the operad ComA.
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