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Abstract
In this paper, we consider Leibniz algebras with derivations. A pair consisting of a
Leibniz algebra and a distinguished derivation is called a LeibDer pair. We define a
cohomology theory for LeibDer pair with coefficients in a representation. We study
central extensions of a LeibDer pair. In the next, we generalize the formal deforma-
tion theory to LeibDer pairs in which we deform both the Leibniz bracket and the
distinguished derivation. It is governed by the cohomology of LeibDer pair with coef-
ficients in itself. Finally, we consider homotopy derivations on sh Leibniz algebras
and 2-derivations on Leibniz 2-algebras. The category of 2-term sh Leibniz algebras
with homotopy derivations is equivalent to the category of Leibniz 2-algebras with
2-derivations.

Keywords Leibniz algebras · Leibniz cohomology · LeibDer pair · Extensions ·
Deformations · Homotopy derivations · Categorifications

Mathematics Subject Classification 17A32 · 17B40 · 13B02 · 18G60 · 16S80

1 Introduction

Leibniz algebras (also called Loday algebras) are a noncommutative analogue of Lie
algebras. Leibniz algebraswere first considered byBloh [9] and rediscovered byLoday
[22]. In the same paper, Loday introduces a homology theory for Leibniz algebras,
a noncommutative generalization of the Lie algebra homology. In [26] Loday and
Pirashvili introduced a cohomology theory for Leibniz algebras with coefficients in a
representation. This cohomology is also a noncommutative analogue of the Chevalley-
Eilenberg cohomology for Lie algebras. The classical deformation theory of rings and
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algebras by Gerstenhaber [15] have been extended to Leibniz algebras in [6]. The
notion of sh Leibniz algebras (strongly homotopy Leibniz algebras) is introduced in
[1]. Strongly homotopy Leibniz algebras are related to categorification of Leibniz
algebras [29]. See [4,10,23] for some interesting results about Leibniz algebras.

Algebraic structures are useful via their derivations. Derivations are also useful in
constructing homotopy Lie algebras [31], deformation formulas [12] and differential
Galois theory [27]. They also play an essential role in control theory and gauge theories
in quantum field theory [2,3]. In [14,25] the authors study algebras with derivations
from the operadic point of view. Recently, Lie algebras with derivations (called LieDer
pairs) are studied from the cohomological point of view [30] and extensions, defor-
mations of LieDer pairs are considered. The results of [30] have been extended to
associative algebras with derivations (called AssDer pairs) in [13].

In this paper, we consider Leibniz algebras with derivations. More precisely, we
consider a pair (g, φg) where g is a Leibniz algebra and φg : g → g is a derivation for
the Leibniz algebra bracket on g. We call such a pair (g, φg) a LeibDer pair. We define
representations and cohomology for a LeibDer pair. This cohomology is a variant of
the Leibniz algebra cohomology.When considering the cohomology of a LeibDer pair
(g, φg) with coefficients in itself, we show that the cohomology inherits a degree −1
graded Lie bracket.

Central extensions of Leibniz algebras were defined in [26]. They are related to the
second cohomology group of Leibniz algebras with suitable coefficients. See [16–18]
for category theoretical study of central extensions. In Sect. 4, we extend results of
[26] in the context of LeibDer pairs. We prove that isomorphism classes of central
extensions of a LeibDer pair by a trivial LeibDer pair are classified by the second
cohomology group of the LeibDer pair with coefficients in the trivial representation
(cf. Theorem 4.4). Next we discuss the extension of a pair of derivations in a central

extension of Leibniz algebras. Given a central extension 0 → a
i−→ h

p−→ g → 0 of
Leibniz algebras and a pair of derivations (φg, φa) ∈ Der(g)×Der(a), we associate a
second cohomology class in the cohomology of the Leibniz algebra gwith coefficients
in the trivial representation a. When this cohomology class is null, the pair (φg, φa) ∈
Der(g) ×Der(a) of derivations extends to a derivation φh ∈ Der(h) which makes the
above sequence into an exact sequence of LeibDer pairs (cf. Theorem 4.6).

The classical deformation theory of Gerstenhaber [15] has been extended to Leibniz
algebras in [6]. In Sect. 5, we generalize this deformation theory to LeibDer pairs. Our
results in this section are analogous to the standard ones. The vanishing of the second
cohomology implies that the LeibDer pair is rigid, i.e, any deformation is equivalent to
the undeformed one (cf. Theorem 5.7). Given a finite order deformation, we associate
a third cohomology class in the cohomology of the LeibDer pair, called the obstruction
class (cf. Proposition 5.10). When this class is null, the given deformation extends to
deformation of next order (cf. Theorem 5.11).

The notion of sh Leibniz algebras was introduced in [1]. In [29] the authors consider
2-term sh Leibniz algebras and relate them with categorified Leibniz algebras. In
Sect. 6, we introduce homotopy derivations on 2-term sh Leibniz algebras. Homotopy
derivations on skeletal sh Leibniz algebras are characterized by third cocycles of
LeibDer pairs (cf. Proposition 6.5).We introduce crossedmodules ofLeibDer pairs and
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prove that strict homotopy derivations on strict sh Leibniz algebras are characterized
by crossed modules of LeibDer pairs (cf Theorem 6.7).

The notion of Lie 2-algebras or categorified Lie algebras was first introduced by
Baez andCrans [5]. They showed that the category of 2-term L∞-algebras is equivalent
to the category of Lie 2-algebras. This result has been extended to various other
algebraic structures including associative algebras, Leibniz algebras [13,29]. In Sect. 7,
we introduce LeibDer 2-pairs. They are categorification of LeibDer pairs. Finally, we
prove that the category of LeibDer 2-pairs and the category of 2-term sh Leibniz
algebras with homotopy derivations are equivalent (cf. Theorem 7.6).

Throughout the paper, all vector spaces and linear maps are over a field K of
characteristic zero unless otherwise stated.

2 Leibniz algebras and their cohomology

In this section, we recall Leibniz algebras and their cohomology. Our main references
are [6,26].

Definition 2.1 A Leibniz algebra (g, [ , ]) consists of a vector space g and a bilinear
map [ , ] : g × g → g satisfying the following identity (Leibniz identity)

[[x, y], z] = [[x, z], y] + [x, [y, z]], for all x, y, z ∈ g. (1)

Such Leibniz algebras are called right Leibniz algebras as the identity (1) is equiv-
alent to the fact that the maps [ , z] : g → g by fixing right coordinate are derivations
for the bracket on g. Thus, one may also define left Leibniz algebras. In this paper,
by a Leibniz algebra, we shall always mean a right Leibniz algebra. However, all the
results of the present paper can be easily adapted to left Leibniz algebras by suitable
modifications.

Definition 2.2 Let (g, [ , ]) be a Leibniz algebra. A representation of it consists of a
vector space M together with bilinear maps (called left and right actions)

[ , ] : g × M → M [ , ] : M × g → M

satisfying the following set of identities

(MLL) [[m, x], y] = [[m, y], x] + [m, [x, y]],
(LML) [[x,m], y] = [[x, y],m] + [x, [m, y]],
(LLM) [[x, y],m] = [[x,m], y] + [x, [y,m]],

for any x, y ∈ g and m ∈ M .

Note that g is a representation of itself with left and right actions are given by the
bracket on g. Let (g, [ , ]) be a Leibniz algebra and M be a representation of it. Define
the n-th cochain group
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CLn(g, M) := Hom(g⊗n, M), for n ≥ 0

and a map δL : CLn(g, M) → CLn+1(g, M) by

(δL f )(x1, . . . , xn+1) = [x1, f (x2, . . . , xn+1)] +
n+1∑

i=2

(−1)i [ f (x1, . . . , x̂i , . . . , xn+1), xi ]

+
∑

i< j

(−1) j+1 f (x1, . . . , xi−1, [xi , x j ], xi+1, . . . , x̂ j , . . . , xn+1),

for x1, . . . , xn+1 ∈ g. Then one has (δL)2 = 0. Therefore, (CL∗(g, M), δL) is a
cochain complex. The cohomology of the Leibniz algebra g with coefficients in M is
denoted by

HLn(g, M) := ker{δL : CLn(g, M) → CLn+1(g, M)}
Im{δL : CLn−1(g, M) → CLn(g, M)} .

Whenwe consider the cohomology of a Leibniz algebra gwith coefficients in itself,
the graded space CL∗(g, g) = ⊕nCLn(g, g) of cochain groups carries a degree −1
graded Lie bracket given by

� f , g� = f • g − (−1)(m−1)(n−1)g • f , for f ∈ CLm(g, g), g ∈ CLn(g, g), (2)

where

( f • g)(x1, . . . , xm+n−1) =
m∑

i=1

(−1)(i−1)(n−1)

×
∑

Sh(n−1,m−i)

sgn(σ ) f (x1, . . . , xi−1, g(xi , xσ(i+1), . . . , xσ(i+n−1), xσ(i+n), . . . , xσ(m+n−1),

for x1, . . . , xm+n−1 ∈ g. If we denote the Leibniz bracket on g by the bilinear map
μ : g⊗2 → g (i.e, μ(x, y) = [x, y], for x, y ∈ g) then the Leibniz identity for the
bracket is equivalent to �μ,μ� = 0, whereμ is considered as an element inCL2(g, g).
With this notation, the differential (with coefficients in g) is given by

δL f = (−1)n−1�μ, f �, for f ∈ CLn(g, g).

This implies that the graded space of cohomology HL∗(g, g) carries a degree −1
graded Lie bracket.

Remark 2.3 The bracket � , � given in (2) is a noncommutative analogue of the classical
Nijenhuis-Richardson bracket on skew-symmetric multilinear maps [28]. Since the
differential δL of the Leibniz algebra g can be expressed in terms of the bracket � , �,
Leibniz cohomology can be thought as a noncommutative analogue of the Chevalley-
Eilenberg cohomology for Lie algebras.
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3 LeibDer pairs

In this section, we consider LeibDer pairs. We define the representations and coho-
mology of a LeibDer pair. Finally, the cohomology of a LeibDer pair with coefficients
in itself carries a degree −1 graded Lie bracket.

Let g be a Leibniz algebra. A linear map φg : g → g is a derivation on g if it
satisfies

φg[x, y] = [φg(x), y] + [x, φg(y)], for x, y ∈ g.

Note that derivations are 1-cocycles in the cohomology complex of gwith coefficients
in g. We call a pair (g, φg) of a Leibniz algebra g and a derivation φg, a LeibDer pair.
When the Leibniz algebra bracket is skew-symmetric, one gets the notion of LieDer
pair [30]. Thus, LeibDer pairs are non-skewsymmetric analog of LieDer pairs.

Example 3.1 • Let (g, [ , ]) is a Leibniz algebra. Then for any x ∈ g, the linear map
φx := [ , x] : g → g is a derivation on g. Hence, (g, φx ) is a LeibDer pair.

• Any associative dialgebra gives rise to a Leibniz algebra in the same way an
associative algebra gives a Lie algebra. An associative dialgebra is a vector space
D together with two bilinear maps 	,
: D × D → D satisfying five associative
style identities [24]. A linear map d : D → D is a derivation for the associative
dialgebra if d is a derivation for both the products 	 and 
.
If (D,	,
) is an associative dialgebra, then D equipped with the bracket

[x, y] := x 	 y − y 
 x

is a Leibniz algebra. Further, if d is a derivation for the associative dialgebra, then
d is also a derivation for the induced Leibniz algebra structure on D.

• Let (L, [ , . . . , ]) be a n-Leibniz algebra, i.e, [ , . . . , ] : L×n → L is a multilinear
map satisfying

[[x1, . . . , xn], y1, . . . , yn−1] =
n∑

i=1

[x1, . . . , xi−1, [xi , y1, . . . , yn−1], xi+1, . . . , xn],

for x1, . . . , xn, y1, . . . , yn−1 ∈ L [11]. A derivation on the n-Leibniz alge-
bra L is given by a linear map d : L → L that satisfies d[x1, . . . , xn] =∑n

i=1[x1, . . . , dxi , . . . , xn]. Note that a n-Leibniz algebra (L, [ , . . . , ]) induces
a Leibniz algebra structure on L⊗n−1 with bracket

[x1 ⊗ · · · ⊗ xn−1, y1 ⊗ · · · ⊗ yn−1] =
n−1∑

i=1

x1 ⊗ · · · ⊗ [xi , y1, . . . , yn−1] ⊗ · · · ⊗ xn−1.
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If d : L → L is a derivation for the n-Leibniz algebra L , then d induces a map
d : L⊗n−1 → L⊗n−1 by

d(x1 ⊗ · · · ⊗ xn−1) =
n−1∑

i=1

x1 ⊗ · · · ⊗ dxi ⊗ · · · ⊗ xn−1.

It can be checked that d is a derivation for the Leibniz bracket on L⊗n−1 [11,
Proposition 2.4]. In other words, (L⊗n−1, d) is a LeibDer pair.

Remark 3.2 Any Leibniz algebra associates a Lie algebra via skew-symmetrization.
Let (g, [ , ]) be a Leibniz algebra. Then the associated Lie algebra gLie is the quotient
of g by the ideal S generated by elements of the form [x, x], for x ∈ g. The Lie bracket
on gLie is the one induced from the Leibniz bracket on g. If (g, φg) is a LeibDer pair,
then we have

φg[x, x] = [φg(x), x] + [x, φg(x)]
= [x + φg(x), x + φg(x)] − [x, x] − [φg(x), φg(x)] ∈ S.

Therefore, φg induces a map φg : gLie → gLie. Since φg is a derivation for the Leibniz
bracket, φg is a Lie algebra derivation. In other words, (gLie, φg) is a LieDer pair.

Definition 3.3 Let (g, φg) and (h, φh) be twoLeibDer pairs. ALeibDer pairmorphism
between them is a Leibniz algebra morphism f : g → h satisfying φh ◦ f = f ◦ φg.
It is called LeibDer pair isomorphism if f is an isomorphism.

LeibDer pairs and morphisms between them form a category, denoted by LeibDer.
An exact sequence of LeibDer pairs is an exact sequence in the category LeibDer.

More precisely, it consist of LeibDer pair morphisms of the form

0 (g′′, φg′′)
i

(g′, φg′)
p

(g, φg) 0

in which i is injective, p is surjective and im i = ker p.
Let V be a vector space. Consider the tensor module T (V ) = V ⊕V⊗2⊕V⊗3⊕· · ·

with the bracket inductively defined by

[x, v] = x ⊗ v,

[x, y ⊗ v] = [x, y] ⊗ v − [x ⊗ v, y], for x, y ∈ T (V ), v ∈ V .

Then T (V ) with the above bracket is a free Leibniz algebra over V [26]. Any linear
map d : V → V induces a linear map d : T (V ) → T (V ) by

d(v1 ⊗ · · · ⊗ vn) =
n∑

i=1

v1 ⊗ · · · ⊗ dvi ⊗ · · · ⊗ vn . (3)
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Then d is a derivation for the Leibniz bracket on T (V ). To check that, we first observe
that

d[v1 ⊗ · · · ⊗ vn, v] = d(v1 ⊗ · · · ⊗ vn ⊗ v)

=
n∑

i=1

v1 ⊗ · · · ⊗ dvi ⊗ · · · ⊗ vn ⊗ v + v1 ⊗ · · · ⊗ vn ⊗ dv

= [d(v1 ⊗ · · · ⊗ vn), v] + [v1 ⊗ · · · ⊗ vn, d(v)].

Next suppose that d[x, v1 ⊗· · ·⊗vk] = [d(x), v1 ⊗· · ·⊗vk]+ [x, d(v1 ⊗· · ·⊗vk)],
for x ∈ T (V ), v1, . . . , vk ∈ V and k ≥ 1. Then we have

d[x, v1 ⊗ · · · ⊗ vk+1]
= d([x, v1 ⊗ · · · ⊗ vk ] ⊗ vk+1 − [x ⊗ vk+1, v1 ⊗ · · · ⊗ vk ])
= d[x, v1 ⊗ · · · ⊗ vk ] ⊗ vk+1 + [x, v1 ⊗ · · · ⊗ vk ] ⊗ dvk+1 − [d(x ⊗ vk+1), v1 ⊗ · · · ⊗ vk ]

− [x ⊗ vk+1, d(v1 ⊗ · · · ⊗ vk)]
= [d(x), v1 ⊗ · · · ⊗ vk ] ⊗ vk+1 + [x, d(v1 ⊗ · · · ⊗ vk)] ⊗ vk+1 + [x, v1 ⊗ · · · ⊗ vk ] ⊗ dvk+1

− [d(x) ⊗ vk+1, v1 ⊗ · · · ⊗ vk ] − [x ⊗ dvk+1, v1 ⊗ · · · ⊗ vk ] − [x ⊗ vk+1, d(v1 ⊗ · · · ⊗ vk)]
= [d(x), v1 ⊗ · · · ⊗ vk+1] + [x, d(v1 ⊗ · · · ⊗ vk) ⊗ vk+1] + [x, (v1 ⊗ · · · ⊗ vk) ⊗ dvk+1]
= [d(x), v1 ⊗ · · · ⊗ vk+1] + [x, d(v1 ⊗ · · · ⊗ vk+1)].

Hence (T (V ), d) is a LeibDer pair. In the next, we show that this LeibDer pair is free
in the following sense.

Let (V , d) be a pair of vector space V and a linear map d : V → V . The free
LeibDer pair over (V , d) is a LeibDer pair (L(V ), φL(V )) equipped with a linear map
i : V → L(V ) satisfying φL(V )◦i = i ◦d and the following universal condition holds:
for any LeibDer pair (g, φg) and a linear map f : V → g satisfying φg ◦ f = f ◦ d,
there exists a unique LeibDer pair morphism f̃ : (L(V ), φL(V )) → (g, φg) such that
f̃ ◦ i = f . Here L(V ) denotes the free Leibniz algebra over V .

Proposition 3.4 The LeibDer pair (T (V ), d) is free over (V , d).

Proof Let (g, φg) be a LeibDer pair and f : V → g be any linear map satisfying
φg ◦ f = f ◦ d. Define a map f̃ : T (V ) → g inductively by

f̃ (v) = f (v) and f̃ (v1 ⊗ · · · ⊗ vn) = [ f̃ (v1 ⊗ · · · ⊗ vn−1), f (vn)].

Then it has been shown in [26] that f̃ is the uniqueLeibniz algebramorphism satisfying
f̃ ◦ i = f . Moreover, we have

(φg ◦ f̃ )(v1 ⊗ · · · ⊗ vn)

= φg[ f̃ (v1 ⊗ · · · ⊗ vn−1), f (vn)]
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= [(φg ◦ f̃ )(v1 ⊗ · · · ⊗ vn−1), f (vn)] + [ f̃ (v1 ⊗ · · · ⊗ vn−1), (φg ◦ f )(vn)]
= [( f̃ ◦ d)(v1 ⊗ · · · ⊗ vn−1), f (vn)] + [ f̃ (v1 ⊗ · · · ⊗ vn−1), ( f ◦ d)(vn)]

=
n−1∑

i=1

[ f̃ (v1 ⊗ · · · ⊗ dvi ⊗ · · · ⊗ vn−1), f (vn)] + [ f̃ (v1 ⊗ · · · ⊗ vn−1), ( f ◦ d)(vn)]

=
n∑

i=1

f̃ (v1 ⊗ · · · ⊗ dvi ⊗ · · · ⊗ vn)

= ( f̃ ◦ d)(v1 ⊗ · · · ⊗ vn).

This proves that (T (V ), d) is free LeibDer pair over (V , d). 
�
Definition 3.5 Let (g, φg) be a LeibDer pair. A representation of it is given by a pair
(M, φM ) in which M is a representation of g (see Definition 2.2) and φM : M → M
is a linear map satisfying

φM [x,m] = [φg(x),m] + [x, φM (m)], (4)

φM [m, x] = [φM (m), x] + [m, φg(x)], (5)

for x ∈ g and m ∈ M .

Remark 3.6 The notion of representations of a LeibDer pair is a noncommutative
version of representations of a LieDer pair considered in [30]. Given a LieDer pair,
the authors in [30] considers a slice category whose category of monoid objects is
equivalent to the category of representations of the given LieDer pair.

Let (g, φg) be aLeibDer pair and consider the slice categoryLeibDer/(g, φg). Then
similar to [30], one can show that the category of monoid objects in LeibDer/(g, φg)

is equivalent to the category of representations of the LeibDer pair (g, φg).

It is known that a representation of a Leibniz algebra gives rise to a semi-direct
product [26]. We extend this in the context of LeibDer pairs.

Proposition 3.7 Let (g, φg) be a LeibDer pair and (M, φM ) be a representation of
it. Then (g ⊕ M, φg ⊕ φM ) is a LeibDer pair where the Leibniz algebra bracket on
g ⊕ M is given by the semi-direct product

[(x,m), (y, n)] = ([x, y], [x, n] + [m, y]).
Proof We only need to show that φg ⊕ φM : g ⊕ M → g ⊕ M is a derivation for the
Leibniz algebra g ⊕ M . We have

(φg ⊕ φM )[(x,m), (y, n)] = (φg[x, y], φM [x, n] + φM [m, y])
= ([φg(x), y], [φg(x), n] + [φM (m), y])

+ ([x, φg(y)], [x, φM (n)] + [m, φg(x)])
= [(φg ⊕ φM )(x,m), (y, n)] + [(x,m), (φg ⊕ φM )(y, n)].

Hence the proof. 
�
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3.1 Universal enveloping AssDer pair

In [26] the authors construct the universal enveloping algebra UL(g) of a Leibniz
algebra g. When the Leibniz algebra g is equipped with a derivation, it induces a
derivation on UL(g). We first recall the construction of UL(g).

Let gl and gr be two copies of the Leibniz algebra g. For any x ∈ g, we denote
the corresponding element in gl and gr by lx and rx , respectively. Then the universal
enveloping algebra UL(g) is the quotient of the tensor algebra T (gl ⊕ gr ) by the two
sided ideal I generated by elements of the form

rx ⊗ ry − ry ⊗ rx − r[x,y], lx ⊗ ry − ry ⊗ lx − l[x,y] and (ry + ly) ⊗ lx , for x, y ∈ g.

Let (g, φg) be a LeibDer pair. Then φg induces a linear map (denoted by the same
notation) φg : gl ⊕ gr → gl ⊕ gr by φg(lx , ry) = (lφg(x), rφg(y)). This linear map on
gl ⊕ gr induces a derivation φg on the tensor algebra T (gl ⊕ gr ). See Eq. (3). Then
φg(I ) ⊂ I as

φg(rx ⊗ ry − ry ⊗ rx − r[x,y])
= rφg(x) ⊗ ry + rx ⊗ rφg(y) − rφg(y) ⊗ rx − ry ⊗ rφg(x) − rφg[x,y]
= rφg(x) ⊗ ry − ry ⊗ rφg(x) − r[φg(x),y] + rx ⊗ rφg(y) − rφg(y) ⊗ rx − r[x,φg(y)] ∈ I ,

φg(lx ⊗ ry − ry ⊗ lx − l[x,y])
= lφg(x) ⊗ ry − ry ⊗ lφg(x) − l[φg(x),y] + lx ⊗ rφg(y) − rφg(y) ⊗ lx − l[x,φg(y)] ∈ I

and

φg((ry + ly) ⊗ lx ) = (rφg(y) + lφg(y)) ⊗ lx + (ry + ly) ⊗ lφg(x) ∈ I .

Hence φg induces a derivation on the universal enveloping associative algebra
UL(g) = T (gl ⊕ gr )/I . In other words, (UL(g), φg) is an AssDer pair.

In [26] the authors showed that representations of a Leibniz algebra g is equivalent
to right modules over UL(g). More precisely, let M be a representation of a Leibniz
algebra g. Then the right action of UL(g) on M is given by

m · lx = [x,m] and m · rx = [m, x].

We extend this situation endowed with derivations. We first recall the following defi-
nition from [13].

Let (A, φA) be an AssDer pair. A right module over it consists of a pair (M, φM )

in which M is a right A-module and φM : M → M is a linear map satisfying

φM (m · a) = φM (m) · a + m · φA(a), for a ∈ A,m ∈ M .

Proposition 3.8 The category of representations of aLeibDer pair (g, φg) is equivalent
to the category of right modules over the AssDer pair (UL(g), φg).
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Proof Let (M, φM ) be a representation of the LeibDer pair (g, φg). Then M is already
a right UL(g)-module. Moreover, the condition (4) is equivalent to φM (m · lx ) =
φM (m) · lx + m · φg(lx ). Similarly, the condition (5) is equivalent to φM (m · rx ) =
φM (m) · rx + m · φg(rx ). Hence the proof. 
�

3.2 Cohomology

Here we define cohomology of a LeibDer pair with coefficients in a representation.
Let (g, φg) be a LeibDer pair and (M, φM ) be a representation of it. We define the
cochain groups by C0

LeibDer(g, M) := 0, C1
LeibDer(g, M) := Hom(g, M) and

Cn
LeibDer(g, M) := Hom(g⊗n, M) × Hom(g⊗n−1, M), for n ≥ 2.

Before we define the coboundary operator, we define a newmap δ : Hom(g⊗n, M) →
Hom(g⊗n, M) by

δ f =
n∑

i=1

f ◦ (id ⊗ · · · ⊗ φg ⊗ · · · ⊗ id) − φM ◦ f .

Then we have the following.

Lemma 3.9 The map δ commutes with δL , i.e, δL ◦ δ = δ ◦ δL .

Proof First observe that, when (M, φM ) = (g, φg), we have δ( f ) = −�φg, f �, for
any f ∈ Hom(g⊗n, g). Therefore, in this case

δL ◦ δ( f ) = −δL�φg, f � = (−1)n�μ, �φg, f ��

= (−1)n������
��μ, φg�, f � + (−1)n�φg, �μ, f �� = δ ◦ δL( f ).

To prove this result for any coefficient (M, φM ), we first consider the semi-direct
product LeibDer pair (g ⊕ M, φg ⊕ φM ). Note that any f ∈ Hom(g⊗n, M) can be
extended to a map f̃ ∈ Hom((g ⊕ M)⊗n, g ⊕ M) by f̃ ((x1,m1), . . . , (xn,mn)) =
(0, f (x1, . . . , xn)).Moreover f̃ = 0 implies that f = 0. Observe that δ̃L( f ) = δL( f̃ )
and δ̃( f ) = δ( f̃ ). Here we use the same notation δL to denote the coboundary operator
for theLeibniz algebra cohomologyofgwith coefficients inM and also the coboundary
operator for the Leibniz algebra cohomology of g ⊕ M with coefficients in itself.
Similarly, we use the same notation for the operator δ. Then we have

˜δL ◦ δ( f ) = δL(δ̃( f )) = δL ◦ δ( f̃ ) = δ ◦ δL( f̃ ) = ˜δ ◦ δL( f ).

Hence it follows that δL ◦ δ = δ ◦ δL . 
�
Finally, we define the coboundary operator ∂ : Cn

LeibDer(g, M) → Cn+1
LeibDer(g, M) as

{
∂ f = (δL f ,−δ f ), for f ∈ C1

LeibDer(g, M),

∂( fn, f n) = (δL fn, δL f n + (−1)nδ fn), for ( fn, f n) ∈ Cn
LeibDer(g, M), n ≥ 2.
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Proposition 3.10 The map ∂ satisfies ∂2 = 0.

Proof For f ∈ C1
LeibDer(g, M), we have

∂2 f = ∂(δL f ,−δ f ) = (δ2L f , − δLδ f + δδL f ) = 0.

Similarly, for ( fn, f n) ∈ Cn
LeibDer(g, M) with n ≥ 2, we have

∂2( fn, f n) = ∂(δL fn, δL f n + (−1)nδ fn)

= (δ2L fn, δ2L f n + (−1)nδLδ fn + (−1)n+1δδL fn) = 0.

Hence the proof. 
�
Thus, it follows from the above proposition that (C∗

LeibDer(g, M), ∂) is a cochain
complex. The corresponding cohomology groups are denoted by Hn

LeibDer(g, M), n ≥
0.

In the next, we show that the cohomology of a LeibDer pair (g, φg)with coefficients
in itself carries a degree −1 graded Lie bracket.

Proposition 3.11 Thebracket � , �∼ : Cm
LeibDer(g, g)×Cn

LeibDer(g, g) → Cm+n−1
LeibDer (g, g)

given by

�( f , f ), (g, g)�∼ := (� f , g�, (−1)m+1� f , g� + � f , g�)

defines a degree −1 graded Lie bracket on the graded space C∗
LeibDer(g, g).

The proof of this result follows as � , � is a degree −1 graded Lie bracket on
CL∗(g, g). See [13] for similar result for AssDer pairs. With this new bracket on
C∗
LeibDer(g, g), we have �(μ, φg), (μ, φg)�

∼ = 0, where (μ, φg) ∈ Hom(g⊗2, g) ×
Hom(g, g) considered as an element inC∗

LeibDer(g, g). Thus (μ, φg) ∈ C2
LeibDer(g, g) is

a Maurer-Cartan element in the graded Lie algebra (C∗+1
LeibDer(g, g), � , �∼). Moreover,

the differential ∂ is induced by the Maurer-Cartan element as

∂( f , f ) = (−1)n−1�(μ, φg), ( f , f )�∼, for ( f , f ) ∈ Cn
LeibDer(g, g).

This in particular implies that the graded space of cohomology H∗+1
LeibDer(g, g) carries

a graded Lie algebra structure.

Remark 3.12 In [30] the authors define a cohomology associated to a LieDer pair
using the Nijenhuis-Richardson bracket on skew-symmetric multilinear maps. Our
cohomology of LeibDer pairs is a generalization of the cohomology of [30] where the
Nijenhuis-Richardson bracket is replaced by its noncommutative analogue bracket
� , � given in (2). In this sense, the cohomology of LeibDer pair is a noncommutative
version of the cohomology of LieDer pairs.
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Remark 3.13 Given an operad P , in [25] Loday constructs a new operad PDer . An
algebra over PDer is a P-algebra equipped with a derivation. If P is a quadratic
operad, it turns out that PDer is quadratic. Take P = Leib the operad of Leibniz
algebras. If g is a PDer -algebra, i.e, g is a Leibniz algebra equipped with a derivation
φg, one candefine the operadic cohomologyofg as aPDer -algebra using the quadratic
dual operad PDer ! [7]. This operadic cohomology is obviously different than the
cohomology of the LeibDer pair (g, φg) introduced in this paper. This can be easily
seen as the group of n-cochains of the LeibDer pair consist of two components of
multilinear maps with n and n − 1 number of inputs. On the other hand, the n-th
cochain group of the operadic cohomology always consist of multilinear maps with n
many inputs [7].

Our main motivation to define the cohomology of a LeibDer pair is to study cen-
tral extensions, deformations and homotopifications of LeibDer pairs. These will be
discussed in the rest of this paper.

4 Extensions of LeibDer pairs

4.1 Central extensions

Central extensions of Leibniz algebras were defined in [26]. In this subsection, we
extend this to LeibDer pairs. We show that isomorphism classes of central extensions
are classified by the second cohomology group of LeibDer pair with coefficients in
the trivial representation.

Let (g, φg) be a LeibDer pair and (a, φa) be an abelian LeibDer pair, i.e, the Leibniz
bracket of a is trivial.

Definition 4.1 A central extension (h, φh) of (g, φg) by the abelian LeibDer pair
(a, φa) is an exact sequence of LeibDer pairs

0 (a, φa)
i

(h, φh)
p

(g, φg) 0 (6)

such that [i(a), h] = 0 = [h, i(a)], for all a ∈ a and h ∈ h.

One may identify a with the corresponding subalgebra of h (via the map i). With
this identification, we have φa = φh|a.
Definition 4.2 Two central extensions (h, φh) and (h′, φh′) are said to be isomorphic if
there exists a LeibDer pair isomorphism η : (h, φh) → (h′, φh′)making the following
diagram commutative

0 (a, φa)
i

(h, φh)

η

p
(g, φg) 0

0 (a, φa)
i ′

(h′, φh′)
p′ (g, φg) 0
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Let (6) be a central extension of LeibDer pair. A section of the map p is given by
a linear map s : g → h satisfying p ◦ s = idg.

Given any basis {xi } of g, we define s(xi ) to be any element in p−1(xi ). This
assignment can be extended to a linear map s : g → h satisfying p ◦ s = idg. Hence
section of p always exists.

Let s : g → h be any section of p. Define two linear maps ψ : g ⊗ g → a and
χ : g → a by

ψ(x, y) := [s(x), s(y)] − s[x, y] and χ(x) := φh(s(x)) − s(φg(x)), for x, y ∈ g.

Note that the vector space h is isomorphic to the direct sum g ⊕ a via the section
s. Therefore, one may transfer the structures of h to that of g⊕ a. More precisely, the
induced bracket and the linear map on g ⊕ a are given by

[(x, a), (y, b)]ψ = ([x, y], ψ(x, y)) and φχ(x, a) = (φg(x), φa(a) + χ(x)).

With these notations, we have the following.

Proposition 4.3 The vector space g⊕ a with the above bracket is a Leibniz algebra if
and only ifψ is a 2-cocycle in the Leibniz algebra cohomology of gwith coefficients in
the trivial representation a. Moreover, φχ is a derivation for the above Leibniz algebra
if and only if χ satisfies δL(χ) + δψ = 0.

Proof The bracket [ , ]ψ is a Leibniz bracket if it satisfies

[[(x, a), (y, b)]ψ, (z, c)]ψ = [[(x, a), (z, c)]ψ, (y, b)]ψ + [(x, a), [(y, b), (z, c)]ψ ]ψ.

This is equivalent to

ψ([x, y], z) = ψ([x, z], y) + ψ(x, [y, z])

which is same as δL(ψ) = 0, where δL is the Leibniz algebra coboundary operator of
g with coefficients in the trivial representation a.

The map φχ is a derivation for the bracket [ , ]ψ if

φχ [(x, a), (y, b)]ψ = [φχ(x, a), (y, b)]ψ + [(x, a), φχ (y, b)]ψ.

This condition is equivalent to

φa(ψ(x, y)) + χ([x, y]) = ψ(φg(x), y) + ψ(x, φg(y)),

or, equivalently,
(
δL(χ) + δψ

)
(x, y) = 0. Hence the proof. 
�

It follows from the above proposition that the vector space g ⊕ a with the above
bracket and linear map forms a LeibDer pair if and only if (ψ, χ) is a 2-cocycle of the
LeibDer pair (g, φg) with coefficients in the trivial representation (a, φa).
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The cohomology class of the 2-cocycle (ψ, χ) does not depend on the choice of
sections of p. Let s1 and s2 be two sections of p. Consider the map u : g → a by
u(x) := s1(x) − s2(x). Then we have

ψ1(x, y) = [s1(x), s1(y)] − s1[x, y]
= [s2(x) + u(x), s2(y) + u(y)] − s2[x, y] − u[x, y]
= ψ2(x, y) − u[x, y] (as u(x), u(y) ∈ a)

and

χ1(x) = φh(s1(x)) − s1(φg(x)) = φh(s2(x) + u(x)) − s2(φg(x)) − u(φg(x))

= φh(s2(x)) − s2(φg(x)) + φa(u(x)) − u(φg(x))

= χ2(x) + φa(u(x)) − u(φg(x)).

This shows that (ψ1, χ1) − (ψ2, χ2) = ∂u. Therefore, the cohomology classes asso-
ciated to the sections s1 and s2 are same.

Theorem 4.4 Let (g, φg) be a LeibDer pair and (a, φa) be an abelian LeibDer pair.
Then the isomorphism classes of central extensions of (g, φg) by (a, φa) are classified
by the second cohomology group H2

LeibDer(g, a).

Proof Let (h, φh) and (h′, φh′) be two isomorphic central extensions. Suppose the
isomorphism is given by a map η : (h, φh) → (h′, φh′). For any section s of the map
p, we have

p′ ◦ (η ◦ s) = (p′ ◦ η) ◦ s = p ◦ s = idg.

This shows that s′ := η◦s is a section of the map p′. Since η is a morphism of LeibDer
pairs, we have η|a = ida. Hence, we get

ψ ′(x, y) = [s′(x), s′(y)] − s′[x, y] = η([s(x), s(y)] − s[x, y]) = ψ(x, y),

χ ′(x) = φh′(s′(x)) − s′(φg(x)) = η(φh(s(x)) − s(φg(x))) = χ(x).

Therefore, isomorphic central extensions produce the same 2-cocycles, hence, corre-
sponds to the same element in H2

LeibDer(g, a).
To prove the converse part, consider two cohomologous 2-cocycles (ψ, χ) and

(ψ ′, χ ′). That is, there exists a linear map v : g → a such that (ψ, χ)−(ψ ′, χ ′) = ∂v.
In other words,

ψ − ψ ′ = δLv,

χ − χ ′ = −v ◦ φg + φa ◦ v.

Consider the corresponding LeibDer pairs (g⊕ a, [ , ]ψ, φχ) and (g⊕ a, [ , ]ψ ′ , φχ ′)
given in Proposition 4.3. These two LeibDer pairs are isomorphic via the map η :
g⊕a → g⊕a given by η(x, a) = (x, a+v(x)). The map η is in fact an isomorphism
of central extensions. Hence the proof. 
�
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4.2 Extensions of a pair of derivations

Let

0 a
i

h
p

g 0 (7)

be a fixed central extensions of Leibniz algebras. Given a pair of derivations (φg, φa) ∈
Der(g)×Der(a), here we study extensions of them to a derivation φh ∈ Der(h)which
makes

0 (a, φa)
i

(h, φh)
p

(g, φg) 0 (8)

into an exact sequence of LeibDer pairs. In otherwords, (h, φh) is a central extension of
the LeibDer pair (g, φg) by (a, φa). In such a case, the pair (φg, φa) ∈ Der(g)×Der(a)
is said to be extensible.

Let s : g → h be a linear section of p. We define a map ψ : g ⊗ g → a by

ψ(x, y) := [s(x), s(y)] − s[x, y].

Given a pair of derivations (φg, φa) ∈ Der(g) × Der(a), we define another map

Obh(φg,φa) : g⊗2 → a by

Obh(φg,φa)(x, y) := φa(ψ(x, y)) − ψ(φg(x), y) − ψ(x, φg(y)).

Proposition 4.5 The map Obh(φg,φa) : g⊗2 → a is a 2-cocycle in the cohomology of
the Leibniz algebra g with coefficients in the trivial representation a. Moreover, the
cohomology class [Obh(φg,φa)] ∈ HL2(g, a) does not depend on the choice of sections.

Proof First observe that ψ is a 2-cocycle in the cohomology of the Leibniz algebra g
with coefficients in the trivial representation a. Thus, we have

(δLOb
h
(φg,φa)

)(x, y, z)

= −Obh
(φg,φa)

([x, y], z) + Obh
(φg,φa)

([x, z], y) + Obh
(φg,φa)

(x, [y, z])
= −������

φa(ψ([x, y], z)) + ψ(φg[x, y], z) + ψ([x, y], φg(z)) +������
φa(ψ([x, z], y)) − ψ(φg[x, z], y)

− ψ([x, z], φg(y)) +������
φa(ψ(x, [y, z])) − ψ(φg(x), [y, z]) − ψ(x, φg[y, z])

= ψ([φg(x), y], z) + ψ([x, φg(y)], z) + ψ([x, y], φg(z)) − ψ([φg(x), z], y) − ψ([x, φg(z)], y)
− ψ([x, z], φg(y)) − ψ(φg(x), [y, z]) − ψ(x, [φg(y), z]) − ψ(x, [y, φg(z)])

= 0.
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Therefore, Obh(φg,φa) is a 2-cocycle. To prove the second part, let s1 and s2 be two
sections of (7). Consider the map u : g → a given by u(x) := s1(x) − s2(x). Then

ψ1(x, y) = ψ2(x, y) − u[x, y].

If 1Obh(φg,φa) and
2Obh(φg,φa) denote the two cocycles corresponding to the sections s1

and s2, then

1Obh(φg,φa)(x, y)

= φa(ψ1(x, y)) − ψ1(φg(x), y) − ψ1(x, φg(y))

= φa(ψ2(x, y)) − φa(u[x, y]) − ψ2(φg(x), y)

+ u([φg(x), y]) − ψ2(x, φg(y)) + u([x, φg(y)])
= 2Obh(φg,φa)(x, y) + δL(φa ◦ u − u ◦ φg)(x, y).

This shows that the 2-cocycles 1Obh(φg,φa) and
2Obh(φg,φa) are cohomologous. Hence

they correspond to the same cohomology class in HL2(g, a). 
�

The cohomology class [Obh(φg,φa)] ∈ HL2(g, a) is called the obstruction class to
extend the pair of derivations (φg, φa).

Theorem 4.6 Let (7) be a central extension of Leibniz algebras. A pair of deriva-
tions (φg, φa) ∈ Der(g) × Der(a) is extensible if and only if the obstruction class

[Obh(φg,φa)] ∈ HL2(g, a) is trivial.

Proof Suppose there exists a derivationsφh ∈ Der(h) such that (8) is an exact sequence
of LeibDer pairs. For any x ∈ g,we observe that p(φh(s(x))− s(φg(x))) = 0.Hence
φh(s(x)) − s(φg(x)) ∈ ker(p) = im(i). We define λ : g → a by

λ(x) = φh(s(x)) − s(φg(x)).

For any s(x) + a ∈ h, we have

φh(s(x) + a) = φh(s(x)) − s(φg(x)) + s(φg(x)) + φa(a) = s(φg(x)) + λ(x) + φa(a).

(9)

Since φh is a derivation, for any s(x) + a, s(y) + b ∈ h, we have

φh[s(x) + a, s(y) + b] = [φh(s(x) + a), s(y) + b] + [s(x) + a, φh(s(y) + b)].
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By using the expression (9) of φh, we get from the above equality that

s(φg[x, y]) + λ([x, y]) + φa(ψ(x, y)) = s([φg(x), y]) + ψ(φg(x), y)

+ s([x, φg(y)]) + ψ(x, φg(y)).

This implies that

φa(ψ(x, y)) − ψ(φg(x), y) − ψ(x, φg(y)) = −λ([x, y]),

or, equivalently, Obh(φg,φa) = ∂λ is a coboundary. Hence the obstruction class

[Obh(φg,φa)] ∈ HL2(g, a) is trivial.

To prove the converse part, suppose Obh(φg,φa) is given by a coboundary, say

Obh(φg,φa) = ∂λ. We define a map φh : h → h by

φh(s(x) + a) = s(φg(x)) + λ(x) + φa(a).

Then φh is a derivation on h and (8) is an exact sequence of LeibDer pairs. Hence the
pair (φg, φa) is extensible. 
�

Thus, we obtain the following.

Theorem 4.7 If H L2(g, a) = 0 then any pair of derivations (φg, φa) ∈ Der(g) ×
Der(a) is extensible.

5 Deformations of LeibDer pairs

In this section, we study formal one-parameter deformations of LeibDer pairs in which
we deform both the Leibniz bracket and the distinguished derivation. Our main results
in this section are similar to the standard cases.

Let (g, φg) be a LeibDer pair. We denote the Leibniz bracket on g by μ, i.e,
μ(x, y) = [x, y], for all x, y ∈ g. Consider the space g[[t]] of formal power series in
t with coefficients from g. Then g[[t]] is a K[[t]]-module.

Definition 5.1 A formal one-parameter deformation of (g, φg) consists of two formal
power series

μt =
∞∑

i=0

t iμi ∈ Hom(g⊗2, g)[[t]] with μ0 = μ,

φt =
∞∑

i=0

t iφi ∈ Hom(g, g)[[t]] with φ0 = φg

such that g[[t]] together with the bracket μt forms a Leibniz algebra over K[[t]] and
φt is a derivation on this Leibniz algebra.
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Thus, in a formal deformation as above, the following identities hold: for n ≥ 0,

∑

i+ j=n

μi (μ j (x, y), z) =
∑

i+ j=n

μi (μ j (x, z), y) +
∑

i+ j=n

μi (x, μ j (y, z)), (10)

∑

i+ j=n

φi (μ j (x, y)) =
∑

i+ j=n

μi (φ j (x), y) + μi (x, φ j (y)), for x, y, z ∈ g.

(11)

Both identities hold for n = 0 as (g, φg) is a LeibDer pair. However, for n = 1, we
obtain

μ1([x, y], z) + [μ1(x, y), z] = μ1([x, z], y) + [μ1(x, z), y] + μ1(x, [y, z]) + [x, μ1(y, z)],
(12)

φ1([x, y]) + φg(μ1[x, y]) = μ1(φg(x), y) + [φ1(x), y] + μ1(x, φg(y)) + [x, φ1(y)],
(13)

for all x, y, z ∈ g. The identity (12) is equivalent to δL(μ1) = 0 and the identity (13)
is equivalent to δL(φ1) + δμ1 = 0. Here δL is the coboundary operator of the Leibniz
algebra cohomology of g with coefficients in itself. Thus, we have

∂(μ1, φ1) = (δL(μ1), δL(φ1) + δμ1) = 0.

Proposition 5.2 Let (μt , φt ) be a formal one-parameter deformation of the LeibDer
pair (g, φg). Then the linear term (μ1, φ1) is a 2-cocycle in the cohomology of the
LeibDer pair (g, φg) with coefficients in itself.

The term (μ1, φ1) is called the infinitesimal of the deformation. If (μ1, φ1) = · · · =
(μn−1, φn−1) = 0 and (μn, φn) is non-zero, then (μn, φn) is a 2-cocycle.

Definition 5.3 Two deformations (μt , φt ) and (μ′
t , φ

′
t ) of a LeibDer pair (g, φg) are

said to be equivalent if there exists a formal isomorphism ψt = ∑∞
i=0 t

iψi : g[[t]] →
g[[t]] with ψ0 = idg such that

ψt ◦ μt = μ′
t ◦ (ψt ⊗ ψt ) and ψt ◦ φt = φ′

t ◦ ψt .

In other words, ψt is an isomorphism of LeibDer pairs from (g[[t]], μt , φt ) to
(g[[t]], μ′

t , φ
′
t ). By equating coefficients of tn , we get

∑

i+ j=n

ψi ◦ μ j =
∑

i+ j+k=n

μ′
i ◦ (ψ j ⊗ ψk) and

∑

i+ j=n

ψi ◦ φ j =
∑

i+ j=n

φ′
i ◦ ψ j .

The above identities hold for n = 0, however, for n = 1, we obtain

μ1 + ψ1 ◦ μ = μ′
1 + μ ◦ (ψ1 ⊗ id) + μ ◦ (id ⊗ ψ1) and φ1 + ψ1 ◦ φg = φ′

1 + φg ◦ ψ1.
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These two identities together imply that (μ1, φ1) − (μ′
1, φ

′
1) = ∂(ψ1). Thus, we have

the following.

Proposition 5.4 The infinitesimals corresponding to equivalent deformations are
cohomologous. Hence, they correspond to the same cohomology class.

5.1 Rigidity

Definition 5.5 A formal deformation (μt , φt ) of the LeibDer pair (g, φg) is said to be
trivial if it is equivalent to the undeformed one (μ′

t = μ, φ′
t = φg).

Definition 5.6 A LeibDer pair (g, φg) is said to be rigid if every formal deformation
of (g, φg) is trivial.

Theorem 5.7 Let (g, φg) be a LeibDer pair. If H2
LeibDer(g, g) = 0 then (g, φg) is rigid.

Proof Let (μt , φt ) be any formal deformation of the LeibDer pair (g, φg). Then by
Proposition 5.2 the linear term (μ1, φ1) is a 2-cocycle. Thus by the hypothesis, there
exists a 1-cochain ψ1 ∈ C1

LeibDer(g, g) = Hom(g, g) such that (μ1, φ1) = ∂ψ1.
We define a formal isomorphism ψt = idg + tψ1 : g[[t]] → g[[t]] and setting

μ′
t = ψ−1

t ◦ μt ◦ (ψt ⊗ ψt ) φ′
t = ψ−1

t ◦ φt ◦ ψt . (14)

Then (μ′
t , φ

′
t ) is a deformationof theLeibDer pair (g, φg) equivalent to the deformation

(μt , φt ). It follows from (14) that the deformation (μ′
t , φ

′
t ) is of the form μ′

t = μ +
t2μ′

2 + · · · and φ′
t = φg + t2φ′

2 + · · · . In other words, the linear terms (coefficients
of t) of μ′

t and φ′
t vanish. One can apply the same argument repeatedly to conclude

that (μt , φt ) is equivalent to (μ, φg). 
�

5.2 Finite order deformations and their extensions

In this subsection, we consider finite order deformations of a LeibDer pair (g, φg).
Given a deformation of order N , we associate a third cohomology class in the coho-
mology of the LeibDer pair (g, φg) with coefficients in itself. When this cohomology
class is trivial, the order N deformation extends to deformation of order N + 1.

Definition 5.8 A deformation of order N of a LeibDer pair (g, φg) consist of finite
sums μt = ∑N

i=0 t
iμi and φt = ∑N

i=0 t
iφi such that μt defines Leibniz bracket on

g[[t]]/(t N+1) and φt is a derivation on it.

Thus, the following identities must hold

∑

i+ j=n

μi (μ j (x, y), z) =
∑

i+ j=n

μi (μ j (x, z), y) + μi (x, μ j (y, z)), (15)

∑

i+ j=n

φi (μ j (x, y)) =
∑

i+ j=n

μi (φ j (x), y) + μi (x, φ j (y)), (16)
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for n = 0, 1, . . . , N . These identities are equivalent to

�μ,μn� = −1

2

∑

i+ j=n,i, j>0

�μi , μ j � (17)

and − �φg, μn� + �μ, φn� =
∑

i+ j=n,i, j>0

�φi , μ j �. (18)

Definition 5.9 A deformation (μt = ∑N
i=0 t

iμi , φt = ∑N
i=0 t

iφi ) of order N is
said to be extensible if there is an element (μN+1, φN+1) ∈ C2

LeibDer(g, g) such that
(μ′

t = μt + t N+1μN+1, φ′
t = φt + t N+1φN+1) is a deformation of order N + 1.

Thus, two more equations need to be satisfied, namely,

∑

i+ j=N+1

μi (μ j (x, y), z) =
∑

i+ j=N+1

μi (μ j (x, z), y) + μi (x, μ j (y, z)),

∑

i+ j=N+1

φi (μ j (x, y)) =
∑

i+ j=N+1

μi (φ j (x), y) + μi (x, φ j (y)).

The above two equations can be equivalently written as

δL (μN+1)(x, y, z) = 1

2

∑

i+ j=N+1,i, j>0

�μi , μ j �(x, y, z) (= Ob3(x, y, z) say)

(19)

(δL (φN+1) + δ(μN+1))(x, y) =
∑

i+ j=N+1,i, j>0

�φi , μ j �(x, y) (= Ob2(x, y) say)

(20)

Proposition 5.10 The pair (Ob3,Ob2) ∈ C3
LeibDer(g, g) is a 3-cocycle in the cohomol-

ogy of the LeibDer pair (g, φg) with coefficients in itself.

Proof To prove that ∂(Ob3,Ob2) = 0, it is enough to show that δL(Ob3) = 0 and
δL(Ob2) + (−1)3δ(Ob3) = 0. We have

δL (Ob3) = �μ,Ob3�

= 1

2

∑

i+ j=N+1,i, j>0

�μ, �μi , μ j ��

= 1

2

∑

i+ j=N+1,i, j>0

(��μ,μi �, μ j � − �μi , �μ,μ j ��)

= −1

4

∑

i ′+i ′′+ j=N+1,i ′,i ′′, j>0

��μi ′ , μi ′′�, μ j �

+ 1

4

∑

i+ j ′+ j ′′=N+1,i, j ′, j ′′>0

�μi , �μ j ′ , μ j ′′�� (by (17))
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= 1

4

∑

i ′+i ′′+ j=N+1,i ′,i ′′, j>0

�μ j , �μi ′ , μi ′′�� + 1

4

∑

i+ j ′+ j ′′=N+1,i, j ′, j ′′>0

�μi , �μ j ′ , μ j ′′��

= 1

2

∑

i ′+i ′′+ j=N+1,i ′,i ′′, j>0

�μ j , �μi ′ , μi ′′�� = 0.

To prove the second part, we observe that

δL (Ob2) + (−1)3 δ(Ob3) = −�μ,Ob2� + �φg,Ob3�

= −
∑

i+ j=N+1,i, j>0

�μ, �φi , μ j �� + 1

2

∑

i+ j=N+1,i, j>0

�φg, �μi , μ j ��

= −
∑

i+ j=N+1,i, j>0

(
��μ, φi �, μ j � + �φi , �μ,μ j ��

)

+ 1

2

∑

i+ j=N+1,i, j>0

(
��φg, μi �, μ j � + �μi , �φg, μ j ��

)

= −
∑

i+ j=N+1,i, j>0

(
��μ, φi �, μ j � + �φi , �μ,μ j ��

) +
∑

i+ j=N+1,i, j>0

��φg, μi �, μ j �

= −
∑

i + j = N + 1,
i, j > 0

(
��μ, φi �, μ j � − ��φg, μi �, μ j �)

+ 1

2

∑

i + j ′ + j ′′ = N + 1,
i, j ′, j ′′ > 0

�φi , �μ
′
j , μ

′′
j �� (by (17))

= −
∑

i ′+i ′′+ j=N+1,i ′,i ′′, j>0

��φi ′ , μi ′′�, μ j � −
∑

i+ j=N+1,i, j>0

(��φg, μi �, μ j � − ��φg, μi �, μ j �)

+ 1

2

∑

i+ j ′+ j ′′=N+1,i, j ′, j ′′>0

(��φi , μ j ′�, μ j ′′� + �μ j ′ , �φi , μ j ′′��) (by (18))

= −
∑

i ′ + i ′′ + j = N + 1,
i ′, i ′′, j > 0

��φi ′ , μi ′′�, μ j � +
∑

i + j ′ + j ′′ = N + 1,
i, j ′, j ′′ > 0

��φi , μ j ′�, μ j ′′� = 0.

Hence the proof. 
�
Note that the right hand sides of (19) and (20) does not involve μN+1 or φN+1.

Therefore, the cohomology class [(Ob3,Ob2)] ∈ H3
LeibDer(g, g) is basically obtained

from the order N deformation (μt , φt ). This class is called the obstruction class to
extend the deformation. If this class is trivial, i.e, (Ob3,Ob2) is given by a coboundary,
then

(Ob3,Ob2) = ∂(μN+1, φN+1) = (δL(μN+1), δL(φN+1) + δ(μN+1)),

for some (μN+1, φN+1) ∈ C2
LeibDer(g, g). Then it follows from the above observation

that (μ′
t = μt + t N+1μN+1, φ

′
t = φt + t N+1φN+1) is a deformation of order N + 1.
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In other words, (μt , φt ) is extensible. On the other hand, if (μt , φt ) is extensible then
(Ob3,Ob2) is given by the coboundary ∂(μN+1, φN+1). Hence the corresponding
obstruction class is trivial.

Theorem 5.11 Adeformation (μt , φt )of order N is extensible if andonly if the obstruc-
tion class [(Ob3,Ob2)] ∈ H3

LeibDer(g, g) is trivial.

Theorem 5.12 If H3
LeibDer(g, g) = 0 then every finite order deformation of (g, φg) is

extensible.

Corollary 5.13 If H3
LeibDer(g, g) = 0 then every 2-cocycle in the cohomology of the

LeibDer pair (g, φg) with coefficients in itself is the infinitesimal of a formal defor-
mation of (g, φg).

6 Homotopy derivations on sh Leibniz algebras

The notion of sh Leibniz algebras was introduced in [1]. Here wewill mostly emphasis
on sh Leibniz algebras whose underlying graded vector space is concentrated only in
two degrees, namely 0 and 1. Such sh Leibniz algebras are called 2-term sh Leibniz
algebras. We define homotopy derivations on 2-term sh Leibniz algebras. Finally, we
classify skeletal and strict 2-term sh Leibniz algebras with homotopy derivations.

Definition 6.1 A 2-term sh Leibniz algebra consists of a chain complex A1
d−→ A0

together with bilinear maps l2 : Ai × A j → Ai+ j , for 0 ≤ i, j, i + j ≤ 1 and
a trilinear map l3 : A0 × A0 × A0 → A1 satisfying the following identities: for
x, y, z, w ∈ A0 and m, n ∈ A1,

• dl2(x,m) = l2(x, dm),

• dl2(m, x) = l2(dm, x),
• l2(dm, n) = l2(m, dn),

• dl3(x, y, z) = l2(l2(x, y), z) − l2(l2(x, z), y) − l2(x, l2(y, z)),
• l3(x, y, dm) = l2(l2(x, y),m) − l2(l2(x,m), y) − l2(x, l2(y,m)),

• l3(x, dm, y) = l2(l2(x,m), y) − l2(l2(x, y),m) − l2(x, l2(m, y)),
• l3(dm, x, y) = l2(l2(m, x), y) − l2(l2(m, y), x) − l2(m, l2(x, y)),
• l2(x, l3(y, z, w)) + l2(l3(x, z, w), y) − l2(l3(x, y, w), z) + l2(l3(x, y, z), w) =
l3(l2(x, y), z, w) − l3(l2(x, z), y, w) + l3(l2(x, w), y, z) − l3(x, l2(y, z), w) +
l3(x, l2(y, w), z) + l3(x, y, l2(z, w)).

A 2-term sh Leibniz algebra as above may be denoted by (A1
d−→ A0, l2, l3). When

A1 = 0, one simply get a Leibniz algebra structure on A0 with the bracket given by
l2 : A0 × A0 → A0.

A 2-term shLeibniz algebra (A1
d−→ A0, l2, l3) is said to be skeletal if the differential

d = 0.Skeletal algebras are in one-to-one correspondencewith tuples (g, M, θ)where
g is a Leibniz algebra, M is a representation of g and θ ∈ C3(g, M) is a 3-cocycle
in the Leibniz algebra cohomology of g with coefficients in M [29]. More precisely,

let (A1
0−→ A0, l2, l3) be a skeletal algebra. Then (A0, l2) is a Leibniz algebra; A1
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is a representation of it with left and right actions given by [x,m] := l2(x,m) and
[m, x] := l2(m, x), for x ∈ A0,m ∈ A1. Finally, the map l3 : A0 × A0 × A0 → A1
is a 3-cocycle in the cohomology of A0 with coefficients in A1.

Definition 6.2 Let (A1
d−→ A0, l2, l3) and (A′

1
d ′−→ A′

0, l
′
2, l

′
3) be 2-term sh Leibniz

algebras. A morphism between them consists of a chain map of underlying chain
complexes (i.e, linear maps f0 : A0 → A′

0 and f1 : A1 → A′
1 satisfying d ′ ◦ f1 =

f0 ◦ d) and a bilinear map f2 : A0 × A0 → A′
1 satisfying

• d ′( f2(x, y)) = f0(l2(x, y)) − l ′2( f0(x), f0(y)),
• f2(x, dm) = f1(l2(x,m)) − l ′2( f0(x), f1(m),
• f2(dm, x) = f1(l2(m, x)) − l ′2( f1(m), f0(x)),
• f1(l3(x, y, z))+ l ′2( f0(x, y), f0(z))− l ′2( f2(x, z), f0(y))− l ′2( f0(x), f2(y, z))+

f2(l2(x, y), z) − f2(l2(x, z), y) − f2(x, l2(y, z)) − l ′3( f0(x), f0(y), f0(z)) = 0,

for x, y, z ∈ A0 and m ∈ A1.

We denote the category of 2-term sh Leibniz algebras andmorphisms between them
by 2Leib∞.

Definition 6.3 Let (A1
d−→ A0, l2, l3) be a 2-term sh Leibniz algebra. A homotopy

derivation on it consists of a chain map of the underlying chain complex (i.e, linear
maps θ0 : A0 → A0 and θ1 : A1 → A1 satisfying d ◦ θ1 = θ0 ◦ d) and a bilinear map
θ2 : A0 × A0 → A1 satisfying the following: for x, y, z ∈ A0 and m ∈ A1,

(a) dθ2(x, y) = θ0(l2(x, y)) − l2(θ0(x), y) − l2(x, θ0(y)),
(b) θ2(x, dm) = θ1(l2(x,m)) − l2(θ0(x),m) − l2(x, θ1(m)),

(c) θ2(dm, x) = θ1(l2(m, x)) − l2(θ1(m), x) − l2(m, θ0(x)),
(d) l3(θ0(x), y, z) + l3(x, θ0(y), z) + l3(x, y, θ0(z)) − θ1l3(x, y, z)

= l2(θ2(x, y), z)−l2(θ2(x, z), y)−l2(x, θ2(y, z))+θ2(l2(x, y), z)−θ2(l2(x, z), y)−
θ2(x, l2(y, z)).

A 2-term sh Leibniz algebra with a homotopy derivation as above may be denoted

by the pair ((A1
d−→ A0, l2, l3), (θ0, θ1, θ2)). Such a pair is called a 2LeibDer∞ pair.

Definition 6.4 Let ((A1
d−→ A0, l2, l3), (θ0, θ1, θ2)) and ((A′

1
d ′−→ A′

0, l
′
2, l

′
3), (θ

′
0, θ

′
1, θ

′
2))

be 2LeibDer∞ pairs. A morphism between them consists of a morphism ( f0, f1, f2)
between the underlying 2-term sh Leibniz algebras and a linear map B : A0 → A′

1
satisfying

• f0(θ0(x)) − θ ′
0( f0(x)) = d ′(B(x)),

• f1(θ1(m)) − θ ′
1( f1(m)) = B(dm),

• f1(θ2(x, y)) − θ ′
2( f0(x), f0(y)) = θ ′

1( f2(x, y)) − f2(θ0(x), y) − f2(x, θ0(y))
+B(l2(x, y)) − μ′

2(B(x), f0(y)) − μ′
2( f0(x),B(y)).

We denote the category of 2LeibDer∞ pairs and morphisms between them by
2LeibDer∞ pair.
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Proposition 6.5 There is a one-to-one correspondence between skeletal 2-term sh
Leibniz algebras with homotopy derivations and triples ((g, φg), (M, φM ), (θ, θ))

where (g, φg) is a LeibDer pair, (M, φM ) is a representation and (θ, θ) ∈
C3
LeibDer(g, M) is a 3-cocycle in the cohomology of the LeibDer pair (g, φg) with

coefficients in (M, φM ).

Proof Let ((A1
0−→ A0, l2, l3), (θ0, θ1, θ2)) be a skeletal 2-term shLeibniz algebrawith

a homotopy derivation. Then it follows from Definition 6.3 (a) that θ0 is a derivation
for the Leibniz algebra (A0, l2). The conditions (b) and (c) of Definition 6.3 says that
the pair (A1, θ1) is a representation of the LeibDer pair (A0, θ0). Finally, the condition
(d) implies that δL(θ2) + δ(l3) = 0. Thus (l3,−θ2) ∈ C3

LeibDer(A0, A1) is a 3-cocycle
in the cohomology of the LeibDer pair (A0, θ0) with coefficients in the representation
(A1, θ1).

For the converse part, let ((g, φg), (M, φM ), (θ, θ)) be such a triple. Then it is easy

to see that ((M
0−→ g, l2 = [ , ], l3 = θ), (φg, φM ,−θ)) is a skeletal 2-term sh Leibniz

algebra. These two correspondences are inverses to each other. 
�
A 2-term sh Leibniz algebra (A1

d−→ A0, l2, l3) is called strict if l3 = 0. Further, a
homotopy derivation (θ0, θ1, θ2) on it is said to be strict if θ2 = 0.

Crossed module of Leibniz algebras was introduced in [26]. In [29] the authors put
some additional conditions in the definition of a crossed module which led them to
relate with strict 2-term sh Leibniz algebras. Here we extend their notion in the context
of LeibDer pairs.

Definition 6.6 A crossed module of LeibDer pairs consists of a quadruple
((g, φg), (h, φh), dt, φ) in which (g, φg), (h, φh) are both LeibDer pairs, dt : g → h
is a morphism of LeibDer pairs and there are bilinear maps

φ : h × g → g φ : g × h → g

satisfying the following conditions: for m, n ∈ g and x, y ∈ h,

(a) dt(φ(x,m)) = [x, dt(m)],
dt(φ(m, x)) = [dt(m), x],

(b) [dt(m), n] = [m, n],
[m, dt(n)] = [m, n],

(c) φ(φ(m, x), y) = φ(φ(m, y), x) + φ(m, [x, y]),
φ(φ(x,m), y) = φ([x, y],m) + φ(x, φ(m, y)),
φ([x, y],m) = φ(φ(x,m), y) + φ(x, φ(y,m)),

(d) φ([m, n], x) = [φ(m, x), n] + [m, φ(n, x)],
[φ(x,m), n] = [φ(x, n),m] + φ(x, [m, n]),
[φ(m, x), n] = φ([m, n], x) + [m, φ(x, n)],

(e) φg(φ(x,m)) = φ(φh(x),m) + φ(x, φg(m),

φg(φ(m, x)) = φ(φg(m), x) + φ(m, φh(x)).

When φg = 0, φh = 0 one simply get crossed module of Leibniz algebras [29].
Therefore, the condition (e) of the above definition is absent in a crossed module of
Leibniz algebras.
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Theorem 6.7 There is a one-to-one correspondence between strict 2-term sh Leibniz
algebras with strict homotopy derivations and crossed module of LeibDer pairs.

Proof It has been proved in [29] that strict 2-term sh Leibniz algebras are in one-to-

one correspondence with crossed module of Leibniz algebras. More precisely, (A1
d−→

A0, l2, l3 = 0) is a strict 2-term sh Leibniz algebra if and only if (A1, A0, d, l2) is a
crossed module of Leibniz algebras, where the Leibniz algebra structure on A1 and
A0 are respectively given by [m, n] := l2(dm, n) = l2(m, dn) and [x, y] = l2(x, y),
for m, n ∈ A1 and x, y ∈ A0. It follows from Definition 6.3 that θ1 is a derivation
on the Leibniz algebra A1 and θ0 is a derivation on the Leibniz algebra A0. In other
words (A1, θ1) and (A0, θ0) are both LeibDer pairs. Since θ0 ◦ d = d ◦ θ1, the map
dt = d : A1 → A0 is a morphism of LeibDer pairs. Finally, the conditions (b) and
(c) of Definition 6.3 are equivalent to the last condition of Definition 6.6. Hence the
proof. 
�

7 Categorification of LeibDer pairs

Leibniz 2-algebras are categorification of Leibniz algebras [29]. In this section, we
introduce categorified derivations (also called 2-derivations) on Leibniz 2-algebras.

LetVect denote the category of vector spaces.A 2-vector space is a category internal
to the category Vect. Thus, a 2-vector space V is a category with a vector space of
objects V0 and a vector space of morphisms V1 such that all structure maps are linear.
Let s, t : V1 → V0 be the source and target maps respectively. Given a 2-vector space

V = (V1 ⇒ V0), we have a 2-term chain complex ker(s)
t−→ V0. Conversely, any

2-term chain complex A1
d−→ A0 gives rise to a 2-vector space A = (A0 ⊕ A1 ⇒ A0)

with space of objects A0 and space of morphisms given by A0 ⊕ A1; the structure
maps are given by s(x ⊕ m) = x, t(x ⊕ m) = x + dm, for x ∈ A0 and m ∈ A1. It
has been shown in [5] that the category of 2-vector spaces and the category of 2-term
chain complexes are equivalent.

Definition 7.1 A Leibniz 2-algebra is a 2-vector space V with a bilinear functor [ , ] :
V × V → V and a trilinear natural isomorphism

Jx,y,z : [[x, y], z] → [[x, z], y] + [x, [y, z]], for x, y, z ∈ V0

commuting the following diagram

[[[x, y], z], w]
J[x,y],z,w

Jx,y,z

[[[x, y], w], z] + [[x, y], [z, w]]

Jx,y,w+1

[[[x, z], y] + [x, [y, z]], w]

J[x,z],y,w+Jx,[y,z],w

[[[x, w], y] + [x, [y, w]], z] + [[x, y], [z, w]]

J[x,w],y,z+Jx,[y,w],z+Jx,y,[z,w]

[[[x, z], w], y] + [[x, z], [y, w]] + [[x, w], [y, z]] + [x, [[y, z], w]]
Jx,z,w+1+1+Jy,z,w

P
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where P = [[[x, w], z], y] + [[x, [z, w]], y] + [[x, z], [y, w]] + [[x, w], [y, z]] +
[x, [[y, w], z]] + [x, [y, [z, w]]].
Definition 7.2 Let (V, [ , ], J ) and (V′, [ , ]′, J ′) be two Leibniz 2-algebras. A mor-
phism between them consists of a linear functor F = (F0, F1) from the underlying
vector space V to V

′, a natural transformation

F2(x, y) : [F0(x), F0(y)]′ → F0[x, y]

such that the following diagram commute

[[F0(x), F0(y)]′, F0(z)]′ J ′

[F2,1]′
[[F0(x), F0(z)]′, F0(y)]′ + [F0(x), [F0(y), F0(z)]′]′

[F2,1]′+[1,F2]′

[F0[x, y], F0(z)]′
F2

[F0[x, z], F0(y)]′ + [F0(x), F0[y, z]]′
F2+F2

F0[[x, y], z]
F0(J )

F0([[x, z], y] + [x, [y, z]]).

Leibniz 2-algebras and morphisms between them form a category. We denote this
category by Leib2.

Remark 7.3 Note that the definitions of Leibniz 2-algebras and morphisms between
them considered here are slightly different than [29]. Here we consider right Leibniz 2-
algebras whereas the authors in [29] considered left Leibniz 2-algebras. One is related
to the other by considering the opposite of the bilinear functor [ , ] : V × V → V.

In the next, we define 2-derivations on Leibniz 2-algebras. They are categorification
of derivations on Leibniz algebras.

Definition 7.4 Let (V, [ , ], J ) be a Leibniz 2-algebra. A 2-derivation on it consists
of a linear functor D : V → V and a natural isomorphism

Dx,y : D[x, y] → [Dx, y] + [x, Dy], for x, y ∈ V0

making the following diagram commutative

D[[x, y], z] J

D[x,y],z

D([[x, z], y] + [x, [y, z]])

[D[x, y], z] + [[x, y], Dz]
[D,1]+1

[D[x, z], y] + [[x, z], Dy] + [Dx, [y, z]] + [x, D[y, z]]
[D,1]+1+1+[1,D]

[[Dx, y] + [x, Dy], z] + [[x, y], Dz]
J+J+J

Q
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where Q = [[Dx, z], y]+ [[x, Dz], y]+ [[x, z], Dy]+ [Dx, [y, z]]+ [x, [Dy, z]]+
[x, [y, Dz]].

We call a Leibniz 2-algebra with a 2-derivation, a LeibDer2 pair.

Definition 7.5 Let (V, [ , ], J , D,D) and (V′, [ , ]′, J ′, D′,D′) be two LeibDer2
pairs. A morphism between them consists of a Leibniz 2-algebra morphism (F =
(F0, F1), F2) and a natural isomorphism

�x : D′(F0(x)) → F0(D(x)), for x ∈ V0

which makes the following diagram commutative

D′([F0(x), F0(y)]′) F2

D′

D′(F0[x, y])
�[x,y]

[D′(F0(x)), F0(y)]′ + [F0(x), D′(F0(y))]′
[�x ,1]′+[1,�y ]′

F0(D[x, y])
D

[F0(D(x)), F0(y)]′ + [F0(x), F0(D(y))]′
F2+F2

F0([Dx, y] + [x, Dy]).

Wedenote the category of LeibDer2 pairs andmorphisms between them byLeibDer2.
It is shown in [29] that the category Leib2 is equivalent to the category 2Leib∞.

This generalizes a similar theorem for the case of Lie algebras [5]. Let us recall the
construction of a 2-term sh Leibniz algebra from a Leibniz 2-algebra and a Leibniz
2-algebra from a 2-term sh Leibniz algebra [29].

Let (V, [ , ], J ) be a Leibniz 2-algebra. Then (ker(s)
t−→ V0, l2, l3) is a 2-term sh

Leibniz algebra where

l2(x, y) := [x, y], l2(x,m) := [x,m], l2(m, x) := [m, x], l2(m, n) := 0 and

l3(x, y, z) := pr(Jx,y,z),

for x, y ∈ V0, m, n ∈ ker(s) and pr denote the projection on ker(s).

Conversely, given a 2-term sh Leibniz algebra (A1
d−→ A0, l2, l3), the corresponding

Leibniz 2-algebra is defined on the 2-vector space A = (A0 ⊕ A1 ⇒ A0) with

[x ⊕ m, y ⊕ n] := l2(x, y) ⊕ l2(x, n) + l2(m, y) + l2(m, dn),

Jx,y,z := ([[x, y], z], l3(x, y, z)).

Theorem 7.6 The categories LeibDer2 and 2LeibDer∞ are equivalent.

Proof Here we only sketch the construction of a homotopy derivation from a 2-
derivation and vice versa. The rest of the verifications are similar to [5, Theorem
4.3.6].
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Given a LeibDer2 pair (V, [ , ], J , D,D), we define a homotopy derivation on the

2-term sh Leibniz algebra (ker(s)
t−→ V0, l2, l3) by

θ0(x) := D(i(m)), θ1(m) := D|ker(s)(m) and θ2(x, y) := pr(Dx,y).

If (F0, F1, F2,�) is a morphism of LeibDer2 pairs, then ( f0 = F0, f1 =
F1|ker(s), f2 = pr ◦ F2,B = �) is a morphism between corresponding 2-term sh
Leibniz algebras with homotopy derivations.

Conversely, let ((A1
d−→ A0, l2, l3), (θ0, θ1, θ2)) be a 2-term sh Leibniz algebra with

a homotopy derivation. We define a 2-derivation (D,D′) on the Leibniz 2-algebra
(A0 ⊕ A1 ⇒ A0, [ , ], J ) by

D(x,m) := (θ0(x), θ1(m)) and Dx,y := ([x, y], θ2(x, y)).

If ( f0, f1, f2,B) is a morphism of 2-term sh Leibniz algebras with homotopy deriva-
tions, then (F0 = f0, F1 = f1, F2(x, y) = ([ f0(x), f0(y)]′, f2(x, y)),� = B) is a
morphism between the corresponding LeibDer2 pairs. 
�

8 Conclusions

In this paper, we consider LeibDer pairs as a noncommutative analogue of LieDer
pairs. We study their central extensions and deformations from the cohomological
point of view. We define homotopy derivations on sh Leibniz algebras and relate them
with categorification of LeibDer pairs.

In [7,8] the author considered extensions and deformations of algebras over a binary
quadratic operad P . The results of the present paper can be extended to P-algebras
with derivations. In a forthcoming paper, we plan to systematically study extensions
and deformations of a pair of a P-algebra and a derivation on it.

Leibniz algebras play an important role in the study of Courant algebroids [21]. In
[19,20] the authors study deformation theory of Courant algebroids from the algebraic
and Poisson geometric point of view. It might be interesting to explore the importance
of derivations in a Courant algebroid and one may extend the results of [19,20] in the
context of Courant algebroids with derivations.
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