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Abstract
Let X be a simply connected space with finite-dimensional rational homotopy
groups. Let p∞ : UE → Baut1(X) be the universal fibration of simply connected
spaces with fibre X . We give a DG Lie algebra model for the evaluation map
ω : aut1(Baut1(XQ)) → Baut1(XQ) expressed in terms of derivations of the rela-
tive Sullivan model of p∞. We deduce formulas for the rational Gottlieb group and
for the evaluation subgroups of the classifying space Baut1(XQ) as a consequence.
We also prove that CPn

Q
cannot be realized as Baut1(XQ) for n ≤ 4 and X with

finite-dimensional rational homotopy groups.

Keywords Classifying space for fibrations · Evaluation map · Rationalization ·
Derivations · Minimal model

Mathematics Subject Classification Primary 55P62 55R15; Secondary 55P10

1 Introduction

Given a simply connected CW complex X of finite type, let aut1(X) denote the space
of self-maps of X homotopic to the identity map. The group-like space aut1(X) has
a classifying space Baut1(X). The space Baut1(X) appears as the base space of the
universal example p∞ : UE → Baut1(X) of a fibration of simply connected CW
complexes with fibre of the homotopy type of X [2,9,13].
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The classifying space Baut1(X) offers a computational challenge in homotopy
theory.When X is a finite complex, Baut1(X) is of CW type (albeit, generally infinite)
and satisfies the localization identity Baut1(XP ) � Baut1(X)P for any collection of
primes by work of May [9,10]. In rational homotopy theory, models for Baut1(XQ)

are due to Sullivan, Schlessinger-Stasheff and Tanré [12,14,15]. The study of the
classifying space using these models is an area of continued activity (see, e.g., [8,16,
17]).

We say a space X is π -finite if X is a simply connected CW complex and
dim π∗(XQ) < ∞. Aπ -finite space X has a finitely generated Sullivanminimalmodel
∧(V ; d). If X is a π -finite space then Baut1(XQ) is one also (Proposition 2.3, below).
Consequently, we may iterate the classifying space construction for π -finite rational
spaces.Ourfirst result here describes the passage from Baut1(XQ) to aut1(Baut1(XQ))

in the setting of derivations of Sullivan models. We describe this result briefly now,
with fuller definitions in Sect. 2.

The relative Sullivan model for the universal fibration p∞ : UE → Baut1(X)with
fibre X aπ -finite space is an inclusion of DG algebras.Wewrite this model throughout
as:

∧(Z; d∞) → (∧Z ⊗ ∧V ; D∞).

Let Der(∧V ; d) denote the DG Lie algebra of derivations of ∧(V ; d) and write
Der∧Z (∧Z ⊗ ∧V ; D∞) for the derivations of ∧Z ⊗ ∧V vanishing on ∧Z . We
will assume derivation spaces are connected. Thus we restrict Der1(∧V ; d) to the
cycles Z1(Der(∧V ; d)) and set Dern(∧V ; d) = 0 for n ≤ 0. We do the same for
Der∧Z (∧Z ⊗ ∧V ; D∞). Define a DG Lie algebra map

P∗ : Der∧Z (∧Z ⊗ ∧V ; D∞) → Der(∧V ; d)

by restricting a derivation θ to∧V and composingwith the projection P : ∧Z⊗∧V →
∧V .

Sullivan showed the DG Lie algebra Der(∧V ; d) gives a model for the classifying
space ([14, Sect. 7], see Theorem 2.2, below). We extend Sullivan’s result to the
following:

Theorem 1 Let X be a π -finite space. The map

P∗ : Der∧Z (∧Z ⊗ ∧V ; D∞) → Der(∧V ; d)

is a Quillen model for ω̃ : ˜aut1(Baut1(XQ)) → Baut1(XQ), the universal cover of
the evaluation map.

Wemention two consequences of Theorem 1. First we deduce an interesting feature
of the derivations of the relative Sullivan model ∧(Z; d∞) → (∧Z ⊗ ∧V ; D∞) for
X a π -finite space.

Corollary 1.1 The DG Lie algebra Der∧Z (∧Z ⊗ ∧V ; D∞) satisfies:

(i) H∗(Der∧Z (∧Z ⊗ ∧V ; D∞)) is an abelian Lie algebra
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(ii) There are vector space isomorphisms for n ≥ 1

Hn(Der∧Z (∧Z ⊗ ∧V ; D∞)) ∼= Hn+1(Der(∧Z; d))

We also deduce a formula for the nth Gottlieb group of the classifying space
Baut1(X). Recall the subgroup Gn(Y ) of πn(Y ) is the image of the map induced on
homotopy groups by the evaluation map: Gn(Y ) = im{ω� : πn(aut1(Y )) → πn(Y )}.
Corollary 1.2 Let X be a π -finite space. Then

Gn+1(Baut1(XQ)) ∼= im{H(P∗) : Hn(Der∧Z (∧Z ⊗ ∧V ; D∞)) → Hn(Der ∧ (V ; d))}

for n ≥ 1.

Corollary 1.2 leads to an obstruction theory for Gottlieb elements of the classi-
fying space (Proposition 3.1, below). More generally, we obtain a description of the
poset of evaluation subgroups G∗(ξ ; XQ) ⊆ π∗(Baut1(XQ)) parameterized by fibra-
tions ξ with fibre XQ. We give some examples and results on this poset in Sect. 3,
complementing work of Yamaguchi in [17].

We also prove a non-realization result for the classifying space.

Theorem 2 There is no simply connected, π -finite space X such that

CPn
Q � Baut1(XQ)

for n = 2, 3, 4.

Theorem 2 extends [7, Th. 2] for the case n = 2. The case n = 3was recently obtained,
independently, in [16].

The paper is organized as follows. In Sect. 2, we introduce our notation and recall
some results on the rational homotopy theory of the space Baut1(X) and of themonoid
aut1(p) of fibrewise self-equivalences of a fibration p.WeproveTheorem1using these
results together with an identity from [1] that connects these spaces. Section 3 contains
our results on the evaluation subgroups of the classifying space. We prove Theorem 2
in Sect. 4.

2 Derivations and fibrewise self-equivalences

May’s localization equivalence Baut1(X)Q � Baut1(XQ) for X finite [10, Th. 4.1]
implies one may study the rationalization of the classifying space using algebraic
models with this restriction. We are interested here in the space aut1(Baut1(X)). We
cannot expect to have aut1(Baut1(XQ)) � aut1(Baut1(X))Q even for X finite, since
Baut1(X) is generally of infinite CW type. Thus in what follows, we state our main
results for rationalized spaces XQ for which the various constructions can be made
algebraically.

We establish notation for working in rational homotopy theory. Our overriding
reference for this material is [3]. Let X be simply connected and and CW complex
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of finite type. A Sullivan model for X is a DG algebra ∧(V ; d) freely generated by
the graded space V with differential d satisfying the nilpotence condition ([3, p. 138])
and such that there is a quasi-isomorphism ∧(V ; d) → APL(X) with the latter the de
Rhamalgebra of rational differential formson X [3, p. 122].ASullivanmodel for amap
f : X → Y is a map of Sullivan models making the diagram of quasi-isomorphims
with APL( f ) : APL(Y ) → APL(X) commute (see [3, Ch.23]). A Sullivan model
∧(V ; d) for X is the Sullivan minimal model if the differential d is decomposable.
The homotopy type of XQ is completely determined by a Sullivan minimal model
∧(V ; d).

A fibration p : E → B of simply connected spaces with fibre X has a relative
Sullivan model which is an inclusion ∧(W ; d̂) → (∧W ⊗ ∧V ; D) of DG algebras in
which ∧(W ; d̂) is a Sullivan minimal model for the base B. The differential satisfies
D(w) = d̂(w) for w ∈ W while D(v) − d(v) ∈ ∧+W · (∧W ⊗ ∧V ) for v ∈ V . The
differential D is not generally decomposable but the DG algebra (∧W ⊗ ∧V ; D) is a
Sullivan model for the total space E ([3, Ch.14]).

Quillen’s framework for rational homotopy theory is the category of connected
DG Lie algebras. An object here is a pair (L, ∂) with L = ⊕

n≥1 Ln equipped with
a homogenous bracket and differential ∂ lowering degree by one [3, p. 383]. The
commutative cochains functor may be applied to a DG Lie algebra (L, ∂) to obtain
a Sullivan algebra C∗(L, ∂) = ∧(sL; d = d0 + d[ , ]) [3, Lem.23.1]. Here sL is the
graded vector space suspension of L with d0 the dual to ∂ and d[ , ] induced by the
bracket in L . A DG Lie algebra L, ∂ is aQuillen model for X if C∗(L, ∂) is a Sullivan
model for X . In this case, we have an isomorphism π∗(�X) ⊗ Q ∼= H∗(L, ∂). The
Quillen model for a map f : X → Y is a DG Lie algebra mapψ : LX → LY such that
the induced map C∗(ψ) : C∗(LY , ∂Y ) → C∗(LX , ∂X ) gives a commutative diagram
with quasi-isomorphisms to the de Rham forms as for Sullivan models.

Beginning with a Sullivan minimal model ∧(V ; d) we obtain the DG Lie algebra
Der(∧V ; d) defined as follows: In degree n, Dern(∧V ; d) consists of linear self-maps
θ of ∧V reducing degrees by n, θ(∧V )m ⊆ (∧V )m−n , and satisfying the derivation
law θ(χ1χ2) = θ(χ1)χ2 + (−1)n|χ1|χ1θ(χ2) for χ1, χ2 ∈ ∧V . The bracket of two
derivations is defined by the rule [θ1, θ2] = θ1◦θ2−(−1)|θ1||θ2|θ2◦θ1. The differential
δ is given by δ(θ) = [d, θ ] for θ ∈ Der(∧V ). As we will only consider connected
DG Lie algebras, we restrict in degree 1 to those θ with δ(θ) = 0. To ease notation,
we write Der(∧V ; d) = Der(∧V ), δ for the connected DG Lie algebra. Sullivan’s
original result on the classifying space is the following:

Theorem 2.1 [14, Sect. 7] Let X be simply connected and of finite type with Sullivan
minimal model ∧(V ; d). There is an isomorphism of graded Lie algebras

π∗(�Baut1(XQ)) ∼= H∗(Der(∧V ; d)). ��

Theorem 2.1 strengthens to the following statement by the work of several authors:

Theorem 2.2 Let X be simply connected and of finite type. Then Der(∧V ; d) is a
Quillen model for Baut1(XQ).

123



The universal fibration with fibre X in rational homotopy theory 355

Proof Schlessinger-Stasheff and Tanré constructed a Quillen model for Baut1(XQ)

written cl(LX ; ∂X ) (see [15, Cor.7.4(4)]). Gatsinzi [5, Th. 1] constructed a quasi-
isomorphism fromDer(∧V ; d) to cl(L∗(∧V ; d))where L∗(__) is the Quillen functor
from DG algebras to DG Lie algebras. ��

Given a graded vector space V , write max (V ) = max {n | V n �= 0}. We have

Proposition 2.3 Let X be simply connected and π -finite. Then Baut1(XQ) is π -finite
and, we may construct its classifying space Baut1(Baut1(XQ)). Further, if N =
max (π∗(XQ)), then

(i) max (π∗(Baut1(XQ))) = N − 1 and (i i) πN−1(Baut1(XQ)) ∼= πN (XQ).

Proof Parts (i) and (ii) are direct consequence of Theorem 2.1 (cf. [8, Pro.2.2]). We
note that if V ∼= π∗(XQ) then H∗(Der(∧V ; d)) is a sub-quotient of Hom(V ,∧V )

and so finite-dimensional. Thus π∗(Baut1(XQ)) is finite-dimensional by Theo-
rem 2.2. Let∧(Z; d∞) denote the Sullivan minimal model forC∗(Der(∧V ; d)). Then
Baut1(Baut1(XQ)) is the rational space with Quillen model Der(∧Z; d∞). Finally,
note that the spatial realization of a finitely generated Sullivan model is a CW complex
[3, p. 247–248].

Next we consider the monoid of fibrewise equivalences. Given a fibration p : E →
B set

aut1(p) = { f : E → E | p ◦ f = f , f � 1E } ⊆ map(E, E).

Let Baut1(p) denote the classifying space for this monoid. The main result of [1],
specialized to universal covers, is the following identity:

Theorem 2.4 [1, Th. 4.1] Let p : E → B be a fibration of simply connected CW
complexes with fibre X. There is a weak homotopy equivalence

Baut1(p) �w m̃ap(B, Baut1(X); h)

where the latter space is the universal cover of the function space component of the
classifying map h : B → Baut1(X) for the fibration p. ��

Sullivan’s result, Theorem 2.1 above, extends to an identification for the monoid
aut1(p) by the main result of [4]. We recall this result now. Given p : E → B with
relative Sullivanmodel∧(W ; d̂) → (∧W ⊗∧V ; D), define Der∧W (∧W ⊗∧V ; D) to
be the sub-DGLie algebra of Der(∧W⊗∧V ; D) obtained by restricting to derivations
θ with θ(W ) = 0. The differential δ is the restriction of the differential for Der(∧W ⊗
∧V ; D). We continue to restrict, in degree 1, to the kernel of δ. We have:

Theorem 2.5 [4, Th. 4.1] Let p : E → B be a fibration of simply connected CW
complexes with fibre X and pQ : EQ → BQ the rationalization of p. There is a
natural isomorphism of graded Lie algebras in positive degrees:
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π∗(aut1(pQ)) ∼= H∗(Der∧W (∧W ⊗ ∧V ; D)).

��
The identification given in Theorem 2.5 is natural with respect to maps induced by

pull-backs of fibrations [17, Pro.1.5]. A map f : B ′ → B into the base B of a fibration
p : E → B with fibre X induces a multiplicative map aut1(p) → aut1(p′) where p′
is the pull-back. Then f induces the map of derivation spaces

f∗ : Der∧W (∧W ⊗ ∧V ; D) → Der∧W ′(∧W ′ ⊗ ∧V ; D′)

obtained by composing a derivation with f ∗ ⊗ 1 where f ∗ : ∧ (W ; d̂) → ∧(W ′; d̂ ′)
is a Sullivan model of f . In particular, the inclusion of the base-point in B induces the
DG algebra map P∗ : Der∧W (∧W ⊗∧V ; D) → Der(∧V ; d) given by P∗(θ) = P ◦ θ

with P : ∧ W ⊗ ∧V → ∧V the projection. The map P∗ is the subject of Theorem 1
which we prove now.

Proof of Theorem 1 Let X be simply connected, π -finite and of finite type. Let
∧(Z; d∞) → (∧Z ⊗ ∧V ; D∞) be the relative model for the universal fibration with
fibre X . Recall we are to prove the map

P∗ : Der∧Z (∧Z ⊗ ∧V ; D∞) → Der(∧V ; d)

is a Quillen model for ω̃ : ˜aut1(Baut1(XQ)) → Baut1(XQ). Since ˜aut1(Baut1(XQ))

is an H-space, a Quillen model for this space is just a DG Lie algebra with the cor-
rect homotopy groups. Applying Theorem 2.4 to the identity map, we obtain a weak
equivalence:

˜aut1(Baut1(XQ)) = m̃ap(Baut1(XQ), Baut1(XQ); 1) �w Baut1((p∞)Q).

Applying Theorem 2.5, we deduce that

π∗(˜aut1(Baut1(XQ))) ∼= H∗(Der∧Z (∧Z ⊗ ∧V ; D∞)),

as needed.
Finally, Theorem 2.2 and the naturality of the identification in Theorem 2.5,

mentioned above, gives that P∗ is a Quillen model for ω̃. ��
Proof of Corollary 1.1 SinceDer∧Z (∧Z⊗∧V ; D∞) is aQuillenmodel for theH-space
aut1(p∞) it has vanishing brackets in homology. The isomorphism in Corollary 1.1
(ii) follows from the chain of isomorphisms:

Hn(Der∧Z (∧Z ⊗ ∧V ; D∞)) ∼= πn(aut1((p∞)Q))
∼= πn(�Baut1((p∞)Q))
∼= πn+1(aut1(Baut1(XQ)))
∼= Hn+1(Der(∧Z; d∞)).

��
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Corollary 1.2 follows directly fromTheorem 1 and the definition of the Gottlieb group.
We next give a partial description of the differential D∞ in terms of derivations.

For any relative model ∧(W ; d) → (∧W ⊗ ∧V ; D), the minimality condition for D
implies for each v ∈ V we have D(v) = d(v) + ∑s

i=1 θwi (v)wi + �(v) where �(v)

is in the ideal (∧+W · ∧+W ) of ∧W ⊗ ∧V . The linear maps θwi : ∧ V → ∧V are of
degree |wi | − 1 and extend to degree |wi | − 1 cycles of Der(∧V ; d). The map

wi �→ 〈θwi 〉 : W |wi | → H|wi |−1(Der(∧V ; d))

corresponds to the map induced on rational homotopy groups by the classifying map
h : B → Baut1(X) [7, Th. 3.2]. For the universal fibrationwith fibre X , themap Z∗ →
H∗−1(Der(∧V ; d)) is thus an isomorphism.Writing H∗(Der(∧V ; d)) = 〈θ1, . . . , θn〉
in a homogeneous basis, we conclude there is a corresponding basis Z = 〈z1, . . . , zn〉
with |zi | = |θi | + 1 such that for v ∈ V

D∞(v) = d(v) +
n

∑

i=1

θi (v)zi + �(v) for �(v) ∈ (∧+W · ∧+W ) · ∧W ⊗ ∧V . (1)

We use this description of D∞ in the following simple example illustrating Corol-
lary 1.1. In what follows, we write (v, P) for the derivation obtained by sending v ∈ V
to P ∈ ∧V (or P ∈ ∧Z ⊗ ∧V ) and vanishing on a complementary subspace of V .
We write v∗ = (v, 1). Note that |(v, P)| = |v| − |P|.
Example 2.6 Let X = S3 × CP2. Write the Sullivan minimal model for X as
∧(x2, y3, z5; d) with subscripts indicating degree and differential given by d(x) =
d(y) = 0, d(z) = x3. We see H∗(Der ∧ (V ; d)) = 〈(y, x), (z, y), y∗, (z, x), z∗〉.
with one non-trivial bracket z∗ = [(z, y), y∗].We then compute C∗(Der(∧V ; d)) and
obtain a (minimal)model for Baut1(XQ)of the form∧(Z; d∞) = ∧(a, b, u, v, w; d∞)

with |a| = 2, |b| = 3, |u| = |v| = 4, |w| = 6 and d∞(a) = d∞(b) = d∞(c) =
d∞(u) = d∞(v) = 0 and d∞(w) = bu. Using (1), we see that universal fibration has
relative Sullivan model

∧(a, b, u, v, w; d∞) → (∧(a, b, u, v, w) ⊗ ∧(x, y, z); D∞)

with D∞ = d∞ on ∧(a, b, u, v, w), D∞(z) = w + vx + by + x3, D∞(y) = u + ax
and D∞(x) = 0. Computing homology groups gives an illustration of Corollary 1.1:
Note also that H∗(Der∧Z (∧Z ⊗ ∧V ; D∞)) is abelian.

Theorem 1 implies a formula for a Quillen model for the universal cover of the
monoid aut∗1(Baut1(XQ)) of basepoint-preserving automorphisms of the classifying
space. Write

Der∧Z (∧Z ⊗ ∧V ; D∞) = {θ ∈ Der∧W (∧W ⊗ ∧V ) | θ(v) ⊂ ∧+W · (∧W ⊗ ∧V )}

with the induced differential.
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H∗(Der∧Z (∧Z ⊗ ∧V ; D∞)) H∗(Der(∧V ; d))

Degree Derivation classes Degree Derivation classes

5 z∗ 6 w∗
4 5
3 (z, x), (z, a) 4 (w, a), v∗
2 3
1 (z, u) − (z, ax), (z, a2), 2 a∗, (w, a2), (w, a),

(z, d) − (y, a), (z, x2) (w, v)

Corollary 2.7 Let X be a π -finite space. Then Der∧Z (∧Z ⊗ ∧V ; D∞) is a Quillen
model for ˜aut ∗1 (Baut1(XQ)).

Proof The isomorphism of graded Lie algebras

π∗(aut∗1(Baut1(XQ))) ∼= H∗(Der∧Z (∧Z ⊗ ∧V ; D∞))

is a consequence of Theorem 1 and the 5-lemma applied to the long exact homotopy
sequence of the evaluation fibration

aut∗1(Baut1(XQ)) → aut1(Baut1(XQ)) → Baut1(XQ).

��

3 The evaluation subgroups of the classifying space

The Gottlieb group G∗(X) plays a central role in the theory of fibrations, as it corre-
sponds to the universal image of connecting homomorphisms for fibrations with fibre
X [6, Th. 2.]. The rational Gottlieb groups G∗(XQ) are the subject of a well-known
structure theorem in rational homotopy theory. For X a finite complex,Geven(XQ) = 0
and dimGodd(XQ) ≤ cat(XQ) [3, Pro.29.8]. The significance of the Gottlieb group of
the classifying space is less clear. We give some examples and results here to suggest
the rational Gottlieb group and, more generally, the rational evaluation subgroups of
the classifying space offer interesting invariants of the homotopy theory of fibrations.

We begin with a description of G∗(Baut1(XQ)) in terms of derivations, assuming
the identification: Gn(Baut1(XQ)) ⊆ πn(Baut1(XQ)) ∼= Hn−1(Der(∧V ; d)).

Theorem 3.1 A cycle θ ∈ Dern−1(∧V ; d) represents an element of Gn(Baut1(XQ))

if and only if θ extends to a cycle θ̂ inDern−1
∧W (∧W ⊗∧V ; D) for every relative model

∧(W ; d̂) → (∧W ⊗ ∧V ; D).

Proof A fibration ξ pulled back from the universal gives a factorization of monoids
of fibrewise equivalences: aut1(p∞) → aut1(p) → aut1(X). The result now follows
from Theorems 1 and 2.5.

Theorem 3.1 roughly implies that, the more ample the fibrations with fibre XQ, the
fewer Gottlieb elements in H∗(Der(∧V ; d)). When X is an H-space, fibrations with
fibre X are abundant and we have:
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Theorem 3.2 Let X be a simply connected π -finite space with XQ an H-space. Then
Gn(Baut1(XQ)) = 0 for n > N − 1 and GN−1(Baut1(XQ)) ∼= πN (XQ) where
N = max (π∗(XQ)).

Proof The Sullivan minimal model for X has trivial differential. The differential δ for
Der(∧V ; 0) is trivial as well. Let θ ∈ Dern(∧V ; 0) be a derivation. Suppose θ(x) �= 0
for some x ∈ V n with n < N . Take w to have degree N −|x |+ 1 and set D(v) = wx
with D vanishing on a complementary subspace to 〈v〉 in V . For (ii), we choose an
element y ∈ V appearing in θ(x). We then let |w| = |y| + 1 and set D(y) = z with
D vanishing on a complementary subspace to 〈y〉 in V . In both cases, we see that θ

does not extend to a cycle of Der∧(w)(∧(w) ⊗ ∧V ; D), as needed. ��
We note that Theorem 3.2 can be proved easily from the various models for

Baut1(X). We may extend the argument above to give the following:

Theorem 3.3 Let X be a π -finite rational H-space and Y any π -finite space. Suppose
max (π∗(XQ)) < max (π∗(YQ)). Then

G∗(Baut1(XQ × YQ)) ⊆ G∗(Baut1(YQ)).

Proof Write theSullivanminimalmodel for X as∧(V ; 0) andY as∧(W ′; d ′). Suppose
θ ∈ Dern(∧V ⊗∧W ′) is a cycle derivation satisfying either (i) θ(z) ∈ (∧V )+ ·(∧V ⊗
∧W ′) for some z ∈ W ′ or (ii) θ(x) �= 0 for some x ∈ V . Define a relative model of
the form ∧(w; 0) → (∧(w) ⊗ ∧V ⊗ ∧W ′; D) where the degree of w depends on the
case. For (i) we pick v ∈ V where v ∈ V appears in θ(z). Extending v = v1 to a basis
of V we set D(v1) = w and D(vi ) = 0 for i > 1 with D = d ′ on W ′. For (ii), choose
z ∈ W ′ of maximal degree and set D(z) = xw + d ′(z). In either case, we see θ does
not extend to to a cycle of Der∧(w)(∧(w) ⊗ ∧V ⊗ ∧Z; D). ��

At the other extreme from H-spaces, in terms of admitting fibrations with a given
fibre, are the F0-spaces by which we mean finite complexes X which are π -finite
and satisfy Hodd(X; Q) = 0. The Halperin Conjecture for F0-spaces asserts that
Der(H∗(X; Q)) = 0 for all F0-spaces. The conjecture has been affirmed in many
cases (see [3, Prob. 1, p. 516]).

Theorem 3.4 Let X be an F0-space satisfying Der(H∗(X; Q)) = 0. Then

G∗(Baut1(XQ)) = π∗(Baut1(XQ)).

Proof By [11, Pro.2.6], Baut1(XQ) is an H-space and so the evaluation map
ω : aut1(Baut1(XQ)) → Baut1(XQ) has a section given by left multiplication. ��

We turn to the evaluation subgroups of the classifying space. Let EF(X) denote the
set of fibre-homotopy equivalence classes of fibrations ξ with fibre X . The set EF(X)

is partially ordered by the relation induced by pull-backs. That is, we define ξ ≤ ξ ′
if ξ is fibre homotopy equivalent to the pullback of ξ ′. Fixing a base space B, let
EF(X; B) denote the sub-poset consisting of fibrations ξ over B with fibre X . By the
classification theory [2,9,13], the assignment: h �→ ξ = h−1(p∞) induces a natural
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bijection [B, Baut1(X)] ≡ EF(X; B). By naturality, if [B, Baut1(X)] has the partial
order corresponding to factorization of maps, i.e., h ≤ h′ if there exists f : B → B
with h = h′ ◦ f , the above identification is then an isomorphism of posets.

For any space Y , the Gottlieb group G∗(Y ) is the initial object of a poset under
inclusion of subgroups of π∗(Y ) called the evaluation subgroups of Y . Let h : B → Y
be anymap andwriteω : map(B,Y ; h) → Y for the evaluationmap for the component
of the function space. Define

Gn(Y ; B, h) = im{ω� : πn(map(B,Y ; h)) → πn(Y )} ⊆ πn(Y ).

Given maps h : B → Y and h′ : B ′ → Y , we see a factorization h = h′ ◦ f for
f : B → B ′ implies the reverse inclusion G∗(Y ; B ′, h′) ⊆ G∗(Y ; B, h) of evaluation
subgroups.

When Y = Baut1(X), the evaluation subgroups are parametrized by equivalence
classes of fibrations ξ with fibre X . Write

Gn(ξ ; X) = Gn(Baut1(X); B, h) ⊆ πn(Baut1(X))

where h : B → Baut1(X) is the classifying map. The assignment ξ �→ G∗(ξ ; X)

from the poset EF(X) to the evaluation subgroups of Baut1(X), partially ordered by
inclusion, is order-reversing.

In [17], Yamaguchi introduced a related poset Gξ∗(X) of the Gottlieb group G∗(X).
Yamaguchi’s groups are recovered, with a shift in degrees, as images:

Gξ
n(X) = im{
 : Gn+1(ξ ; X) → πn(X)} ⊆ Gn(X)

where 
 is the restriction of ω� : πn(aut1(X)) → πn(X) pre-composed with the
isomorphism πn+1(Baut1(X)) ∼= πn(aut1(X)). We have the identifications:

Theorem 3.5 Let X be π -finite and ξ be a fibration of simply connected spaces with
fibre X with relative Sullivan model (∧W ; d̂) → (∧W ⊗ ∧V ; D). Then

Gn+1(ξQ; XQ) ∼= im{H(P∗) : Hn(Der∧W (∧W ⊗ ∧V ; D)) → Hn(Der(∧V ; d))}
G

ξQ
n (XQ) ∼= im{ε∗ ◦ H(P∗) : Hn(Der∧W (∧W ⊗ ∧V ; D)) → Hom(V n; Q)}

with P∗ induced by composition with the projection P : ∧ W ⊗ ∧V → ∧V and ε∗
by composition with an augmentation ε : ∧ V → Q.

Proof Thefirst result follows fromTheorem2.5 and the naturality of this identification.
The second result is [17, Th. 1.4]. ��

We give some examples and results concerning the poset G∗(ξ ; XQ). Given a set
A, write P(A) = P(A),⊆ for the power set of partially ordered by inclusion. We will
make use of the order-preserving bijection P({1, . . . , n}) ≡ Z

n
2, where the latter set

has the cartesian product partial order.
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Example 3.6 Let X = S3 × S5 × S7.We show that the poset G∗(ξ ; XQ) is isomorphic
to the power set P(1, 2, 3, 4). Write the Sullivan minimal model for X as ∧(V ; d) =
∧(x3, y5, z7; 0) with subscripts denoting degrees. Then

H∗(Der(∧V ; 0)) = Der∗(∧V ) = 〈z∗, y∗, (z, x), x∗, (z, y), (y, x)〉.

As our base space, we take B = Baut1(XQ) which has Sullivan minimal model
∧(W ; d) = ∧(w1, w2, w3, w4, w5, w6; d) with |w1| = 4, |w2| = 6, |w3| =
5, |w4| = 3, |w5| = 8, |w6| = 8 with d(wi ) = 0 for i = 1, . . . , 4, d(w5) = −w3w1
and d(w6) = −w4w2. We obtain a family of relative Sullivan models:

ξ(q1,q2,q3,q4) : ∧ (W ; d) → (∧W ⊗ ∧V ; D)

by setting D(x) = q1w1, D(y) = q2w2, D(z) = q3w3x+q4w4y+q1q3w5+q2q4w6
for qi = 0 or 1. The order-reversing map (q1, q2, q3, q4) �→ G∗(ξ(q1,q2,q3,q4); XQ)

then gives a bijection from Z
4
2 to the set of distinct evaluation subgroups G∗(ξ ; XQ).

For in any relative model ∧(W ; d̂) → (∧W ⊗ V ; D), if D(x) �= 0 then (z, x) and
(y, x) are both non-cycles.On the other hand, D(x) = 0 implies y∗ and (y, x) are either
both non-cycles or both are cycles depending on the occurrence or non-occurrence of
a non-zero term wy in D(z).

Following Yamaguchi [17, Def.1.12], define the depth of the poset G∗(ξ ; X) over a
base space B,written depthB G∗(ξ ; X), to be the number n in the longest proper chain
of subgroups

G∗(ξ0; X) � · · · � G∗(ξn; X)

with each ξi a fibration over B with fibre X . Example 3.6 gives depth = 4 for
G∗(ξ ; XQ) over Baut1(XQ). Here is one maximal chain:

(q1, q2, q3, q4) (1, 1, 1, 1) (0, 1, 1, 1) (0, 0, 1, 1) (0, 0, 0, 1) (0, 0, 0, 0)
z∗ z∗, (z, x) z∗, (z, x), z∗, (z, x), z∗, (z, x),

G∗(ξ(q1,q2,q3,q4); XQ) (z, y) (z, y), y∗ (z, y), x∗
y∗, (y, x)

For a finite H-space X and any space B, by [17, Ex.5.2]:

depthB Gξ∗(XQ) = dim(π∗(XQ)) − dim(πN (XQ))

where N = max (π∗(XQ)). Example 3.6 thus implies a strict inequality:

2 = depthB(Gξ∗(XQ)) < depthB (G∗(ξ ; XQ)) = 4

with B = Baut1(XQ). In fact, we can deduce that
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Proposition 3.7 Given any M > 0 there exists a π -finite H-space X and a base space
B such that

depthB(G∗(ξ ; XQ)) > depthB(Gξ∗(XQ)) + M .

Proof Given spaces X and Y , the product fibration implies the relation:

depthB(G∗(ξ ; X × Y )) ≥ depthB(G∗(ξ ; X)) + depthB(G∗(ξ ; Y ))

(see [17, Lem.1.13]). In particular,

depthB(G∗(ξ ; Xm
Q)) ≥ 4m while depthB(Gξ∗(Xm

Q)) = 2m

with X = S3 × S5 × S7 as in Example 3.6 and B = Baut1(XQ). ��
Changing the degree of just one generator in Example 3.6 gives a more complicated

example:

Example 3.8 Let X = S3 × S5 × S9 with Sullivan model ∧(x3, y5, z9; 0). Then

Der∗(∧V ) = 〈z∗, y∗, x∗, (z, x), (y, x), (z, y), (z, xy)〉.

We show the full poset of evaluation subgroups G∗(ξ ; XQ) of π∗(Baut1(XQ) is iso-
morphic to P9 × Z2 where P9 ⊆ Z

4
2 has Hasse diagram:

P9 (1, 1, 1, 1)

(1, 1, 0, 0) (1, 0, 1, 1) (0, 1, 1, 0)

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)

(0, 0, 0, 0)

We explain this briefly. Let ∧(W ; d) → (∧W ⊗ ∧V ; D) be a relative Sullivan
model. Then z∗ ∈ G∗(ξ ; XQ) automatically. Let (a1, a2, a3, a4) ∈ Z

4
2 record the

membership status of the derivations y∗, x∗, (z, x), (y, x) in G∗(ξ ; XQ) in this order.
We claim the vectors representing realizable subsets of G∗(ξ ; XQ) correspond to P9.
Suppose a1 = 0, a2 = 1 so that y∗ is not a δ-cycle and x∗ is one. Then D(z) has
a term involving y alone which implies (y, x) is a non-cycle (a4 = 0). However,
(z, x) is unconstrained as (z, x) is a cycle exactly when D(x) = 0. On the other
hand, when a1 = a2 = 0 we can suppose D(z) has a term xy and neither x nor y
appear elsewhere in the image of D. Such a term does not obstruct (y, x) from being
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a cycle since x2 = 0. Then, in this case, (y, x) and (z, x) are both cycles exactly when
D(x) = 0 and so a3 and a4 are unconstrained. The allowable vectors with a1 = 0
are thus (0, 1, 1, 0), (0, 1, 0, 0), (0, 0, 1, 1), (0, 0, 1, 0), (0, 0, 0, 0).When a1 = 1, the
only constraint is that a3 = a4 and we obtain the other four vectors in P9, namely
(1, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0), (1, 0, 0, 0).

Now observe that (z, y) is a cycle precisely when D(y) = 0. The vanishing or
non-vanishing of D(y) can be achieved independently of the terms in D that affect
the membership of y∗, x∗, (z, x), (y, x). Also (z, xy) is a cycle exactly when both
(z, x) and (z, y) are cycles. It remains to check that all sets described can be realized
as G∗(ξ ; XQ) for some ξ . This is straightforward if laborious.

In Example 3.8, the depth of G∗(ξ ; XQ) over the classifying space Baut1(XQ) can
be seen to be 3 while the depth of the full poset of evaluation subgroups is 4. The
following result implies the maximal depth of G∗(ξ ; XQ) over all base spaces is the
depth of the full poset G∗(ξ ; XQ).

Theorem 3.9 Let X be a π -finite space. Then there exists a base space B such that
the depth of G∗(ξ ; XQ) over B equals the length of the longest chain in the poset
G∗(ξ ; XQ).

Proof Let ξ0, ξ1, . . . , ξn befibrationswith fibre X giving amaximal chain of evaluation
subgroups. Writing pi : Ei → Bi for ξi we set B = B0 × · · · × Bn . Let ξ ′

i denote the
fibration p′

i : Ei → B given by the composition of pi with the inclusion Bi → B.

Then we see G∗(ξi ; XQ) = G∗(ξ ′
i ; XQ). ��

When X is an F0-space with Der(H∗(X; Q)) = 0 the poset G∗(ξ ; XQ) is trivial. For
in this case, Baut1(XQ) is an H-space and so the evaluation map

ω : map(B, Baut1(XQ); hQ) → Baut1(XQ)

has a section. It follows that G∗(ξ ; XQ) = π∗(Baut1(XQ)) for all ξ. We give an
example mixing even and odd spheres

Example 3.10 Let X = S3×S4×S6×S9.We show the posetG∗(ξ ; XQ) is isomorphic
to Z

4
2. Write the minimal model for X as ∧(x3, u4, t6, v7, y9, z11; d) with subscripts

indicating degrees and d(u) = d(w) = d(y) = 0, d(v) = u2, d(z) = t2. In this case:

H∗(Der(∧V ; d)) = 〈z∗, y∗, (z, x), (z, u), v∗, (y, u), (y, t)(z, xu), x∗,
(y, xu), (z, y), (z, ut), (v, t)〉.

We also have G∗(Baut1(XQ)) = 〈z∗, v∗, (z, u), (v, x)〉. Thus G∗(ξQ; XQ) contains
these cycles for any ξ . The inclusion or exclusion of y∗, (z, y), x∗, (z, x) inG∗(ξ ; XQ)

gives the poset Z
4
2. The status of (y, x), (y, u), (y, t), (z, xu), (y, xu), as regards

membership in G∗(ξ ; XQ), depends on the status of these four. Precisely, (y, x) and
(y, xu) are cycles exactly when both y∗ and (z, x) are cycles, (y, u) and (y, t) are
cycles exactly when y∗ is a cycle, and (z, xu) is a cycle exactly when (z, x) is one.
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We conclude this section by observing that the depth of the poset EF(XQ) of all
fibre homotopy equivalence classes of fibrations with fibre XQ is bounded below by
the depth of the poset of evaluation subgroups of Baut1(XQ). The difference can be
made arbitrarily large.

Proposition 3.11 Given any M > 0 there exists a π -finite space X such that

depth EF(XQ) ≥ depthG∗(ξQ; XQ) + M .

Proof Let m = M + 2 and consider X = CPm . Then Baut1(XQ) is an H-space and
it is direct to compute that dim(π∗(Baut1(XQ))) = m − 1. Write π∗(Baut1(XQ)) =
〈x1, . . . , xm−1〉 in a basis. We may factor the trivial self-map of Baut1(XQ) as a
composition h1 ◦ · · · ◦ hm−1 such that the m − 1 compositions Hk = h1 ◦ · · · ◦ hk
for k = 1, . . . n are not homotopic. We do this by defining hk to be the map with
(hk)�(xi ) = xi for i = 1, . . . , k and (hk)�(x j ) = 0 for j > k. We conclude that
depth(EF(XQ)) ≥ M while depth(G∗(ξQ; XQ)) = 0. ��

4 A non-realization result for the classifying space

An open question in rational homotopy theory asks:

Question 4.1 [3, p. 519] Is every simply connected rational homotopy type YQ realized
as a classifying space in the sense that YQ � Baut1(XQ) for some simply connected
space X?

In [8], we proved certain rational homotopy types, including CP2
Q
, could not be real-

ized if X is restricted to be a π -finite space. Thus to realize these rational types as
a classifying space requires X with infinite-dimensional rational homotopy. In this
section, we describe the relative Sullivan model of the universal fibration under the
assumption that there is a space X with Baut1(XQ) � CPn

Q
(Proposition 4.2). We

apply this description to prove Theorem 2, that CPn
Q
cannot be realized as Baut1(XQ)

for any π -finite X and n = 2, 3 or 4. .
Write the minimal Sullivan model for CPn as ∧(u2, v2n+1; d̂) with d̂(v) = un+1.

Suppose first that X is a simply connected space with minimal model ∧(V ; d). A
fibration X → E → CPn has relative Sullivan model of the form: ∧(u, v; d̂) →
(∧(u, v) ⊗ ∧V ; D). Let χ ∈ ∧V and use the minimality condition for D to write:

D(χ) = d(χ) + uθu(χ) + u2θu2(χ) + · · ·
+vθv(χ) + vuθvu(χ) + vu2θvu2(χ) + · · ·

The maps θuk , θvuk extend to derivations of ∧V of degrees 2k − 1 and 2(n + k) + 5,
respectively. Taking D2 = 0 and equating terms with like powers in the generators
gives a sequence of relations involving brackets and differentials amongst these deriva-
tions. In particular, we have that δ(θu) = δ(θv) = 0. Any set of derivations satisfying
these identities gives a rational fibration with fibre XQ. We have:
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Proposition 4.2 Suppose there exists a simply connected space X with Sullivan model
∧(V ; d) such that Baut1(XQ) � CPn

Q
. Then there exists a relative Sullivan model

∧(u, v; d̂) → (∧(u, v) ⊗ ∧V ; D∞) as above with θu ∈ Der1(∧V ; d) and θv ∈
Der2n(∧V ; d) non-bounding δ-cycles. Conversely, any relative model ∧(u, v; d̂) →
(∧(u, v)⊗∧V ; D)with θu non-bounding is a relative Sullivan model for the universal
fibration with fibre X and so, in this case, θv is automatically non-bounding.

Proof By the description of the differential D∞ given in (1) we see that θu and θv

represent the non-trivial classes in π∗(�CPn
Q
) ∼= H∗(Der(∧V ; d)). Now suppose we

are given a relative Sullivan model ∧(u, v; d̂) → (∧(u, v) ⊗ ∧V ; D) with θu not
a δ-boundary. The corresponding rational fibration has classifying map h : CPn

Q
→

Baut1(XQ) � CPn
Q
.Since θu is not a δ-boundary, h induces an isomorphism on degree

two homotopy groups, again by (1). It follows that h is a homotopy equivalence and
the given relative Sullivan model is fibre homotopy equivalent to that of the universal.

��
For the remainder of the paper, we suppose X is π -finite with Baut1(XQ) � CPn

Q
.

Write ∧(V ; d) for the Sullivan minimal model for X . Then V 2n ∼= Q and Vq = 0 for
q > 2n by Proposition 2.3. Let∧(u, v; d̂) → (∧(u, v)⊗∧V ; D∞) denote the relative
Sullivanmodel for the universal fibrationwithfibre X . For degree reasons, the only pos-
sible non-vanishing derivations are θu, θu2 , · · · , θun , θv of degrees 1, 3, 5, . . . , 2n−1
and 2n, respectively, where the last two are linear maps: θun : V 2n−1 → Q and
θv : V 2n → Q. The identities arising from the equation D2∞ = 0 are as follows:

u-terms δ(θu) = 0

uk-terms δ(θuk ) = ∑

i+ j=k,i≤ j [θi , θ j ] f ork = 2, . . . , n + 1

v-terms δ(θv) = 0

(2)

Proposition 4.2 may be refined, in this case, to the following:

Lemma 4.3 In the relative Sullivan model ∧(u, v; d̂) → (∧(u, v) ⊗ ∧V ; D∞) the
derivation θu ∈ Der1(∧V ) is not a δ-boundary and θv �= 0. Conversely, any collection
θu, θu2 , · · · , θun , θv satisfying the identities (2) with θu not a δ-boundary is a relative
Sullivan model for the universal fibration with fibre X. Consequently, θv �= 0. ��

Weshow that altering θu by a boundary yields a compatible collection of derivations:

Lemma 4.4 Let ϕ ∈ Der2(∧V ). There is a relative Sullivan model for the universal
fibration with fibre X with derivations given by θ ′

u, θ
′
u2

, . . . , θ ′
un , θ

′
v with

θ ′
u = θu + δ(ϕ).

Proof Since θ ′
u is a cycle in Der

1(∧V ) and H∗(Der(∧V ; d)) is concentrated in degrees
1 and 2n, the derivation cycle 2[θ ′

u, θ
′
u] ∈ Der2(∧V ) must be a δ-boundary. Thus we
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can choose θ ′
u2

∈ Der3(∧V ) with δ(θ ′
u2

) = 2[θ ′
u, θ

′
u]. Next observe [θ ′

u, θ
′
u2

] is a δ-

cycle and so a δ-boundary. Thus we can find θ ′
u3

∈ Der5(∧V )with δ(θ ′
u3

) = [θ ′
u, θ

′
u2

].
Continuing in this manner, we obtain a collection θ ′

uk
for k = 1, . . . , n satisfying all

but the last identity in (2). Finally, set θ ′
v = ∑

i+ j=n,i≤ j [θ ′
ui

, θ ′
u j ]. By Proposition 4.3,

these derivations give a relative Sullivan model for the universal fibration. ��
Regarding the differential d, we have a quadratic pairing:

Lemma 4.5 Let y ∈ V 2n ∼= Q be nontrivial. Given a basis {z1, . . . , zn} for V 2n−1

there is a corresponding basis {x1, . . . , xn} for V 2 so that

d(y) = x1z1 + x2z2 + · · · + xnzn + terms not involving any z j .

Proof The derivations z∗j in Der2n−1(∧V ) cannot be cycles for it is not possible for
these derivations to be boundaries. Thus each z j must appear in d(y) and we have a
pairing as above. If there is some x ∈ V 2 not in the span of {x1, . . . , xn} then (y, x)
is a non-bounding cycle of degree 2n − 2, a contradiction. ��
The quadratic part of d(y) also has terms involving elements of V 3 and V 2n−2:

Lemma 4.6 Given w ∈ V 3 there is w ∈ V 2n−2 such that ww appears in d(y) and w

does not appear in other terms of d(y).

Proof Write d(w) = ∑n
i=1 qi xi x

′
i for some x ′

i ∈ V 2. Define θ ∈ Der2n−3(∧V ) by
the formula

θ = (y, w) −
n

∑

i=1

qi (zi , x
′
i ).

We see δ(θ) = 0 and so θ = δ(α) for some α ∈ Der2n−2(∧V ). Then δ(α(y)) =
−α(d(y)) = w implies α = w∗ + α′ for some w ∈ V 2n−2, α′(V 4) = 0. Further we
must have the term ww with w as specified. ��
We apply the preceding to deduce:

Lemma 4.7 In the relative Sullivan model for the universal fibration with fibre X, we
may assume that θu(y) decomposable in ∧V for y ∈ V 2n nontrivial.

Proof Suppose θu(y) = z+χ for some z ∈ V 2n−1 andχ decomposable. Taking z = z1
and extending to a basis, we set θ ′

u = θu − δ(x∗
1 ) with x1 ∈ V 2 as in Lemma 4.5. Then

θ ′
u(y) is decomposable. Now apply Lemma 4.4 to obtain a compatible collection with

θ ′
u for the relative model of the universal fibration. ��
Regarding θu2 , we have:

Lemma 4.8 If θu(y) is decomposable for y ∈ V 2n nontrivial, then θu2 vanishes on
V 3.
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Proof Suppose w ∈ V 3 satisfies θu2(w) = 1. Then D∞(w) = u2 + θu(w)u + d(w).
Consider the term ww occurring in d(y) with w ∈ V 2n−2 from Lemma 4.8. This
term occurs as a summand of D∞(y). Applying D∞ again gives a summand u2w in
D2∞(y). We claim that this term cannot be cancelled. For note, for degree reasons, uw

can only occur in D∞(z) for z ∈ V 2n−1. Since θu(y) is indecomposable we cannot
have a corresponding term uz in D∞(y). ��

We apply these results to prove there is no π -finite X with Baut1(XQ) � CPn
Q
for

n = 2, 3, 4

Proof of Theorem 2 By Lemma 4.7, we may assume θu(V 2n) ⊆ ∧+V · ∧+V . By
Lemma 4.8, this implies θu2(V

3) = 0. The formulas for θv : V 2n → Q given in
Eq. (2) for the cases n = 2, 3, 4 are as follows.

n = 2 : θv = [θu, θu2 ]
n = 3 : θv = [θu, θu3 ] + 2[θu2 , θu2 ]
n = 4 : θv = [θu, θu4 ] + [θu2 , θu3 ]

Let y ∈ V 2n . Then θu(y) decomposable implies [θu, θun ](y) = 0 in each case. Also,
θu2(V

3) = 0 implies [θu2 , θun ](y) = 0. Thus, in all three cases, θv = 0, contradicting
Lemma 4.3. ��
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