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Abstract
Let M be an orientable, simply-connected, closed, non-spin 4-manifold and let Gk(M)

be the gauge group of the principal G-bundle over M with second Chern class k ∈ Z.
It is known that the homotopy type of Gk(M) is determined by the homotopy type of
Gk(CP

2). In this paper we investigate properties of Gk(CP
2) when G = SU (n) that

partly classify the homotopy types of the gauge groups.

Keywords Gauge groups · Homotopy type · Non-spin 4-manifolds

Mathematics Subject Classification Primary 55P15; Secondary 54C35 · 81T13

1 Introduction

Let G be a simple, simply-connected, compact Lie group and let M be an orientable,
simply-connected, closed 4-manifold. Then the isomorophism class of a principal G-
bundle P over M is classified by its second Chern class k ∈ Z. In particular, if k = 0,
then P is a trivial G-bundle. The associated gauge group Gk(M) is the topological
group of G-equivariant automorphisms of P which fix M .

A simply-connected 4-manifold is spin if and only if its intersection form is even.
In the case of simply-connected 4-manifolds, the spin condition is equivalent to all
cup product squares being trivial in mod 2 cohomology. In this paper, we consider
the homotopy types of gauge groups Gk(M), where M is a non-spin 4-manifold such
as CP2. When M is a spin 4-manifold, topologists have been studying the homotopy
types of gauge groups over M extensively over the last twenty years. On the one hand,
Theriault showed in [16] that there is a homotopy equivalence
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788 T. So

Gk(M) � Gk(S4) ×
d∏

i=1

�2G,

where d is the second Betti number of M . Therefore to study the homotopy type of
Gk(M) it suffices to study Gk(S4). On the other hand, many cases of homotopy types of
Gk(S4)’s are known. For examples, there are 6 distinct homotopy types of Gk(S4)’s for
G = SU (2) [11], and 8 distinct homotopy types for G = SU (3) [5]. When localized
rationally or at any prime, there are 16 distinct homotopy types for G = SU (5) [19]
and 8 distinct homotopy types for G = Sp(2) [17].

When M is a non-spin 4-manifold, the author in [14] showed that there is a homotopy
equivalence

Gk(M) � Gk(CP
2) ×

d−1∏

i=1

�2G,

so the homotopy type of Gk(M) depends on the special case Gk(CP
2). Compared to

the extensive work on Gk(S4), only two cases of Gk(CP
2) have been studied, which

are the SU (2)- and SU (3)-cases [12,18]. As a sequel to [14], this paper investigates
the homotopy types of Gk(CP

2)’s in order to explore gauge groups over non-spin 4-
manifolds.

A common approach to classifying the homotopy types of gauge groups is as
follows. Atiyah, Bott and Gottlieb [1,3] showed that the classifying space BGk(M)

is homotopy equivalent to the connected component Mapk(M, BG) of the mapping
space Map(M, BG) containing the map kα ◦ q, where q : M → S4 is the quotient
map and α is a generator of π4(BG) ∼= Z. The evaluation map ev : BGk(M) → BG
induces a fibration sequence

Gk(M) −→ G
∂k−→ Map∗

k(M, BG) −→ BGk(M)
ev−→ BG, (1)

where ∂k : G → Map∗
k(M, BG) is the boundary map. The action of π4(BG) ∼= Z on

Map∗
k(M, BG) induces a homotopy equivalence Map∗

k(M, BG) � Map∗
0(M, BG).

Denote the composition G
∂k−→ Map∗

k(M, BG) � Map∗
0(M, BG) also by ∂k for

convenience. For M = S4, Map∗
0(M, BG) � �3

0G is an H-group so [G,�3
0G] is a

group. The order of ∂1 : G → �3
0G is important for distinguishing the homotopy

types of Gk(S4).

Theorem 1.1 (Theriault, [17]) Let m be the order of ∂1. If (m, k) = (m, l), then Gk(S4)

is homotopy equivalent to Gl(S4) when localized rationally or at any prime.

For most cases of G, the exact value of the order of ∂1 is difficult to compute. When
G = SU (n), the exact value or a partial result of the order of ∂1 was worked out for
certain cases. For any number a = pr q where q is coprime to p, the p-component of
a is pr and is denoted by νp(a).
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Theorem 1.2 ([2,5,9,11,19,20]) Let G be SU (n) and let m be the order of ∂1. Then

• m = 12 for n = 2
• m = 24 for n = 3
• m = 120 for n = 5
• m = 60 or 120 for n = 4
• νp(m) = νp(n(n2 − 1)) for n < (p − 1)2 + 1.

In Theorem 1.1, the g.c.d condition (m, k) = (m, l) gives a sufficient condition for
the homotopy equivalence Gk(S4) � Gl(S4). Conversely, there is a partial necessary
condition for certain cases of G = SU (n).

Theorem 1.3 (Hamanaka and Kono [5]; Kishimoto, Kono and Tsutaya [9]) Let G be
SU (n) and let p be an odd prime. If Gk(S4) is homotopy equivalent to Gl(S4), then

• (n(n2 − 1), k) = (n(n2 − 1), l) for n odd,
• νp(n(n2 − 1), k) = νp(n(n2 − 1), l) for n less than (p − 1)2 + 1.

In this paper we consider gauge groups overCP2. Take M = CP
2 in (1) and denote

the boundary map by ∂ ′
k : G → Map∗

0(CP
2, BG). Since Map∗

0(CP
2, BG) is not

an H-space, [G,Map∗
0(CP

2, BG)] is not a group so the order of ∂ ′
k makes no sense.

However, we can still define an “order” of ∂ ′
k [18], which will be described in Sect. 2.

We show that the “order” of ∂ ′
1 helps distinguish the homotopy type of Gk(CP

2) as in
Theorem 1.1.

Theorem 1.4 Let m′ be the “order” of ∂ ′
1. If (m′, k) = (m′, l), then Gk(CP

2) is homo-
topy equivalent to Gl(CP

2) when localized rationally or at any prime.

We study the SU (n)-gauge groups over CP2 and use unstable K -theory to give a
lower bound on the “order” of ∂ ′

1 that is in the spirit of Theorem 1.2.

Theorem 1.5 When G is SU (n), the “order” of ∂ ′
1 is at least 1

2n(n2 − 1) for n odd,
and n(n2 − 1) for n even.

Localized rationally or at an odd prime, we have Gk(CP
2) � Gk(S4) × �2G [16].

The homotopy types of Gk(CP
2) are then completely determined by that of Gk(S4),

which have been investigated in many cases when the localizing prime is relatively
large [6,7,9,10,20]. A large part of the remaining cases can be understood by studying
the 2-localized order of ∂ ′

1, on which Theorem 1.5 gives bounds for the SU (n) case.
For example, combining Theorem 1.5 with Lemma 2.2 implies the order of ∂ ′

1 is either
120 or 60 for G = SU (5). Furthermore, when G = SU (4) since the order of ∂1 is
either 120 or 60, the order of ∂ ′

1 is either 60 or 120.
Finally we prove a necessary condition for the homotopy equivalence Gk(CP

2) �
Gl(CP

2) similar to Theorem 1.3.

Theorem 1.6 Let G be SU (n). If Gk(CP
2) is homotopy equivalent to Gl(CP

2), then

• ( 12n(n2 − 1), k) = ( 12n(n2 − 1), l) for n odd,
• (n(n2 − 1), k) = (n(n2 − 1), l) for n even.

The author would like to thank his supervisor, Professor Stephen Theriault, for his
guidance in writing this paper, and thank the Referee for his careful reading and useful
comments.
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2 Some facts about boundarymap @′
1

Take M to be S4 and CP
2 respectively in fibration (1) to obtain fibration sequences

Gk(S4) −→ G
∂k−→ �3

0G −→ BGk(S4)
ev−→ BG (2)

Gk(CP
2) −→ G

∂ ′
k−→ Map∗

0(CP
2, BG) −→ BGk(CP

2)
ev−→ BG. (3)

There is also a cofibration sequence

S3 η−→ S2 −→ CP
2 q−→ S4, (4)

where η is Hopfmap and q is the quotient map. Due to the naturality of q∗, we combine
fibrations (2) and (3) to obtain a commutative diagram of fibration sequences

Gk(S4)

q∗
��

�� G
∂k �� �3

0G

q∗
��

�� BGk(S4)

q∗
��

�� BG

Gk(CP
2) �� G

∂ ′
k �� Map∗

0(CP
2, BG) �� BGk(CP

2) �� BG

(5)

It is known, [13], that ∂k is triple adjoint to Samelson product

〈kı,1〉 : S3 ∧ G
kı∧1−→ G ∧ G

〈1,1〉−→ G,

where ı : S3 → SU (n) is the inclusion of the bottom cell and 〈1,1〉 is the Samelson
product of the identity on G with itself. The order of ∂k is its multiplicative order in
the group [G,�3

0G].
Unlike�3

0G, Map∗
0(CP

2, BG) is not an H-space, so ∂ ′
k has no order. In [18], Theri-

ault defined the “order” of ∂ ′
k to be the smallest number m′ such that the composition

G
∂k−→ �3

0G
m′−→ �3

0G
q∗

−→ Map∗
0(CP

2, BG)

is null homotopic. In the following, we interpret the “order” of ∂ ′
k as its multiplicative

order in a group contained in [CP2 ∧ G, BG].
Apply [− ∧ G, BG] to cofibration (4) to obtain an exact sequence of sets

[�3G, BG] (�η)∗−→ [�4G, BG] q∗
−→ [CP2 ∧ G, BG].

All terms except [CP2 ∧ G, BG] are groups and (�η)∗ is a group homomorphism
since �η is a suspension. We want to refine this exact sequence so that the last term
is replaced by a group. Observe that CP2 is the cofiber of η and so there is a coaction
ψ : CP2 → CP

2 ∨ S4. We show that the coaction gives a group structure on I m(q∗).
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Lemma 2.1 Let Y be a space and let A
f→ B

g→ C
h→ � A be a cofibration sequence.

If � A is homotopy cocommutative, then I m(h∗) is an abelian group and

[�B, Y ] (� f )∗−→ [� A, Y ] h∗−→ I m(h∗) −→ 0

is an exact sequence of groups and group homomorphisms.

Proof Apply [−, Y ] to the cofibration to get an exact sequence of sets

[�B, Y ] (� f )∗−→ [� A, Y ] h∗−→ [C, Y ]. (6)

Note that [�B, Y ] and [� A, Y ] are groups, and (� f )∗ is a group homomorphism.
We will replace [C, Y ] by I m(h∗) and define a group structure on it such that h∗ :
[� A, Y ] → I m(h∗) is a group homomorphism.

For any α and β in [� A, Y ], we define a binary operator � on I m(h∗) by

h∗α � h∗β = h∗(α + β).

To check this is well-defined we need to show h∗(α +β) � h∗(α′ +β) � h∗(α +β ′)
for any α, α′, β, β ′ satisfying h∗α � h∗α′ and h∗β � h∗β ′.

First we show h∗(α + β) � h∗(α′ + β). By definition, we have

h∗(α + β) = (α + β) ◦ h = � ◦ (α ∨ β) ◦ σ ◦ h,

where σ : � A → � A ∨ � A is the comultiplication and � : Y ∨ Y → Y is the
folding map. Since C is a cofiber, there is a coaction ψ : C → C ∨ � A such that
σ ◦ h � (h ∨ 1) ◦ ψ .

C
ψ ��

h
��

C ∨ � A

h∨1
��

� A σ �� � A ∨ � A

Then we obtain a string of equivalences

h∗(α + β) = � ◦ (α ∨ β) ◦ σ ◦ h

� � ◦ (α ∨ β) ◦ (h ∨ 1) ◦ ψ

� � ◦ (α′ ∨ β) ◦ (h ∨ 1) ◦ ψ

� � ◦ (α′ ∨ β) ◦ σ ◦ h

= h∗(α′ + β)

The third line is due to the assumption h∗α � h∗α′. Therefore we have h∗(α + β) �
h∗(α′ +β). Since� A is cocommutative, [� A, Y ] is abelian and h∗(α +β) � h∗(β +
α). Then we have
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792 T. So

h∗(α + β) � h∗(β + α) � h∗(β ′ + α) � h∗(α + β ′).

This implies � is well-defined.
Due to the associativity of + in [� A, Y ], � is associative since

(h∗α � h∗β) � h∗γ = h∗(α + β) � h∗γ
= h∗((α + β) + γ )

= h∗(α + (β + γ ))

= h∗α � h∗(β + γ )

= h∗α � (h∗β � h∗γ ).

Clearly the trivial map ∗ : C → Y is the identity of � and h∗(−α) is the inverse
of h∗α. Therefore � is indeed a group multiplication.

By definition of �, h∗ : [� A, Y ] → I m(h∗) is a group homomorphism, and hence
an epimorphism. Since [� A, Y ] is abelian, so is I m(h∗).We replace [C, Y ] by I m(h∗)
in (6) to obtain a sequence of groups and group homomorphisms

[�B, Y ] (� f )∗−→ [� A, Y ] h∗−→ I m(h∗) −→ 0.

The exactness of (6) implies ker(h∗) = I m(� f )∗, so the sequence is exact. 
�
Applying Lemma 2.1 to cofibration �3G → �2G → CP

2 ∧ G and the space
Y = BG, we obtain an exact sequence of abelian groups

[�3G, BG] (�η)∗−→ [�4G, BG] q∗
−→ I m(q∗) −→ 0. (7)

In the middle square of (5) ∂ ′
k � q∗∂k , so ∂ ′

k is in I m(q∗). For any number m,
q∗(m∂k) = mq∗∂k , so the “order” of ∂ ′

k defined in [18] coincides with the multiplica-
tive order of ∂ ′

k in I m(q∗). The exact sequence (7) allows us to compare the orders of
∂1 and ∂ ′

1.

Lemma 2.2 Let m be the order of ∂1 and let m′ be the order of ∂ ′
1. Then m is m′ or

2m′.

Proof By exactness of (7), there is some f ∈ [�3G, BG] such that (�η)∗ f � m′∂1.
Since �η has order 2, 2m′∂1 is null homotopic. It follows that 2m′ is a multiple of m.
Since m is greater than or equal to m′, m is either m′ or 2m′. 
�

When G = SU (2), the order m of ∂1 is 12 and the order m′ of ∂ ′
1 is 6 [12].

When G = SU (3), m = 24 and m′ = 12 [18]. When G = Sp(2), m = 40 and
m′ = 20 [15]. It is natural to ask whether m = 2m′ for all G.

In the S4 case, Theorem 1.1 gives a sufficient condition for Gk(S4) � Gl(S4)

when localized rationally or at any prime. In theCP2 case, Theriault showed a similar
counting statement, in which the sufficient condition depends on the order of ∂1 instead
of ∂ ′

1.
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Theorem 2.3 (Theriault, [18]) Let m be the order of ∂1. If (m, k) = (m, l), then
Gk(CP

2) is homotopy equivalent toGl(CP
2) when localized rationally or at any prime.

Lemma 2.2 can be used to improve the sufficient condition of Theorem 2.3.

Theorem 2.4 Let m′ be the order of ∂ ′
1. If (m′, k) = (m′, l), then Gk(CP

2) is homotopy
equivalent to Gl(CP

2) when localized rationally or at any prime.

Proof By Lemma 2.2, m is either m′ or 2m′. If m = m′, then the statement is same
as Theorem 2.3. Assume m = 2m′. Localize at an odd prime p. Let pr be the p-
component of m, that is m = pr · q where q is coprime to p. Observe that m ◦ ∂1 �
(pr ·q)◦∂1 � pr ◦∂1 since the powermapq : �3

0G → �3
0G is a homotopy equivalence.

Therefore pr is the order of ∂1 after localization. The hypothesis (m′, k) = (m′, l)
implies (pr , k) = (pr , l), so a homotopy equivalence Gk(CP

2) � Gl(CP
2) follows

by Theorem 2.3. A similar argument works for rational localization. Now it remains
to consider the case where m = 2m′ when localized at 2.

Assume m = 2n and m′ = 2n−1. For any k, (2n−1, k) = 2i where i an integer
such that 0 ≤ i ≤ n − 1. If i ≤ n − 2, then k = 2i t for some odd number t
and (2n−1, k) = 2i . The sufficient condition (2n−1, k) = (2n−1, l) is equivalent to
(2n, k) = (2n, l). Again the homotopy equivalence Gk(CP

2) � Gl(CP
2) follows by

Theorem 2.3. If i = n − 1, then (2n, k) is either 2n or 2n−1. We claim that Gk(CP
2)

has the same homotopy type for both (2n, k) = 2n or (2n, k) = 2n−1.
Consider fibration (3)

Map∗
0(CP

2, G) −→ Gk(CP
2) −→ G

∂ ′
k−→ Map∗

0(CP
2, BG).

If (2n, k) = 2n , then k = 2nt for some number t . By linearity of Samelson products,
∂k � k∂1. Since ∂ ′

k � q∗k∂1 � q∗2nt∂1 and ∂1 has order 2n , ∂ ′
k is null homotopic and

we have

Gk(CP
2) � G × Map∗

0(CP
2, G).

If (2n, k) = 2n−1, then k = 2n−1t for some odd number t . Writing t = 2s + 1
gives k = 2ns + 2n−1. Since ∂ ′

k � q∗k∂1 � q∗(2ns + 2n−1)∂1 � q∗2n−1∂1 and ∂ ′
1

has order 2n−1, ∂ ′
k is null homotopic and we have

Gk(CP
2) � G × Map∗

0(CP
2, G).

The same is true for Gl(CP
2) and hence Gk(CP

2) � Gl(CP
2). 
�

3 Plan for the proofs of Theorems 1.5 and 1.6

From this section onward, we will focus on SU (n)-gauge groups over CP2. There is
a fibration

SU (n) −→ SU (∞)
p−→ Wn, (8)
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where p : SU (∞) → Wn is the projection and Wn is the symmetric space
SU (∞)/SU (n). Then we have

H̃∗(SU (∞)) = 
(x3, . . . , x2n−1, . . .),

H̃∗(SU (n)) = 
(x3, . . . , x2n−1),

H̃∗(BSU (n)) = Z[c2, . . . , cn],
H̃∗(Wn) = 
(x̄2n+1, x̄2n+3, . . .),

where x2n+1 has degree 2n+1, ci is the i th universal Chern class and x2i+1 = σ(ci+1)

is the image of ci+1 under the cohomology suspension σ , and p∗(x̄2i+1) = x2i+1.
Furthermore, H2n(�Wn) ∼= Z and H2n+2(�Wn) ∼= Z are generated by a2n and a2n+2,
where a2i is the transgression of x2i+1.

The (2n + 4)-skeleton of Wn is �2n−1
CP

2 for n odd, and is S2n+3 ∨ S2n+1 for n
even, so its homotopy groups are as follows:

πi (Wn)

i ≤ 2n 2n + 1 2n + 2 2n + 3
n odd 0 Z 0 Z

n even 0 Z Z/2Z Z ⊕ Z/2Z

(9)

The canonical map ε : �CP
n−1 → SU (n) induces the inclusion ε∗ :

H∗(�CP
n−1) → H∗(SU (n)) of the generating set. Let C be the quotient

CP
n−1/CPn−3 and let q̄ : �CP

n−1 → �C be the quotient map. Then there is a
diagram

[�C, SU (n)] (∂ ′
k )∗ ��

q̄∗
��

[�C,Map∗(CP2, BSU (n))] ��

q̄∗
��

[�C, BGk(CP
2)]

q̄∗
��

[�CP
n−1, SU (n)](∂

′
k )∗�� [�CP

n−1,Map∗(CP2, BSU (n))] �� [�CP
n−1, BGk(CP

2)],

where (∂ ′
k)∗ sends f to ∂ ′

k ◦ f and the rows are induced by fibration (3). In particular, in
the second row the map ε : �CP

n−1 → SU (n) is sent to (∂ ′
k)∗(ε) = ∂ ′

k ◦ε. In Sect. 4,
we use unstable K -theory to calculate the order of ∂ ′

1 ◦ ε, giving a lower bound on the
order of ∂ ′

1. Furthermore, in [5] Hamanaka and Kono considered an exact sequence
similar to the first row to give a necessary condition for Gk(S4) � Gl(S4). In Sect. 5
we follow the same approach and use the first row to give a necessary condition for
Gk(CP

2) � Gl(CP
2).

We remark that it is difficult to use only one of the two rows to prove both The-
orems 1.5 and 1.6. On the one hand, ∂ ′

1 ◦ ε factors through a map ∂̄ : �C →
Map∗(CP2, BSU (n)). There is no obvious method to show that ∂̄ and ∂ ′

1 ◦ ε have
the same orders except direct calculation. Therefore we cannot compare the orders of
∂̄ and ∂ ′

1 to prove Theorem 1.5 without calculating the order of ∂ ′
1 ◦ ε. On the other

hand, applying the method used in Sect. 5 to the second row gives a much weaker
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conclusion than Theorem 1.6. This is because [�C, BGk(CP
2)] is a much smaller

group than [�CP
n−1, BGk(CP

2)] and much information is lost by the map q̄∗.

4 A lower bound on the order of @′
1

The restriction of ∂1 to�CP
n−1 is ∂1◦ε, which is the triple adjoint of the composition

〈ı, ε〉 : S3 ∧ �CP
n−1 ı∧ε−→ SU (n) ∧ SU (n)

〈1,1〉−→ SU (n).

Since SU (n) � �BSU (n), we can further take its adjoint and get

ρ : �S3 ∧ �CP
n−1 �ı∧ε−→ �SU (n) ∧ SU (n)

[ev,ev]−→ BSU (n),

where [ev, ev] is the Whitehead product of the evaluation map

ev : �SU (n) � ��BSU (n) → BSU (n)

with itself. Similarly, the restriction ∂ ′
1 ◦ ε is adjoint to the composition

ρ′ : CP2 ∧ �CP
n−1 q∧1−→ S4 ∧ �CP

n−1 �ı∧ε−→ �SU (n) ∧ SU (n)
[ev,ev]−→ BSU (n).

Since we will frequently refer to the facts established in [4,5], it is easier to follow
their setting and consider its adjoint

γ = τ(ρ′ ◦ T ) : CP2 ∧ CP
n−1 → SU (n),

where T : �CP
2 ∧CP

n−1 → CP
2 ∧�CP

n−1 is the swapping map and τ : [�CP
2 ∧

CP
n−1, BSU (n)] → [CP2 ∧ CP

n−1, SU (n)] is the adjunction. By adjunction, the
orders of ∂ ′

1 ◦ ε, ρ′ and γ are the same. We will calculate the order of γ using unstable
K -theory to prove Theorem 1.5.

Apply [CP2 ∧ CP
n−1,−] to fibration (8) to obtain the exact sequence

K̃ 0(CP2 ∧ CP
n−1)

p∗−→ [CP2 ∧ CP
n−1,�Wn] −→ [CP2 ∧ CP

n−1, SU (n)] −→ 0.

Since CP
2 ∧ CP

n−1 is a CW-complex with even dimensional cells, the last item
[CP2 ∧ CP

n−1, SU (∞)] ∼= K̃ 1(CP2 ∧ CP
n−1) is zero. First we identify the term

[CP2 ∧ CP
n−1,�Wn].

Lemma 4.1 We have the following:

• [�2n−4
CP

2,�Wn] ∼= Z;
• [�2n−3

CP
2,�Wn] = 0 for n odd;

• [�2n−2
CP

2,�Wn] ∼= Z ⊕ Z.
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796 T. So

Proof First, apply [�2n−4−,�Wn] to cofibration (4) to obtain the exact sequence

π2n(Wn) −→ π2n+1(Wn) −→ [�2n−4
CP

2,�Wn] −→ π2n−1(Wn).

We refer to Table (9) freely for the homotopy groups of Wn . Since π2n−1(Wn)

and π2n(Wn) are zero, [�2n−4
CP

n−1,�Wn] is isomorphic to π2n+1(Wn) ∼= Z.
Second, apply [�2n−3−,�Wn] to (4) to obtain

π2n+2(Wn) −→ [�2n−3
CP

2,�Wn] −→ π2n(Wn).

Since π2n(Wn) and π2n+2(Wn) are zero for n odd, so is [�2n−3
CP

2,�Wn].
Third, apply [�2n−2−,�Wn] to (4) to obtain

π2n+2(Wn)
η1−→ π2n+3(Wn) −→ [�2n−2

CP
2,�Wn]

j−→ π2n+1(Wn)
η2−→ π2n+2(Wn),

where η1 and η2 are induced by Hopf maps �2nη : S2n+3 → S2n+2 and �2n−1η :
S2n+2 → S2n+1, and j is induced by the inclusion S2n+1 ↪→ �2n−2

CP
2 of the

bottom cell. When n is odd, π2n+2(Wn) is zero and π2n+1(Wn) and π2n+3(Wn) are Z,
so [�2n−2

CP
n−1,�Wn] is Z ⊕ Z. When n is even, the (2n + 4)-skeleton of Wn is

S2n+1 ∨ S2n+3. The inclusions

i1 : S2n+1 → S2n+1 ∨ S2n+3 and i2 : S2n+3 → S2n+1 ∨ S2n+3

generate π2n+1(Wn) and the Z-summand of π2n+3(Wn), and the compositions

j1 : S2n+2 �2n−1η−→ S2n+1 i1−→ Wn and j2 : S2n+3 �2nη−→ S2n+2 �2n−1η−→ S2n+1 i1−→ Wn

generate π2n+2(Wn) and the Z/2Z-summand of π2n+3(Wn) respectively. Since η1
sends j1 to j2, the cokernel of η1 is Z. Similarly, η2 sends i1 to j1, so η2 : Z →
Z/2Z is surjective. This implies the preimage of j is a Z-summand. Therefore
[�2n−2

CP
2,�Wn] ∼= Z ⊕ Z. 
�

Let C be the quotient CPn−1/CPn−3. Since �Wn is (2n − 1)-connected, [CP2 ∧
CP

n−1,�Wn] is isomorphic to [CP2 ∧ C,�Wn] which is easier to determine.

Lemma 4.2 The group [CP2∧CPn−1,�Wn] ∼= [CP2∧C,�Wn] is isomorphic toZ⊕3.

Proof When n is even, C is S2n−2 ∨ S2n−4. By Lemma 4.1, [CP2 ∧ C,�Wn]
is [�2n−2

CP
2,�Wn] ⊕ [�2n−4

CP
2,�Wn] ∼= Z

⊕3.
When n is odd, C is �2n−6

CP
2. Apply [�2n−6

CP
2 ∧ −,�Wn] to cofibration (4)

to obtain the exact sequence

[�2n−3
CP

2,�Wn] −→ [�2n−2
CP

2,�Wn] −→ [�2n−6
CP

2 ∧ CP
2,�Wn]

−→ [�2n−4
CP

2,�Wn] −→ [�2n−3
CP

2,�Wn]
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By Lemma 4.1, the first and the last terms [�2n−3
CP

2,�Wn] are zero, while the
second term [�2n−2

CP
2,�Wn] is Z ⊕ Z and the fourth [�2n−4

CP
2,�Wn] is Z.

Therefore [CP2 ∧ C,�Wn] is Z⊕3. 
�
Define a : [CP2 ∧CP

n−1,�Wn] → H2n(CP2 ∧CP
n−1)⊕ H2n+2(CP2 ∧CP

n−1)

to be a map sending f ∈ [CP2 ∧ CP
n−1,�Wn] to a( f ) = f ∗(a2n) ⊕ f ∗(a2n+2).

The cohomology class x̄2n+1 represents a map x̄2n+1 : Wn → K (Z, 2n + 1) and
a2n = σ(x̄2n+1) represents its loop �x̄2n+1 : �Wn → �K (Z, 2n + 1). Similarly
a2n+2 = σ(x̄2n+3) represents a loop map. This implies a is a group homomor-
phism. Furthermore, a2n and a2n+2 induce isomorphisms between Hi (�Wn) and
Hi (K (2n,Z) × K (2n + 2,Z)) for i = 2n and 2n + 2. Since [CP2 ∧ CP

n−1,�Wn]
is a free Z-module by Lemma 4.2, a is a monomorphism. Consider the diagram

K̃ 0(CP2 ∧ CP
n−1)

p∗ �� [CP2 ∧ CP
n−1, �Wn ] ��

a

��

[CP2 ∧ CP
n−1, SU (n)]

b

��

�� 0

K̃ 0(CP2 ∧ CP
n−1)

� �� ⊕
i=0,2 H2n+i (CP2 ∧ CP

n−1)
ψ �� Coker(�) �� 0

(10)

In the left square, � is defined to be a ◦ p∗. In the right square, ψ is the quotient
map and b is defined as follows. Any f ∈ [CP2 ∧ CP

n−1, SU (n)] has a preimage f̃
and b( f ) is defined to beψ(a( f̃ )). An easy diagram chase shows that b is well-defined
and injective. Since b is injective, the order of γ ∈ [CP2 ∧ CP

n−1, SU (n)] equals
the order of b(γ ) ∈ Coker(�). In [4], Hamanaka and Kono gave an explicit formula
for �.

Theorem 4.3 (Hamanaka and Kono [4]) Let Y be a CW-complex. For any f ∈ K̃ 0(Y )

we have

�( f ) = n!ch2n( f ) ⊕ (n + 1)!ch2n+2( f ),

where ch2i ( f ) is the 2i th part of ch( f ).

Let u and v be the generators of H2(CP2) and H2(CPn−1). For 1 ≤ i ≤ n − 1,
denote Li and L ′

i as the generators of K̃ 0(CP2 ∧ CP
n−1) with Chern characters

ch(Li ) = u2(ev − 1)i and ch(L ′
i ) = (u + 1

2u2) · (ev − 1)i . By Theorem 4.3 we have

�(Li ) = n(n − 1)Ai u
2vn−2 + n(n + 1)Bi u

2vn−1,

�(L ′
i ) = n(n − 1)

2
Ai u

2vn−2 + nBi uvn−1 + n(n + 1)

2
Bi u

2vn−1,

where

Ai = ∑i
j=1(−1)i+ j

(i
j

)
jn−2 and Bi = ∑i

j=1(−1)i+ j
(i

j

)
jn−1.

Write an element xu2vn−2 + yuvn−1 + zu2vn−1 ∈ H2n(CP2 ∧ CP
n−1) ⊕

H2n+2(CP2 ∧ CP
n−1) as (x, y, z). Then the coordinates of �(Li ) and �(L ′

i ) are

(n(n − 1)Ai , 0, n(n + 1)Bi ) and (
n(n−1)

2 Ai , nBi ,
n(n+1)

2 Bi ) respectively.
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798 T. So

Lemma 4.4 For n ≥ 3, I m(�) is spanned by (
n(n−1)

2 , n,
n(n+1)

2 ), (n(n − 1), 0, 0) and
(0, 2n, 0).

Proof By definition, I m(�) = span{�(Li ),�(L ′
i )}n−1

i=1 . For i = 1, A1 = B1 = 1.
Then

�(L1) = (n(n − 1), 0, n(n + 1))

= 2

(
1

2
n(n − 1), n,

1

2
n(n + 1)

)
− (0, 2n, 0)

= 2�(L ′
1) − (0, 2n, 0)

Equivalently (0, 2n, 0) = 2�(L ′
1) − �(L1), so span{�(L1),�(L ′

1)} =
span{�(L ′

1), (0, 2n, 0)}. For other i’s,

�(Li ) = (n(n − 1)Ai , 0, n(n + 1)Bi )

= 2

(
1

2
n(n − 1)Ai , nBi ,

1

2
n(n + 1)Bi

)
− (0, 2nBi , 0)

= 2�(L ′
i ) − Bi (0, 2n, 0)

is a linear combination of �(L ′
i ) and (0, 2n, 0), so

I m(�) = span{�(L ′
1), . . . , �(L ′

n−1), (0, 2n, 0)}.

We claim that span{�(L ′
i )}n−1

i=1 = span{�(L ′
1), (n(n − 1), 0, 0)}. Observe that

�(L ′
i ) =

(
n(n − 1)

2
Ai , nBi ,

n(n + 1)

2
Bi

)

=
(

n(n − 1)

2
Bi , nBi ,

n(n + 1)

2
Bi

)
+

(
n(n − 1)

2
(Ai − Bi ), 0, 0

)

= Bi�(L ′
1) + Ai − Bi

2
· (n(n − 1), 0, 0).

The difference

Ai − Bi =
i∑

j=1

(−1)i+ j
(

i

j

)
jn−2 −

i∑

j=1

(−1)i+ j
(

i

j

)
jn−1

=
i∑

j=1

(−1)i+ j+1
(

i

j

)
( jn−1 − jn−2)

=
i∑

j=1

(−1)i+ j+1
(

i

j

)
( j − 1) jn−2
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is even since each term ( j − 1) jn−2 is even and n ≥ 3. Therefore Ai −Bi
2 is an integer

and �(L ′
i ) is a linear combination of �(L ′

1) and (n(n − 1), 0, 0).
Furthermore,

�(L ′
2) = B2�(L ′

1) + (A2 − B2)

(
n(n − 1)

2
, 0, 0

)

= B2�(L ′
1) − 2n−3(n(n − 1), 0, 0)

and

�(L ′
3) = B3�(L ′

1) + (A3 − B3)

(
n(n − 1)

2
, 0, 0

)

= B3�(L ′
1) − (3n−2 − 3 · 2n−3)(n(n − 1), 0, 0).

For n = 3, B2 = 2 and �(L ′
2) = 2�(L ′

1) − (n(n − 1), 0, 0), so we have

span{�(L ′
i )}n−1

i=1 = span{�(L ′
1),�(L ′

2)} = span{�(L ′
1), (n(n − 1), 0, 0)}.

For n ≥ 4, since 2n−3 and 3n−2 − 3 · 2n−3 are coprime to each other, there exist
integers s and t such that 2n−3s + (3n−2 − 3 · 2n−3)t = 1 and

(n(n − 1), 0, 0) = (s B2 + t B3)�(L ′
1) − s�(L ′

2) − t�(L ′
3).

Therefore (n(n − 1), 0, 0) is a linear combination of �(L ′
1),�(L ′

2) and �(L ′
3). This

implies span{�(L ′
1), (n(n − 1), 0, 0)} = span{�(L ′

i )}n−1
i=1 .

Combine all these together to obtain

I m(�) = span{�(Li ),�(L ′
i )}n−1

i=1

= span{�(L ′
1), (n(n − 1), 0, 0), (0, 2n, 0)}

= span

{(
n(n − 1)

2
, n,

n(n + 1)

2

)
, (n(n − 1), 0, 0), (0, 2n, 0)

}
.


�
Back to diagram (10). The map γ has a lift γ̃ : CP

2 ∧ CP
n−1 → �Wn . By

exactness, the order of γ equals the minimum number m such that mγ̃ is contained in
I m(p∗). Since a and b are injective, the order of γ equals the minimum number m′
such that m′a(γ̃ ) is contained in I m(�).

Lemma 4.5 Let α : �X → SU (n) be a map for some space X. If α′ : CP2 ∧ X →
SU (n) is the adjoint of the composition

CP
2 ∧ �X

q∧1−→ �S3 ∧ �X
�ı∧α−→ �SU (n) ∧ SU (n)

[ev,ev]−→ BSU (n),
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800 T. So

then there is a lift α̃ of α′ such that α̃∗(a2i ) = u2 ⊗ �−1α∗(x2i−3), where � is the
cohomology suspension isomorphism.

�Wn

��
CP

2 ∧ X
α′

��

α̃
�������
SU (n)

Proof In [4,5], Hamanaka and Kono constructed a lift� : �SU (n)∧ SU (n) → Wn of
[ev, ev] such that�∗(x̄2i+1) = ∑

j+k=i−1 �x2 j+1⊗x2k+1. Let �̃ be the composition

�̃ : CP2 ∧ �X
q∧1−→ �S3 ∧ �X

�ı∧α−→ �SU (n) ∧ SU (n)
�−→ Wn .

Then we have

�̃∗(x̄2i+1) = (q ∧ 1)∗(�ı ∧ α)∗�∗(x̄2i+1)

= (q ∧ 1)∗(�ı ∧ α)∗
⎛

⎝
∑

j+k=i−1

�x2 j+1 ⊗ x2k+1

⎞

⎠

= (q ∧ 1)∗(�u3 ⊗ α∗(x2i−3))

= u2 ⊗ α∗(x2i−3),

where u3 is the generator of H3(S3).
Let T : �CP

2 ∧ X → CP
2 ∧ �X be the swapping map and let τ : [�CP

2 ∧
X , Wn] → [CP2 ∧ X ,�Wn] be the adjunction. Take α̃ : CP2 ∧ X → �Wn to be the
adjoint of �̃, that is α̃ = τ(�̃ ◦ T ). Then α̃ is a lift of α′. Since

(�̃ ◦ T )∗(x̄2i+1) = T ∗ ◦ �̃∗(x̄2i+1) = T ∗(u2 ⊗ α∗(x2i−3)) = �u2 ⊗ �−1α∗(x2i−3),

we have α̃∗(a2i ) = u2 ⊗ �−1α∗(x2i−3). 
�
Lemma 4.6 In diagram (10), γ has a lift γ̃ such that a(γ̃ ) = u2vn−2 ⊕ u2vn−1.

Proof Recall that γ is the adjoint of the composition

ρ′ : CP2 ∧ �CP
n−1 q∧1−→ �S3 ∧ �CP

n−1 �ı∧ε−→ �SU (n) ∧ SU (n)
[ev,ev]−→ BSU (n).

Now we use Lemma 4.5 and take α to be ε : �CP
n−1 → SU (n). Then γ has a lift γ̃

such that γ̃ ∗(a2i ) = u2 ⊗ �−1ε∗(x2i−3) = u2 ⊗ vi−2. This implies

a(γ̃ ) = γ̃ ∗(a2n) ⊕ γ̃ ∗(a2n+2) = u2vn−2 ⊕ u2vn−1.


�
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Now we can calculate the order of ∂ ′
1 ◦ ε, which gives a lower bound on the order

of ∂ ′
1.

Theorem 4.7 When n ≥ 3, the order of ∂ ′
1 ◦ ε is 1

2n(n2 − 1) for n odd and n(n2 − 1)
for n even.

Proof Since ∂ ′
1◦ε is adjoint to γ , it suffices to calculate the order of γ . By Lemma 4.4,

I m(�) is spanned by ( 12n(n − 1), n, 1
2n(n + 1)), (n(n − 1), 0, 0) and (0, 2n, 0). By

Lemma 4.6, a(γ̃ ) has coordinates (1, 0, 1). Let m be a number such that ma(γ̃ ) is
contained in I m(�). Then

m(1, 0, 1) = s

(
1

2
n(n − 1), n,

1

2
n(n + 1)

)
+ t(n(n − 1), 0, 0) + r(0, 2n, 0)

for some integers s, t and r . Solve this to get

m = 1
2 tn(n2 − 1), s = −2r , s = t(n − 1).

Since s = −2r is even, the smallest positive value of t satisfying s = t(n − 1) is 1
for n odd and 2 for n even. Therefore m is 1

2n(n2 − 1) for n odd and n(n2 − 1) for n
even. 
�

For SU (n)-gauge groups over S4, the order m of ∂1 has the form m = n(n2−1) for
n = 3 and 5 [5,19]. If p is an odd prime and n < (p − 1)2 + 1, then m and n(n2 − 1)
have the same p-components [9,20]. These facts suggest it may be the case that m =
n(n2 − 1) for any n > 2. In fact, one can follow the method Hamanaka and Kono
used in [5] and calculate the order of ∂ ◦ ε to obtain a lower bound n(n2 − 1) for n
odd. However, it does not work for the n even case since [S4 ∧ CP

n−1,�Wn] is not
a free Z-module. An interesting corollary of Theorem 4.7 is to give a lower bound on
the order of ∂1 for n even.

Corollary 4.8 When n is even and greater than 2, the order of ∂1 is at least n(n2 − 1).

Proof The order of ∂ ′
1 ◦ ε is a lower bound on the order of ∂ ′

1, which is either the same
as or half of the order of ∂1 by Lemma 2.2. The corollary follows from Theorem 4.7.


�

5 A necessary condition forGk(CP
2) � Gl(CP

2)

In this section we follow the approach in [5] to prove Theorem 1.6. The techniques
used are similar to that in Sect. 4, except we are working with the quotient �C =
�CP

n−1/�CP
n−1 instead of �CP

n−1. When n is odd, C is �2n−6
CP

2, and when
n is even, C is S2n−2 ∨ S2n−4. Apply [�C,−] to fibration (3) to obtain the exact
sequence

[�C, SU (n)] (∂ ′
k )∗−→ [�C,Map∗

0(CP
2, BSU (n))]

−→ [�C, BGk(CP
2)] −→ [�C, BSU (n)],
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where (∂ ′
k)∗ sends f ∈ [�C, SU (n)] to ∂ ′

k ◦ f ∈ [�C,Map∗
0(CP

2, BSU (n))].
Since BSU (n) → BSU (∞) is a 2n-equivalence and �C has dimension 2n − 1,
[�C, BSU (n)] is K̃ 0(�C)which is zero. Similarly, [�C, SU (n)] ∼= [�2C, BSU (n)]
is K̃ 0(�2C) ∼= Z ⊕ Z. Furthermore, by adjunction we have [�C,Map∗

0(CP
2,

BSU (n))] ∼= [�C ∧ CP
2, BSU (n)]. The exact sequence becomes

K̃ 0(�2C)
(∂ ′

k )∗−→ [�C ∧ CP
2, BSU (n)] −→ [�C, BGk(CP

2)] −→ 0. (11)

This implies [�C, BGk(CP
2)] ∼= [C,Gk(CP

2)] is Coker(∂ ′
k)∗. Also, apply [CP2 ∧

C,−] to fibration (8) to obtain the exact sequence

[CP2 ∧ C,�SU (∞)] p∗−→ [CP2 ∧ C,�Wn]
−→ [CP2 ∧ C, SU (n)] −→ [CP2 ∧ C, SU (∞)]. (12)

Observe that [CP2 ∧ C,�SU (∞)] ∼= K̃ 0(CP2 ∧ C) is Z
⊕4 and [CP2 ∧

C, SU (∞)] ∼= K̃ 1(CP2 ∧ C) is zero. Combine exact sequences (11) and (12) to
obtain the diagram

K̃ 0(CP2 ∧ C)

p∗
��

�

�����
����

����
����

��

[CP2 ∧ C, �Wn]

��

a �� H2n(CP2 ∧ C) ⊕ H2n+2(CP2 ∧ C)

K̃ 0(�2C)
(∂ ′

k )∗ �� [CP2 ∧ C, SU (n)] ��

��

[C, BGk(CP
2)] �� 0

0

where a( f ) = f ∗(a2n) ⊕ f ∗(a2n+2) for any f ∈ [CP2 ∧ C,�Wn], and � is defined
to be a ◦ p∗. By Lemma 4.2 [CP2 ∧ C,�Wn] is free. Following the same argument
in Sect. 4 implies the injectivity of a.

Our strategy to prove Theorem 1.6 is as follows. If Gk(CP
2) is homotopy equivalent

to Gl(CP
2), then [C,Gk(CP

2)] ∼= [C,Gl(CP
2)] and exactness in (12) implies that

I m(∂ ′
k)∗ and I m(∂ ′

l )∗ have the sameorder in [CP2∧C, SU (n)], resulting in a necessary
condition for a homotopy equivalence Gk(CP

2) � Gl(CP
2). To calculate the order

of I m(∂ ′
k)∗, we will find a preimage ∂̃k of I m(∂ ′

k)∗ in [CP2 ∧ C,�Wn]. Since a is
injective, we can embed ∂̃k into H2n(CP2 ∧ C) ⊕ H2n+2(CP2 ∧ C) and work out the
order of I m(∂ ′

k)∗ there.
Let u, v2n−4 and v2n−2 be generators of H2(CP2), H2n−4(C) and H2n−2(C). Then

wewrite an element xu2v2n−4+yuv2n−2+zu2v2n−2 ∈ H2n(CP2∧C)⊕H2n+2(CP2∧
C) as (x, y, z). First we need to find the submodule I m(a).

Lemma 5.1 For n odd, I m(a) is {(x, y, z)|x + y ≡ z (mod 2)}, and for n even, I m(a)

is {(x, y, z)|y ≡ 0 (mod 2)}.
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Proof When n is odd,C is�2n−6
CP

2 and the (2n+3)-skeleton of�Wn is�2n−2
CP

2.
To say (x, y, z) ∈ I m(a) means there exists f ∈ [CP2 ∧ C,�Wn] such that

f ∗(a2n) = xu2v2n−4 + yuv2n−2 and f ∗(a2n+2) = zu2v2n−2. (13)

Reducing to homology with Z/2Z-coefficients, we have

Sq2(u) = u2, Sq2(v2n−4) = v2n−2, Sq2(a2n) = a2n+2.

Apply Sq2 to (13) to get x + y ≡ z (mod 2). Therefore I m(a) is contained in
{(x, y, z)|x + y ≡ z (mod 2)}. To show that they are equal, we need to show
that (1, 0, 1), (0, 1, 1) and (0, 0, 2) are in I m(a). Consider maps

f1 : CP2 ∧ C
q1−→ S4 ∧ C � �2n−2

CP
2 ↪→ �Wn

f2 : CP2 ∧ C
q2−→ CP

2 ∧ S2n−2 ↪→ �Wn

f3 : CP2 ∧ C
q3−→ S2n+2 θ−→ �Wn

where q1, q2 and q3 are quotient maps and θ is the generator of π2n+3(Wn). Their
images are

a( f1) = (1, 0, 1) a( f2) = (0, 1, 1) a( f3) = (0, 0, 2)

respectively, so I m(a) = {(x, y, z)|x + y ≡ z (mod 2)}.
When n is even, C is S2n−2 ∨ S2n−4 and the (2n + 3)-skeleton of �Wn is

S2n+2 ∨ S2n . Reducing to homology with Z/2Z-coefficients, Sq2(v2n−4) = 0 and
Sq2(a2n) = 0. Apply Sq2 to (13) to get y ≡ 0 (mod 2). Therefore I m(a) is con-
tained in {(x, y, z)|y ≡ 0 (mod 2)}. To show that they are equal, we need to show
that (1, 0, 0), (0, 2, 0) and (0, 0, 1) are in I m(a). The maps

f ′
1 : CP2 ∧ C

q ′
1−→ S4 ∧ (S2n−2 ∨ S2n−4)

p1−→ S4 ∧ S2n−4 ↪→ �Wn

f ′
2 : CP2 ∧ C

q ′
2−→ S4 ∧ (S2n−2 ∨ S2n−4)

p2−→ S4 ∧ S2n−2 ↪→ �Wn

where q ′
1 and q ′

2 are quotient maps and p1 and p2 are pinchmaps, have images a( f ′
1) =

(1, 0, 0) and a( f ′
2) = (0, 0, 1). To find (0, 2, 0), apply [− ∧ S2n−2,�Wn] to cofibra-

tion (4) to obtain the exact sequence

π2n+3(Wn) −→ [CP2 ∧ S2n−2,�Wn] i∗−→ π2n+1(Wn)
η∗

−→ π2n+2(Wn)

where i∗ is induced by the inclusion i : S2 ↪→ CP
2 and η∗ is induced by Hopf map η.

The third term π2n+1(Wn) ∼= Z is generated by i ′ : S2n+1 → Wn , the inclusion
of the bottom cell, and the fourth term π2n+2(Wn) ∼= Z/2Z is generated by i ′ ◦ η,
soη∗ : Z → Z/2Z is a surjection.Byexactness [CP2∧S2n−2,�Wn]has aZ-summand

123



804 T. So

with the property that i∗ sends its generator g to 2i ′. Therefore the composition

f ′
3 : CP2 ∧ (S2n−2 ∨ S2n−4)

pinch−→ CP
2 ∧ S2n−2 g−→ �Wn

has image (0, 2, 0). It follows that I m(a) = {(x, y, z)|y ≡ 0 (mod 2)}. 
�

Now we split into the n odd and n even cases to calculate the order of I m(∂ ′
k)∗.

5.1 The order of Im(@′
k)∗ for n odd

When n is odd, C is �2n−6
CP

2. First we find I m(�) in I m(a). For 1 ≤ i ≤ 4, let Li

be the generators of K̃ 0(CP2 ∧ C) ∼= Z
⊕4 with Chern characters

ch(L1) = (
u + 1

2u2
) · (

v2n−4 + 1
2v2n−2

)
ch(L2) = (

u + 1
2u2

)
v2n−2

ch(L3) = u2
(
v2n−4 + 1

2v2n−2
)

ch(L4) = u2v2n−2.

By Theorem 4.3, we have

�(L1) = n!
2

u2v2n−4 + n!
2

uv2n−2 + (n + 1)!
4

u2v2n−2

�(L2) = n!uv2n−2 + (n + 1)!
2

u2v2n−2

�(L3) = n!u2v2n−4 + (n + 1)!
2

u2v2n−2

�(L4) = (n + 1)!u2v2n−2.

By Lemma 5.1, I m(a) is spanned by (1, 0, 1), (0, 1, 1) and (0, 0, 2). Under this
basis, the coordinates of the �(Li )’s are

�(L1) =
(

n!
2 , n!

2 ,
(n−3)·n!

8

)
, �(L2) =

(
0, n!, (n−1)·n!

4

)
,

�(L3) =
(

n!, 0, (n−1)·n!
4

)
, �(L4) =

(
0, 0, (n+1)!

2

)
.

We represent their coordinates by the matrix

M� = L

⎛

⎜⎜⎜⎝

n(n−1)
2

n(n−1)
2

n(n−1)(n−3)
8

0 n(n − 1) n(n−1)2

4

n(n − 1) 0 n(n−1)2

4

0 0 n(n2−1)
2

⎞

⎟⎟⎟⎠ ,

where L = (n − 2)!. Then I m(�) is spanned by the row vectors of M�.
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Next, we find a preimage of I m(∂ ′
k)∗ in [CP2 ∧ C,�Wn]. In exact sequence (11)

K̃ 0(�2C) is Z ⊕ Z. Let α1 and α2 be its generators with Chern classes

cn−1(α1) = (n − 2)!�2v2n−4 cn(α1) = (n−1)!
2 �2v2n−2

cn−1(α2) = 0 cn(α2) = (n − 1)!�2v2n−2.

Lemma 5.2 For i = 1, 2, (∂ ′
k)∗(αi ) has a lift α̃i,k : CP2 ∧ C → �Wn such that

a(α̃i,k) = ku2 ⊗ �−2cn−1(αi ) ⊕ ku2 ⊗ �−2cn(αi ).

Proof For dimension and connectivity reasons, αi : �2C → BSU (∞) lifts through
BSU (n) → BSU (∞). Label the lift�2C → BSU (n) by αi as well. Let α′

i : �C →
SU (n) be the adjoint of αi . Then (∂ ′

k)∗(αi ) is the adjoint of the composition

CP
2 ∧ �C

q∧1−→ �S3 ∧ �C
�kı∧α′

i−→ �SU (n) ∧ SU (n)
[ev,ev]−→ BSU (n).

By Lemma 4.5, (∂ ′
k)∗(αi ) has a lift α̃i,k such that α̃∗

i,k(a2 j ) = ku2⊗�−1(α′)∗(x2 j−3).

Since σ(c j−1) = x2 j−3, we have α̃∗
i,k(a2 j ) = ku2 ⊗ �−2c j−1(αi ) and

a(α̃i,k) = ku2 ⊗ �−2cn−1(αi ) ⊕ ku2 ⊗ �−2cn(αi ).


�
By Lemma 5.2, (∂ ′

k)∗(α1) and (∂ ′
k)∗(α2) have lifts

α̃1,k = (n − 2)!ku2v2n−4 + (n−1)!
2 ku2v2n−2 and α̃2,k = (n − 1)!ku2v2n−2.

We represent their coordinates by the matrix

M∂ = kL

(
1 0 n−3

4
0 0 n−1

2

)
.

Let ∂̃k = span{α̃1,k, α̃2,k} be the preimage of I m(∂ ′
k)∗ in [CP2 ∧ C,�Wn]. Then ∂̃k

is spanned by the row vectors of M∂ .

Lemma 5.3 When n is odd, the order of I m(∂ ′
k)∗ is

|I m(∂ ′
k)∗| =

1
2n(n2 − 1)

( 12n(n2 − 1), k)
· n

(n, k)
.

Proof Suppose n = 4m + 3 for some integer m. Then

M� = (4m + 3)L

⎛

⎜⎜⎝

2m + 1 2m + 1 2m2 + m
0 4m + 2 4m2 + 4m + 1

4m + 2 0 4m2 + 4m + 1
0 0 8m2 + 12m + 4

⎞

⎟⎟⎠
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and

M∂ = kL

(
1 0 m
0 0 2m + 1

)
.

Transform M� into Smith normal form

A · M� · B = (4m + 3)L

⎛

⎜⎜⎝

(2m + 1)
(2m + 1)

(2m + 1)(4m + 4)
0

⎞

⎟⎟⎠ ,

where

A =

⎛

⎜⎜⎝

1 0 0 0
−2 0 1 0

4m + 2 1 −(2m + 1) 0
4 −2 −2 1

⎞

⎟⎟⎠ and B =
⎛

⎝
1 −m −(2m + 1)
0 0 1
0 1 2

⎞

⎠ .

The matrix B represents a basis change in I m(a) and A represents a basis change in
I m(�). Therefore [CP2 ∧ C, SU (n)] is isomorphic to

Z

1
2 (4m + 3)!Z ⊕ Z

1
2 (4m + 3)!Z ⊕ Z

1
2 (4m + 4)!Z .

We need to find the representation of ∂̃k under the new basis represented by B. The
new coordinates of α̃1,k and α̃2,k are the row vectors of the matrix

M∂ ·
⎛

⎝
1 −m −(2m + 1)
0 0 1
0 1 2

⎞

⎠ =
(

kL 0 −kL
0 (2m + 1)kL (4m + 2)kL

)
.

Apply row operations to get

(
1 0

4m + 2 1

)
·
(

kL 0 −kL
0 (2m + 1)kL (4m + 2)kL

)
=

(
kL 0 −kL

(4m + 2)kL (2m + 1)kL 0

)
.

Let μ = (kL, 0,−kL) and ν = ((4m + 2)kL, (2m + 1)kL, 0). Then

∂̃k = {xμ + yν ∈ [CP2 ∧ C,�Wn]|x, y ∈ Z}.

If xμ + yν and x ′μ + y′ν are the same modulo I m(�), then we have

⎧
⎨

⎩

xkL + (4m + 2)ykL ≡ x ′kL + (4m + 2)y′kL (mod (2m + 1)(4m + 3)L)

(2m + 1)ykL ≡ (2m + 1)y′kL (mod (2m + 1)(4m + 3)L)

xkL ≡ x ′kL (mod (2m + 1)(4m + 3)(4m + 4)L)
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These conditions are equivalent to

{
xk ≡ x ′k (mod (2m + 2)(4m + 3)(4m + 2))
yk ≡ y′k (mod (4m + 3))

This implies that there are
(2m + 2)(4m + 3)(4m + 2)

((2m + 2)(4m + 3)(4m + 2), k)
distinct values of x

and
4m + 3

(4m + 3, k)
distinct values of y, so we have

|I m(∂ ′
k)∗| = (2m + 2)(4m + 3)(4m + 2)

((2m + 2)(4m + 3)(4m + 2), k)
· 4m + 3

(4m + 3, k)
.

When n = 4m + 1, we can repeat the calculation above to obtain

|I m(∂ ′
k)∗| = 2m(4m + 2)(4m + 1)

(2m(4m + 2)(4m + 1), k)
· 4m + 1

(4m + 1, k)
.


�

5.2 The order of Im(@′
k)∗ for n even

When n is even, C is S2n−2 ∨ S2n−4. For 1 ≤ i ≤ 4, let Li be the generators
of K̃ 0(CP2 ∧ C) ∼= Z

⊕4 with Chern characters

ch(L1) = (
u + 1

2u2
)
v2n−4 ch(L2) = u2v2n−4

ch(L3) = (
u + 1

2u2
)
v2n−2 ch(L4) = u2v2n−2.

By Theorem 4.3, we have

�(L1) = n!
2

u2v2n−4

�(L2) = n!u2v2n−4

�(L3) = n!uv2n−2 + (n + 1)!
2

u2v2n−2

�(L4) = (n + 1)!u2v2n−2.

By Lemma 5.1, I m(a) is spanned by (1, 0, 0), (0, 2, 0) and (0, 0, 1). Under this
basis, the coordinates of the �(Li )’s are

�(L1) = ( n!
2 , 0, 0), �(L2) = (n!, 0, 0),

�(L3) =
(
0, n!

2 ,
(n+1)!

2

)
, �(L4) = (0, 0, (n + 1)!).
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We represent the coordinates of �(Li )’s by the matrix

M� = n(n − 1)

2
L

⎛

⎜⎜⎝

1 0 0
2 0 0
0 1 n + 1
0 0 2n + 2

⎞

⎟⎟⎠

Then I m(�) is spanned by the row vectors of M�.
In exact sequence (11) K̃ 0(�2C) is Z ⊕ Z. Let α1 and α2 be its generators with

Chern classes

cn−1(α1) = (n − 2)!�2v2n−4 cn(α1) = 0
cn−1(α2) = 0 cn(α2) = (n − 1)!�2v2n−2.

By Lemma 5.2, (∂ ′
k)∗(α1) and (∂ ′

k)∗(α2) have lifts

α̃1,k = (n − 2)!ku2v2n−4 and α̃2,k = (n − 1)!ku2v2n−2.

We represent their coordinates by a matrix

M∂ = kL

(
1 0 0
0 0 n − 1

)
.

Then the preimage ∂̃k = span{α̃1,k, α̃2,k} of I m(∂ ′
k)∗ is spanned by the row vectors

of M∂ . We calculate as in the proof of Lemma 5.3 to obtain the following lemma.

Lemma 5.4 When n is even, the order of I m(∂ ′
k)∗ is

|I m(∂ ′
k)∗| =

1
2n(n − 1)

( 1
2n(n − 1), k

) · n(n + 1)

(n(n + 1), k)
.

5.3 Proof of Theorem 1.6

Before comparing the orders of I m(∂ ′
k)∗ and I m(∂ ′

k)∗, we prove a preliminary lemma.

Lemma 5.5 Let n be an even number and let p be a prime. Denote the p-component
of t by νp(t). If there are integers k and l such that

νp

(
1

2
n, k

)
· νp(n, k) = νp

(
1

2
n, l

)
· νp(n, l),

then νp(n, k) = νp(n, l).

Proof Suppose p is odd. If p does not divide n, then νp(n, k) = νp(n, l) = 1,
so the lemma holds. If p divides n, then νp(

1
2n, k) = νp(n, k). The hypothesis

becomes νp(n, k)2 = νp(n, l)2, implying that νp(n, k) = νp(n, l).
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Suppose p = 2. Let ν2(n) = 2r , ν2(k) = 2t and ν2(l) = 2s . Then the hypothesis
implies

min(r − 1, t) + min(r , t) = min(r − 1, s) + min(r , s). (14)

To show ν2(n, k) = ν2(n, l), we need to show min(r , t) = min(r , s). Consider the
following cases: (1) t, s ≥ r , (2) t, s ≤ r − 1, (3) t ≤ r − 1, s ≥ r and (4) s ≤
r − 1, t ≥ r .

Case (1) obviously gives min(r , t) = min(r , s). In case (2), when t, s ≤ r − 1,
equation (14) implies 2t = 2s. Therefore t = s and min(r , t) = min(r , s).

It remains to show cases (3) and (4). For case (3)with t ≤ r −1, s ≥ r , equation (14)
implies

2t = min(r − 1, s) + r .

Since s ≥ r , min(r − 1, s) = r − 1 and the right hand side is 2r − 1 which is odd.
However, the left hand side is even, leading to a contradiction. This implies that this
case does not satisfy the hypothesis. Case (4) is similar. Therefore ν2(n, k) = ν2(n, l)
and the asserted statement follows. 
�

Proof of Theorem 1.6 In exact sequence (11), [C,Gk(CP
2)] isCoker(∂ ′

k)∗. By hypoth-
esis, Gk(CP

2) is homotopy equivalent to Gl(CP
2), so |I m(∂ ′

k)∗| = |I m(∂ ′
k)∗|. The n

odd and n even cases are proved similarly, but the even case is harder.
When n is even, by Lemma 5.4 the order of I m(∂ ′

k)∗ is

|I m(∂ ′
k)∗| =

1
2n(n − 1)

( 1
2n(n − 1), k

) · n(n + 1)

(n(n + 1), k)
,

so we have

(
1

2
n(n − 1), k

)
· (n(n + 1), k) =

(
1

2
n(n − 1), l

)
· (n(n + 1), l). (15)

We need to show that

νp(n(n2 − 1), k) = νp(n(n2 − 1), l) (16)

for all primes p. Suppose p does not divide 1
2n(n2−1). Equation (16) holds since both

sides are 1. Suppose p divides 1
2n(n2−1). Sincen−1,n andn+1 are coprime, p divides

only one of them. If p divides n − 1, then νp(
1
2n, k) = νp(n, k) = νp(n + 1, k) = 1.

Equation (15) implies νp(n − 1, k) = νp(n − 1, l). Since

νp(n(n2 − 1), k) = νp(n − 1, k) · νp(n, k) · νp(n + 1, k),
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this implies equation (16) holds. If p divides n + 1, then equation (16) follows from
a similar argument. If p divides n, then equation (15) implies νp(

1
2n, k) · νp(n, k) =

νp(
1
2n, l) · νp(n, l). By Lemma 5.5 νp(n, k) = νp(n, l), so equation (16) holds.
When n is odd, by Lemma 5.3 the order of I m(∂ ′

k)∗ is

|I m(∂ ′
k)∗| =

1
2n(n2 − 1)

( 1
2n(n2 − 1), k

) · n

(n, k)
,

so we have
(
1

2
n(n2 − 1), k

)
· (n, k) =

(
1

2
n(n2 − 1), l

)
· (n, l).

We can argue as above to show that for all primes p,

νp

(
1

2
n(n2 − 1), k

)
= νp

(
1

2
n(n2 − 1), l

)
.


�
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