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Abstract Considering the potential equivariant formality of the left action of a con-
nected Lie group K on the homogeneous space G/K , we arrive through a sequence
of reductions at the case G is compact and simply-connected and K is a torus. We
then classify all pairs (G, S) such that G is compact connected Lie and the embedded
circular subgroup S acts equivariantly formally on G/S. In the process we provide
what seems to be the first published proof of the structure (known to Leray andKoszul)
of the cohomology rings

1 Introduction

A natural request of a continuous group actionG×X −→ X is that it be equivariantly
formal, meaning the fiber inclusion in the Borel fibration X → XG → BG induces a
surjection H∗

G(X; Q) H∗(X; Q) of Borel equivariant cohomology upon singular
cohomology. While the term was only coined in 1997 by Goresky, Kottwitz, and
MacPherson [28], the condition had already been alighted upon by Borel in Chapter
XII of his Seminar [7]. This condition makes available a comparatively tractable
computation of H∗

G(X; Q) in terms of G-orbits of dimensions zero and one in the case
there are only finitely many of each, as well as, by definition, guaranteeing all classes
of H∗(X; Q) have equivariant extensions in H∗

G(X; Q), to which, for example, the
localization theorems of Berline–Vergne/Atiyah–Bott [3,4] and Jeffrey–Kirwan [35]
can be applied.
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200 J. D. Carlson

As any orbit of a continuous action of a Lie groupG on a space X , is a homogeneous
space G/StabG(x), it is natural to ask about equivariantly formal actions on such
spaces. The transitive G-action is only equivariantly formal if the isotropy group
K = StabG(x) is of full rank, but some restriction of this action to a subgroup H
will always be equivariantly formal. For this to happen, H cannot contain a strictly
larger maximal torus than K does, so that the left action of K is in some sense the
“largest” action on G/K which could conceivably be equivariantly formal. Assuming
that G is compact, it is known that the isotropy action of K on G/K is equivariantly
formal if K is of full rank in G ([10], Proposition 1), if H∗(G; Q) −→ H∗(K ; Q) is
surjective ([47]. Thm. A, Cor. 4.2), or if (G, K ) is a generalized symmetric pair with
K connected [27], but otherwise few examples of such actions seem to be known.
Nevertheless, the full-rank case has found wide application in symplectic geometry
(see, e.g., the book of Ginzburg, Guillemin, and Karshon [25], in which equivariant
cohomology is already mentioned in the first page of the introduction and occupies a
thirty-one–page Appendix).

We show this question can be reduced to the case K is a torus. For concision, if
the isotropy action of K on G/K is equivariantly formal, we call the pair (G, K )

isotropy-formal.

Theorem 1.1 If G is a compact Lie group, K a closed, connected subgroup, and S
any torus maximal within K , then (G, K ) is isotropy-formal if and only if (G, S) is.

This result reduces the question to a study of embeddings of tori in Lie groups, an
already more feasible-looking endeavor. Further, the question reduces to the case the
commutator subgroup of G is simply-connected.

Theorem 1.2 Let G be a compact, connected Lie group, K a closed, connected sub-
group, ˜G a finite central covering of G, and ˜K0 the identity component of the preimage
of K in ˜G. Then (G, K ) is isotropy-formal if and only if (˜G, ˜K0) is.

The question is largely dependent on the case G where itself is simply-connected.

Theorem 1.3 Let G be a compact, connected Lie group, G ′ its commutator subgroup,
K a closed connected subgroup of G, and S a maximal torus in K . Write K ′ = K ∩G ′
and S′ = S∩G ′ for the intersectionswith G ′ and K ′

0 and S
′
0 for their respective identity

components. Then (G, K ) is isotropy-formal if and only if

1. the pair (G ′, K ′
0) is isotropy-formal and

2. the inclusion NG(S) ↪−→ NG(S′
0) induces an isomorphism of component groups.

These reductions are proven in Sect. 3, with some additional partial reductions having
to do with disconnected goups and general compact Hausdorff groups expounded in
Appendix B. The reductions achieved, in Sect. 4, we are able to completely determine
for G any compact, connected Lie group and S any circular subgroup whether (G, S)

is isotropy-formal. A key condition turns out to be that there exist an element of the
G conjugation by which acts as s �−→ s−1 on S. We say such an element reflects S.

Proposition 1.4 Let G be a compact, connected Lie group and S a circular subgroup
of G. There are the following three mutually exclusive cases.
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Equivariant formality of isotropic torus actions 201

Table 1 Reflected circles in simple Lie groups

Type of K The circle S in K is reflected …

An When the exponent multiset J satisfies J = −J

Bn Always

Cn Always

D2n Always

D2n+1 If S is contained in a D2n subgroup

G2 Always

F4 Always

E6 If S is contained in a D4 subgroup

E7 Always

E8 Always

1. The inclusion S ↪−→ G surjects in cohomology and S is not reflected in G.
2. The inclusion S ↪−→ G is trivial in cohomology and
2a. S is reflected in G.
2b. S is not reflected in G.

Only in the last case is (G, S) not isotropy-formal.

Reflected circles can classified entirely, and from Propositions 1.4, 4.2, 4.5, and
4.6, one assembles the following result.

Theorem 1.5 Let G be a compact, connected Lie group and S a circular subgroup of
G. If S is not contained in the commutator subgroup G ′ of G, then (G, S) is isotropy-
formal. Otherwise, we may assume by Theorem 1.2 that G ′ is a product of simple Lie
groups K j . Pick for each a maximal torus containing the image S j of S ↪→ G ′ K j .
Then (G, S) is isotropy-formal if and only if for each K j there is an element of the
Weyl group W (K j ) reflecting S j , which is determined as laid out in Table 1.

This table is compiled in Sect. 4.2.

Remark 1.6 (Explanatory remarks on Table 1) The notation J in the An case is the
multiset of exponents a1, . . . , an ∈ Z such that the injection S1 U(1)⊕n ↪→ U(n)

realizing a conjugate of S as a circular subgroup of the block-diagonalmaximal torus of
U(n) is given by z �−→ diag(za1, . . . , zan ). We write−J for the multiset {−a j }1� j�n
whose entries are the opposites of those of J ; that is to say, for each a ∈ Z, the
element −a occurs in −J with the same multiplicity that a occurs in J . For example,
[−1 0 1] ∈ Z3 meets the condition J = −J and [2 1 −3] does not. See Corollary 4.13.

In the D2n+1 case, S is contained in a D2n subgroup just if it is conjugate into a
subtorus T 2n × {1} of the standard maximal torus T 2n+1 whose Lie algebra is the
block-diagonal subspace so(2)⊕2n+1 of so(4n + 2). See Corollary 4.16.

The condition that a circle in E6 be contained in a D4 subgroup manifests, within
a given maximal torus T 6 of E6, in a more intricate fashion. Precise statements are
Proposition 4.20 and Remark 4.22.
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202 J. D. Carlson

Table 2 The classification for circles in U(n)

Embedding of S Is
(

U(n), S
)

isotropy-formal?

S � SU(n) Yes

S � SU(n) and J = −J Yes

S � SU(n) and J 	= −J No

As an example of Theorem 1.5, we can recover Shiga’s characterization ([47],
Prop. 4.3) of circles in the unitary group yielding isotropy-formality.

Example 1.7 If S is a circle in the unitary group U(n), then
(

U(n), S
)

is or is not
isotropy-formal as indicated in Table 2.

Corollary 1.8 (anonymous referee) Let G be a compact, connected Lie group and K
a subgroup isomorphic to SO(3) or SU(2). Then (G, K ) is isotropy-formal.

Proof This follows from Theorem 1.5 because the maximal torus S1 of K is contained
in the commutator subgroup G ′ of G and is already reflected in K and hence a fortiori
in G. 
�
Alternate proof Koszul ([39], 2.2o) and Stiefel (unpublished) showed H∗G −→
H∗K is always surjective in this case (Samelson [46] derives this from the fact the
Cartan 3-form given at the identity by (u, v, w) �−→ B

(

u, [v,w]) is natural up to a
scalar factor) so it follows ([47], Thm. A, Cor. 4.2) that (G, K ) is isotropy-formal. 
�

A crucial step of in obtaining the key Proposition 1.4 is the following structure
theorem for H∗(G/S), which turns out to mildly extend a result which can be pieced
together from two Comptes Rendus notes of Leray and Koszul, a complete proof of
which seems never to have been published. In case the result may be of independent
interest, we take the opportunity to provide a proof in Appendix A.

Theorem 1.9 Let G be a compact, connected Lie group and S a circular subgroup.

1. If H1G −→ H1S is surjective, then H∗(G/S) −→ H∗G is injective and its
image is the exterior algebra �P̂ on the intersection P̂ of ker

(

H∗G → H∗S)

with the graded vector space P of primtive elements of the exterior Hopf algebra
H∗G = �P. Noncanonically, there is a z1 ∈ H1G whose image spans H1S and

H∗(G/S) = �P̂ ∼= H∗G/

(z1).

2. If H1G −→ H1S is zero, then the image of H∗(G/S) −→ H∗G is the exterior
algebra on a codimension-one subspace P̂ of P and P/P̂ ∼= Qz3 is graded in
degree 3. The image of H∗

S −→ H∗(G/S) is the subalgebra Q[s]/(s2) generated
by a nonzero s ∈ H2(G/S), and there are noncanonical isomorphisms

H∗(G/S) ∼= �P̂ ⊗ Q[s]
(s2)

∼= H∗G
(z3)

⊗ Q[s]
(s2)

.

123



Equivariant formality of isotropic torus actions 203

2 Background

Associated to a continuous action of a topological group K on a space X , ([7] IV.3.3,
p. 53) is the (Borel) equivariant cohomology H∗

K (X), the rational singular cohomology
H∗(XK ; Q) of the homotopy quotient ([7], Def. IV.3.1, p. 52) (or Borel construction)

K X = XK := EK × X

(ek, x) ∼ (e, kx)
,

where EK → BK is a universal principal K -bundle. Until the last appendix, all coho-
mologywill be singular cohomologywith rational coefficients, whichwill henceforth
be suppressed in the notation. We write H∗

K for the coefficient ring H∗(BK ) =
H∗
K (pt). Associated to the homotopy quotient is a fiber bundle X → S X → BS, the

Borel fibration. As noted in the introduction, an action of a topological group S on
a space X is said to be equivariantly formal if the fiber inclusion X ↪−→ S X in this
fibration surjects in cohomology.1 This condition is equivalent to the spectral sequence
of this bundle collapsing at the E2 page ([25], Lem. C.24, p. 208). Given a Lie group
G and closed subgroup K , we refer to the natural left K -action on the homogeneous
space G/K of left cosets as the isotropy action. For brevity, when the isotropy action
of K on G/K is equivariantly formal we call the pair (G, K ) isotropy-formal.

Given a Lie groupG, we write Z(G) for its center,G ′ for its commutator subgroup,
Gab := G/G ′ for its abelianization, WG for its Weyl group, and NG(K ) and ZG(K )

respectively for the normalizer and the centralizer of a subgroup K in G. If S is a torus
in G, we write N := π0NG(S) for the component group of its normalizer. We write
h•(X) := ∑

n�0 dimQ HnX for the total Betti number, and denote subgroup contain-
ment by “�”, isomorphism “∼=”, homotopy equivalence “�”, and homeomorphism
“≈”.

2.1 Earlier work

As noted in the introduction, the question we are interested in could be asked in the
late 1950s but only received a name in the 1990s. As of the beginning of this work,
there were only the three known classes of cases in the introduction and the following
general results of Shiga and Takahashi.

Theorem 2.1 (Hiroo Shiga [47]) Let G be a compact Lie group, K a closed, con-
nected subgroup, and NG(K ) the normalizer. If (G, K ) is a Cartan pair and the map
H∗(G/K )NG (K ) ↪→ H∗(G/K ) → H∗(G) induced by G G/K is injective, then
K acts equivariantly formally on G/K.

The notion of Cartan pair ([16], (3) on p. 70) here is not the notion due to Élie
Cartan describing symmetric spaces, but an algebraic condition on the (Henri) Cartan

1 Dating back to Hans Samelson’s [45] nicht homolog 0 and “� 0”, a space F has been said to be (totally)
nonhomologous to zero in a superspace E if its inclusion induces an injection H∗F −→ H∗E . The inclusion
has also been said to be (totally) noncohomologous to zero in the same event, and the condition is abbreviated
variously TNHZ, TNCZ, and n.c.z., notwithstanding the fact the map in cohomology is only injective if it is
an isomorphism. In the present work we maintain a respectful distance from this terminology.
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204 J. D. Carlson

model for G/K described in Appendix A which amounts to the space G/K being
formal in the sense of rational homotopy theory. Visually, it corresponds to the tensor
factorization E2 = E•,0

2 ⊗ E0,•
2 in the Serre spectral sequence of the Borel fibration

G → KG → BK persisting to the E∞ page. Shiga’s theorem can be equivalently
restated as follows.

Proposition 2.2 (Shiga) Let G be a compact Lie group, K a closed, connected
subgroup, and NG(K ) the normalizer. If (G, K ) is a Cartan pair and the map
H∗
G −→ (H∗

K )NG (K ) is surjective, then K acts equivariantly formally on G/K.

The result also has a partial converse. In a later-written but earlier-published tech-
nical report [48], Shiga and Hideo Takahashi prove a partial converse.

Theorem 2.3 (Shiga–Takahashi) Let G be a compact group, S a toral subgroup, and
NG(S) the normalizer. Suppose that S contains regular elements of G and (G, S) is
a Cartan pair. Then S acts equivariantly formally on G/S if and only if and the map
H∗
G −→ (H∗

S )NG (S) is surjective.

In work with Chi-Kwong Fok [15], we show that if (G, K ) is isotropy-formal, then
G/K must be formal, so the “Cartan pair” hypothesis is redudant. The hypothesis
on regular elements is also unnecessary, and in further unpublished work [14], we
show that S can also be replaced by any closed, connected subgroup K in the result.
Although we do not need it in what follows, we state the strong version for here for
reference.

Theorem 2.4 Let G be a Lie group, K a closed, connected subgroup, and NG(K )

the normalizer. Then (G, K ) is isotropy-formal if and only if G/K is formal and
H∗
G −→ (H∗

K )NG (K ) is surjective.

Our trichotomy Proposition 1.4 about the case K ∼= S1 can actually be refac-
tored through the Shiga–Takahashi result. Noting that the regular element condition
is unneeded, and that G/S is always formal for S a circle by the classical results
of Appendix A, the Shiga–Takahashi Theorem 2.3 reduces isotropy-formality of
(G, S) to study of the map H∗

G −→ H∗
S . In this language, Proposition 1.4 can be

reproven as follows: one has N = π0NG(S) either trivial or {±1}. If it is trivial, then
isotropy-formality is just that H∗

G −→ H∗
S is surjective, which happens if and only if

H∗(G) −→ H∗(S) surjects ([16], 1◦, p. 69) ([5], Cor., p. 139). Otherwise N ∼= {±1},
meaning exactly that S is reflected in G (Proposition 4.1), and N acts as s �−→ ±s
on Q[s] ∼= H∗(BS), so that H∗(BS)N = Q[s2]; then one proves Lemma A.4 to see
H∗(BG) −→ Q[s2] is always surjective.

The way this is presented in Sect. 4.1, we use a well-known fixed point criterion for
equivariant formality (Lemma 3.8) and a computation of the vector space dimension of
the cohomology of the fixed point set due to Goertsches (Proposition 3.11). Whether
reasoning through a dimension count or through Theorem 2.3, one way or another the
crux of it is understanding the cohomology of the maps S → G → G/S → BS →
BG.
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Equivariant formality of isotropic torus actions 205

3 Reductions

In this section we undertake a series of reductions that ultimately localizes most of the
difficulty in determining which pairs (G, K ) are isotropy-formal in the case where G
is semisimple and K a torus. Two further reductions, from disconnected to connected
groups and from connected compact groups to Lie groups, only go through partially
and are sequestered in Appendix B.

3.1 Compact total group

LetG be connected pro-Lie group and H a closed, connected subgroup. By theCartan–
Iwasawa–Malcev theorem, there exists amaximal compact subgroup KH of H , unique
up to conjugacy ([32], Cor. 12.77), which is necessarily connected, such that there is
a homeomorphism H ≈ KH × Rκ for some cardinal κ ([32], Cor. 12.82). Likewise
G contains a maximal compact subgroup KG , which after conjugation can be chosen
to contain KH . In case G is a Lie group, at least, this yields a reduction result.

Proposition 3.1 Suppose G is a connected Lie group and H a connected, closed sub-
group, with respective compact, connected subgroups KG and KH , the one containing
the other. Then (G, H) is isotropy-formal if and only if (KG, KH ) is.

Proof To identify the maps H∗
KH

(KG/KH ) −→ H∗(KG/KH ) and H∗
H (G/H) −→

H∗(G/H), it will be enough to see that in the commutative diagram

KG/KH
α ��

��

G/KH
γ ��

��

G/H

��
KHKG/KH

β
�� KHG/KH

δ
�� HG/H,

the horizontal maps are homotopy equivalences. A left–KG-equivariant deformation
retraction of G to KG induces deformation retractions from G/KH to KG/KH and
from KH G/KH to KH KG/KH . The fibers of the bundles δ and ε are H/KH and
(H/KH )×(H/KH ) respectively, both homeomorphic to Euclidean space, andG/KH

and G/H have the homotopy type of a CW complex so the long exact sequences of
homotopy groups andWhitehead’s theorem show δ and ε are homotopy equivalences.


�
Remark 3.2 This proof of Proposition 3.1 depends only on homotopy equivalence, so
the statement remains the same if H∗ is replaced in the definition of isotropy-formality
by any contravariant homotopy functor.

3.2 Toral isotropy

To reduce to toral isotropy actions, we require some well-known isomorphisms and
the rarely remarked fact these isomorphisms are natural.
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206 J. D. Carlson

Let ξ0 : E0 → B0 be a fibration with homotopy fiber F such that π1B0 acts trivially
on H∗F . We can form a slice category of fibrations over ξ0 with homotopy fiber F by
taking as objects maps of fibrations ξ → ξ0 with homotopy fiber F and as morphisms
between ξ ′ → ξ0 and ξ → ξ0 maps of fibrations ξ ′ → ξ making the expected triangle
commute up to homotopy. Such a morphism entails a homotopy-commutative prism

E ′
h

�� ��

ξ ′
��

E ��

ξ

��

E0

ξ0

��
B ′ h̄ �� ��B ��B0.

(3.1)

Lemma 3.3 ([49], Cor. 4.4, p. 88) Let ξ0 : E0 → B0 be a fibration such that the
fiber inclusion F ↪−→ E0 is surjective in cohomology and π1B acts trivially on H∗B.
Then the fiber inclusion of any fibration ξ : E → B over ξ0 with homotopy fiber F is
surjective in cohomology, and there is an H∗E0-algebra isomorphism

H∗B ⊗
H∗B0

H∗E0
∼−→H∗E

natural in the fibration ξ over ξ0.

We prove the result so as justify the naturality clause we will need, absent in the
original.

Proof Surjectivity of H∗E −→ H∗F is implied by that of H∗E0 −→ H∗F since
the fiber inclusion F −→ E0 factors up to homotopy as F → E → E0. For the
isomorphism, note that because of these surjections, the Serre spectral sequences of
these fibrations collapse at the E2 page. Thus the ring map H∗B ⊗H∗B0 H∗E0 −→
H∗E induced by the maps in the right square of (3.1) is equivalent on the level of
H∗B0-modules to the canonical isomorphism

H∗B ⊗
H∗B0

(

H∗B0 ⊗ H∗F
) ∼−→H∗B ⊗ H∗F,

and so is itself an isomorphism. For naturality, note that the ring map h∗ : H∗E −→
H∗E ′ is completely determined its restrictions to its tensor-factors H∗B and H∗E0
and that the commutative diagrams in cohomology induced by the left square and top
triangle of (3.1) respectively imply these restrictions are h̄∗ : H∗B −→ H∗B ′ and
idH∗E0 . 
�

The naturality in the following lemma follows from the standard proof by noting
that a K -equivariant map X −→ Y yields commutative squares

X/S ��

��

X/NK (S) ��

��

X/K

��
Y/S �� Y/NK (S) �� Y/K .
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Lemma 3.4 ([34], Lemma III.1.1, p. 35) Let K be a compact, connected Lie group
with maximal torus S and Weyl group W, and X a free K -space. Then there is a ring
isomorphism, natural in X,

H∗(X/K )
∼−→ H∗(X/S)W .

Lemma 3.5 ([34], Prop. III.1, p. 38) Let K be a compact, connected Lie group with
maximal torus S and Weyl group W. Then there are the following ring isomorphisms
natural in X:

H∗
K (X)

∼−→ H∗
S (X)W ,

H∗
S ⊗

H∗
K

H∗
K (X)

∼−→ H∗
S (X).

Proof The first statement follows from Lemma 3.4 and the definitions. The second
follows from Lemma 3.3, applied to the K/S-bundle XS → XK viewed as a bundle
over BS → BK ; alternately, as WK acts on H2

S as a reflection group, H∗
S is a free

module over H∗
K

∼= (H∗
S )WK by the Chevalley–Shephard–Todd theorem ([36], p. 192)

and Corollary B.3 applies. 
�
Corollary 3.6 Let K be a compact, connected Lie group with maximal torus S and
X → Y a K-equivariant map. Then �K : H∗

KY −→ H∗
K X is surjective if and only if

�S : H∗
S Y −→ H∗

S X is.

Proof Lemma 3.5 identifies �K with the map of Weyl-invariants (�S)
W and �S with

the base extension idH∗
S
⊗H∗

K
�S . If �S is surjective, then it follows by averaging that

�K is as well, since �S is W -equivariant and |W | is invertible in Q. On the other hand
if �K is surjective, then since the functor H∗

S ⊗H∗
K

− is right exact, �K is surjective as
well. 
�

Finally, the following well-known lemma follows from the preceding ones.

Lemma 3.7 ([25], Prop. C.26, p. 207) If K is a compact, connected Lie group and
S a maximal torus, and K acts on a space X, then the action of K is equivariantly
formal if and only if the restricted action of S is.

We can now prove the promised reduction.
Theorem 1.1 If G is a compact Lie group, K a closed, connected subgroup, and S
any torus maximal within K , then (G, K ) is isotropy-formal if and only if (G, S) is.

Proof By Lemma 3.7, it is enough to show that K acts equivariantly formally on G/S
if and only if it does on G/K . To do so, we may apply Corollary 3.6 to the map of
right K -spaces G −→ KG. 
�

3.3 The dimension criterion

Equivariant formality can be reduced to a condition on total Betti numbers.
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208 J. D. Carlson

Lemma 3.8 ([7, Prop. XII.3.4, p. 164], [26, Prop. 3.1, p. 81]) An action of a torus S
on a topological space X with finite total Betti number is equivariantly formal if and
only if h•(X) = h•(XS).

For later reference, note one inequality always holds:

Lemma 3.9 (Borel [7, IV.5.5, p. 62]) ([25, Lem. C.24]) If a torus S acts on a topo-
logical space X with finite total Betti number, then h•(X) � h•(XS).

Let G be a compact Lie group and S a torus in G. As the fixed point set of the
left action of S on G/S is the quotient group NG(S)/S of the normalizer, we need to
know when h•(G/S) = h•(NG(S)/S

)

. The latter number is easily expressed in terms
of other quantities. Recall that we denote by ZG(S) the centralizer of S in G, by WK

the Weyl group of K , and by N the component group π0NG(S).

Lemma 3.10 Conjugation induces a natural injection N Aut S. This induces
homeomorphisms NG(S) ≈ N × ZG(S) and (G/S)S = NG(S)/S ≈ N × ZG(S)/S.
If K is a closed, connected subgroup with maximal torus S, there is a further
homeomorphism (G/K )S = NG(S)K/K ≈ (N/WK ) × ZG(S)/S. Particularly,
h•((G/K )S

) = 2rk G−rk K · |N |/|WK |.
Proof The centralizer ZG(S) is connected since it is the union of the maximal
supertori of S in G. As ZG(S) is the kernel of the continuous homomorphism
n �−→ (x �→ nxn−1) from NG(S) into the discrete group Aut S ∼= AutZrk S ,
it is the identity component of NG(S). Thus N = NG(S)/ZG(S); the homeo-
morphisms follow because group components are homeomorphic. As for K , one
notes π : (G/S)S −→ (G/K )S can be equivalently written as the surjection
NG(S)/S NG(S)/NK (S) = NG(S)/

(

NG(S) ∩ K
) ∼= NG(S)K/K with fibers

nNK (S)/S = nWK . It follows (G/K )S has |N |/|WK | components, each homeomor-
phic to ZG(S)/

(

ZG(S)∩K
) = ZG(S)/S. But since ZG(S)/S is a compact, connected

Lie group, H∗(ZG(S)/S
)

is an exterior algebra on rk G − rk S generators by Hopf’s
theorem ([33], Satz I, p. 23), 
�
Proposition 3.11 (Goertsches–Noshari ([27, Props. 2.1, 3.1]) Let G be a compact,
connected Lie group and K a closed, connected subgroup. Write N = π0NG(S). Then
(G, K ) is isotropy-formal if and only if

h•(G/K ) � 2rk G−rk K · |N |
|WK | .

Proof Let S be a maximal torus of K . By Lemma 3.7, we may replace the K -action
on G/K with the S-action. By Lemmas 3.8 and 3.9 this action is equivariantly formal
if and only if h•(G/K ) � h•((G/K )S

)

, which is 2rk G−rk K · |N |/|WK | by Lemma
3.10. 
�

3.4 Torus–cross–simply-connected total group

The structure theorem for compact, connected Lie groups ([11], Thm. V.(8.1) &
Ex.V.(8.7).6, p. 233, 238) states that each admits a finite central extension p : ˜G −→ G
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such that the abelianization exact sequence 1 → ˜G ′ → ˜G → ˜Gab → 0 splits on the
level of topological groups. If the kernel of p is F , we can write G ∼= ˜G/F. The total
space ˜G (but not p itself, if A 	= 0) is uniquely determined up to isomorphism.

In determining which toral isotropy actions are equivariantly formal, we will show
we can replace G with ˜G and the connected isotropy subgroup K (which we can take
to be a torus) with the identity component ˜K0 of its preimage ˜K = p−1K = F ˜K0.

Proposition 3.12 These assumptions induce isomorphisms H∗(G/K )∼→H∗(˜G/˜K )
∼→H∗(˜G/˜K0).

This is a result of the following lemma and the homeomorphism ˜G/˜K
≈−→ G/K .

Lemma 3.13 Let 
 be a path-connected topological group, F a central subgroup,
and H another subgroup such that FH/H is finite. Then the covering FH/H →

/H → 
/FH induces an isomorphism H∗(
/FH) ∼−→H∗(
/H).

Proof As F is central, the covering action of f H ∈ f H/H is given by γ H · f H =
γ fH = fγH , left multiplication by f . But 
 being path-connected, left translation by
its any element is homotopic to the identity. Thus ([30], Prop. 3G.1)

H∗(
/FH) ∼= H∗(
/H)FH/H = H∗(
/H). 
�
The components of the normalizer are also preserved under this substitution.

Proposition 3.14 Under the foregoing assumptions, the projection p : ˜G −→ G
induces an isomorphism N

˜G(˜K0)/Z˜G(˜K0)
∼−→NG(K )/ZG(K ). Particularly, if S is a

torus, π0N˜G(˜S0) =: ˜N ∼= N = π0NG(S).

Proof As p is a homomorphism, it sends N
˜G(˜K ) −→ NG(K ). We show this restric-

tion is surjective and the preimage of ZG(K ) is Z
˜G(˜K ). For surjectivity, given

w̃ ∈ p−1NG(˜K0), note w̃1w̃−1 = 1 and p(w̃ ˜K0w̃
−1) = K , so w̃ ˜K0w̃

−1 = ˜K0.
For the preimage, note that if z̃ ∈ p−1ZG(K ), then z̃˜k̃z−1

˜k−1 ∈ ker p for each
˜k ∈ ˜K0; since ker p is discrete and z̃1̃z−11−1 = 1, such a z̃ centralizes ˜K0. 
�

These facts in hand, we conclude the proof of Theorem 1.2.

Theorem 1.2 Let G be a compact, connected Lie group, K a closed, connected sub-
group, ˜G a finite central covering of G, and ˜K0 the identity component of the preimage
of K in ˜G. Then (G, K ) is isotropy-formal if and only if (˜G, ˜K0) is.

Proof Let S be a maximal torus of K and ˜S0 its connected lift in ˜K . We know from
Proposition 3.11 that (G, K ) is isotropy-formal if and only if

h•(G/K ) = 2rk G−rk S|N |/|WK |,

and the analogous statement holds of (˜G, ˜K ). But evidently rk ˜G = rk G and rk ˜K =
rk K and WK ∼= W

˜K ; from Proposition 3.12, we know h•(˜G/˜K ) = h•(G/K ); and
from Proposition 3.14, we know ˜N ∼= N . 
�

123



210 J. D. Carlson

In what follows we can therefore replace G with a cover ˜G = ˜G ′ × ˜Gab. For later,
when we specialize to circles, we note the following corollary of Proposition 3.14.

Corollary 3.15 Under these hypotheses, the torus S is reflected in G just if ˜S is
reflected in ˜G.

3.5 Semisimple total group

In this section,G is a connected, compactLie group,G ′ again its commutator subgroup,
and Gab its abelianization. To separate out information about G ′, we will need another
covering lemma similar in spirit to Lemma 3.13.

Lemma 3.16 Let 
 be a compact, connected Lie group, � an abelian subgroup, and
S a torus in� such that�/S is finite. Then the covering�/S → 
/S → 
/� induces
an isomorphism H∗(
/S) ∼−→H∗(
/�).

Proof As � is abelian, it is contained in the centralizer Z
(S), which is path-
connected, so that its right action on
/S is cohomologically trivial. Thus H∗(
/�) ∼=
H∗(
/S)�/S = H∗(
/S). 
�

Given subgroup H of G, the canonical short exact sequence G ′ → G → Gab

descends to a fiber bundle G ′/(G ′ ∩ H) → G/H → coker(H ↪→ G Gab).

Proposition 3.17 If H is connected, this bundle has the cohomology of a trivial bun-
dle.

Proof Consider a finite central cover of the form ˜G = ˜G ′ × ˜Gab. Let ˜H be the full
preimage of H in ˜G and ˜H0 its identity component. We will show ˜G ′/(˜G ′ ∩ ˜H0) →
˜G/ ˜H0 → coker( ˜H0 → ˜Gab) is a trivial bundle. Then the Künneth theorem will yield
the desired ring decomposition, for coker(H → Gab) and coker( ˜H0 → ˜Gab) are
tori of the same dimension, and H∗(G/H) ∼= H∗(˜G/ ˜H0) by Proposition 3.12, while
˜G ′/(˜G ′ ∩ ˜H0) ˜G ′/(˜G ′ ∩ ˜H)

≈→ G ′/(G ′ ∩ H) is a normal covering with covering
action induced by right translation by central elements of ˜G, so by Proposition 3.12
again, H∗(G ′/(G ′ ∩ H)

) ∼= H∗(
˜G ′/(˜G ′ ∩ ˜H0)

)

.
The short exact sequence im( ˜H0 → ˜Gab) → ˜Gab → coker( ˜H0 → ˜Gab) of

tori splits on the level of topological groups. Replacing ˜Gab with the product in the
expression ˜G = ˜G ′ × ˜Gab, the projection of ˜H0 to the cokernel component is trivial,
so ˜G/ ˜H0 is the direct product of coker( ˜H0 → ˜Gab) and

(

˜G ′ × im( ˜H0 → ˜Gab)
)

/ ˜H0.

But the inclusion of ˜G ′/(˜G ′ ∩ ˜H0) into the latter is a continuous bijection of compact
Hausdorff spaces, hence a homeomorphism. 
�

Now we can carry through the claimed near-reduction to the semisimple case.

Theorem 1.3 Let G be a compact, connected Lie group, G ′ its commutator subgroup,
K a closed connected subgroup of G, and S amaximal torus in K .Write K ′ = K ∩G ′
and S′ = S ∩ G ′ for the intersections with G ′ and K ′

0 and S′
0 for their respective

identity components. Then (G, K ) is isotropy-formal if and only if
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1. the pair (G ′, K ′
0) is isotropy-formal and

2. the inclusion NG(S) ↪−→ NG(S′
0) induces an isomorphism of component groups.

Proof Note that S′
0 is a maximal torus in K ′

0, so by Theorem 1.1 it is enough to show
(G, S) is isotropy-formal if and only if (G ′, S′

0) is and the condition on normalizers
holds.

From the decomposition G = G ′ · Z(G), it follows that NG(
) = NG ′(
) · Z(G)

and ZG(
) = ZG ′(
) · Z(G) for any subgroup 
, so that particularly π0NG(S′
0)

∼=
π0NG ′(S′

0) =: N ′. AsG ′ is normal inG, there is also a containment NG(S) � NG(S′
0),

and so an inducedmonomorphism N N ′. Thus fromLemma 3.16, Borel’s Lemma
3.9 for the action of S′

0 on G ′/S′
0 and Lemma 3.10, we see

h•(G ′/S′) = h•(G ′/S′
0) � |N ′| 2rk G ′−rk S′ � |N | 2rk G ′−rk S′

. (3.2)

Because rank is additive under direct products,

rk G − rk S = (

rk G ′ + rk Z(G)
) − (

rk S′
0 + rk im(S → Gab)

)

= rk G ′ − rk S′
0 + rk coker(S → Gab),

so multiplying (3.2) by 2rk coker(S →Gab) yields, by Proposition 3.17,

h•(G/S) � |N ′| 2rk G−rk S � |N | 2rk G−rk S . (3.3)

Proposition 3.11 states that (G, S) is isotropy-formal if and only if the inequalities (3.3)
are in fact equalities, which is equivalent to (3.2) being equalities. But by Proposition
3.11 again, this can only happen if (G ′, S′) is isotropy-formal and N ′ ↔ N . 
�
Remark 3.18 It can really happen that the inequality |N | � |N ′| is strict. For instance,
let G = A × G ′ for A = S1 and G ′ = SU(2)2, pick a circle S1 in SU(2), and let
T be the maximal torus (S1)3 of G and S = {

(z, w, zw−1) : z, w ∈ S1
}

a rank-two
subtorus, so that S′ = S′

0 = {

(1, w,w−1) : w ∈ S1
}

. Then N ′ = WSU(2) ∼= Z/2 but
N = 1.

4 Circular isotropy

Now we can tackle the case S is a circle. This section demonstrates the statements of
Theorem 1.5 and Table 1 regarding equivariant formality of circle actions.

4.1 The trichotomy

Let S ∼= S1 be a circle subgroup of a compact, connected Lie group G.

Proposition 4.1 Then the cardinality of π0NG(S) is 2 if S is reflected in G and 1
otherwise.
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Proof This follows from Lemma 3.10 since s �−→ s−1 is the only nontrivial contin-
uous automorphism of S1. 
�

As ˜H∗S1 = H1S1 is one-dimensional, H∗G −→ H∗S is either surjective or
trivial.

Proposition 4.2 The inclusion S ↪−→ G is trivial in cohomology if and only if S is
contained in the commutator subgroup G ′, if and only if the map induced in H1 by
S → G → Gab is trivial.

Proof Since G ′ is the kernel of G −→ Gab =: A, it contains S just if the composition
S → G → A is trivial. If so, then of course the map H1A −→ H1S is trivial. If
S → G → A is nontrivial, then its image is a circle, so the inducedmapπ1S −→ π1A
is nonzero and hence injective, and so H1A −→ H1S is surjective. But this map is
nontrivial just if H1G −→ H1S is since H1A −→ H1G is an isomorphism, as can
be seen for example by using Proposition 3.12 to pass to a finite cover ˜A × ˜G ′ with
0 = π1 ˜G ′ = H1

˜G ′ = H1G ′. 
�
We can now prove Proposition 1.4.

Proposition 1.4 Let G be a compact, connected Lie group and S a circular subgroup
of G. There are the following three mutually exclusive cases.

1. The inclusion S ↪−→ G surjects in cohomology and S is not reflected in G.
2. The inclusion S ↪−→ G is trivial in cohomology and

2a. S is reflected in G.
2b. S is not reflected in G.

Only in the last case is (G, S) not isotropy-formal.

Proof Recall from Proposition 3.11 that (G, S) is isotropy-formal just when
h•(G/S) � |N | 2rk G−rk S . Theorem 1.9 imposes the constraint that h•(G/S) ∈
{ 1
2h

•(G), h•(G)
}

and Proposition 4.1 that |N | ∈ {1, 2}. By Lemma 3.9, it is impos-
sible that both h•(G/S) = 1

2h
•(G) and |N | = 2 simultaneously, so there are only the

following three cases.

1. We have h•(G/S) = 1
2h

•(G) and |N | = 1. The action is equivariantly formal.
2. We have h•(G/S) = h•(G), and

2a. |N | = 2. The action is equivariantly formal.
2b. |N | = 1. The action is not equivariantly formal. 
�
It remains to determine when |N | = 2, or in other words when S is reflected in G.

4.2 Classification of reflected circles

In this section, we determine what circular subgroups S of compact, connected Lie
groups G are reflected. First, we may assume S lies in some fixed maximal torus of
T , since all maximal tori are conjugate and for any g ∈ G one has gNG(S)g−1 =
NG(gSg−1). Further, we may represent reflections by Weyl group elements, in that
N � Aut S is naturally a quotient of NW (S) � W .
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Lemma 4.3 ([9, Exercise IX.2.4, p. 391], [20, Lemma9.7, p. 20]) Let G be a compact,
connected Lie group, T a maximal torus, and S a subtorus. Any automorphism of S
induced from conjugation by an element of NG(S) is also induced by an element of
NG(T ) ∩ NG(S).

Precisely, the inclusion NG(T ) ∩ NG(S) ↪−→ NG(S) induces maps

NG(T )

T
↪−→NG(T ) ∩ NG(S)

T

NG(T ) ∩ NG(S)

NG(T ) ∩ ZG(S)
∼−→NG(S)

ZG(S)
.

Corollary 4.4 A toral subgroup S is reflected in a compact, connected Lie group G
if and only if some element of the Weyl group W of G acts as s �−→ s−1 on S.

From Corollary 3.15, we may replace G with the product A × G ′ of a torus A and
a simply-connected Lie group G ′, but A is irrelevant:

Proposition 4.5 A toral subgroup S is reflected in a compact, connected Lie group G
if and only if it lies in and is reflected in the commutator subgroup G ′.

Proof Since the conjugation action of A is trivial, circles reflected by G are already
reflected by G ′. From Propositions 4.2 and 1.4, we know any reflected S in G is
contained in G ′. 
�

Reflectibility of a torus in a semisimple group H in turn depends only on simple
factors.

Proposition 4.6 A toral subgroup S is reflected in a product
∏

Hj of Lie groups if
and only if each of its images S j under the factor projections to Hj is reflected in Hj .

Proof Since the homomorphisms
∏

Hj Hi preserve conjugacy and inversion,
if (h j ) ∈ ∏

Hj reflects S, then h j reflects S j . On the other hand, if some h j ∈ Hj

reflects each S j , then (h j ) reflects
∏

S j , which contains S. 
�
We can in fact restrict attention to a single element of the Weyl group.

Proposition 4.7 A circular subgroup S is reflected in a simple Lie group H if and
only if it is reflected by the longest word w0 in the Weyl group W of H.

Proof If C is the closedWeyl chamber containing a given nonzero element v ∈ s < t,
then −v lies the “opposite” closed Weyl chamber −C . The orbit W · v meets −C in
exactly one point ([1], Thm. 5.16), which must be w0 · v since w0 · C = −C , so s is
reflected if and only if w0 · v = −v. 
�

There is a representation-theoretic restatement of the same condition.

Corollary 4.8 A circular subgroup S is reflected in a simple Lie group H if and only
if the irreducible representation of H determined by S is self-dual.

Proof Identify t with its dual t∨ through the W -invariant inner product and let λ be
an additive generator of the intersection of s with the weight lattice of H . Then S is
reflected if and only ifw0 ·λ = −λ. But the dual to the irreducible representation with
highest weight λ is that with highest weight −w0 · λ. 
�
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Remark 4.9 The original proof of the classification in Table 1 was unnecessarily intri-
cate and involved a computer algebra verification at one point, and has been greatly
simplified through the arguments in Proposition 4.7 and Corollary 4.8, due to Jay
Taylor [51] and Chi-Kwong Fok (personal communication).

To construct Table 1 we march case by case through the Killing–Cartan classifica-
tion.

Proposition 4.10 A maximal torus T of a simple compact Lie group G whose type is
one of

Bn, Cn, D2n, G2, F4, E7, E8

is reflected in G.

Proof The longest word w0 acts as − id on the vector space t carrying the defining
representation of W precisely for Coxeter groups W of these types ([36], Lem. 27–2,
p. 283) so T is reflected by Proposition 4.7. Alternately, but relatedly, central involu-
tions of a Weyl group W reflect the maximal torus T ([21], Thm. 1.8) and the center
of W is isomorphic to Z/2 precisely for Coxeter groups W of these types ([21],
Rmk. 1.9). 
�

In the remaining cases, the longest word w0 ∈ W does not act as − id on t, so more
work is required.

Proposition 4.11 A circular subgroup S is reflected in a simple Lie group H whose
Weyl group has trivial center (viz. one of type An, D2n+1, or E6) if and only if there is
somew ∈ W such thatw ·s lies in the fixed point subalgebra tθ of the Cartan subalge-
bra under an automorphism θ ∈ Aut t induced by a nontrivial diagram automorphism
of the Dynkin diagram of H.

Proof FromProposition 4.7we know S is reflected if and only if s is fixed pointwise by
the nontrivial automorphism −w0 ∈ Aut t. As w0 = Ad(n0) for some n0 ∈ NH (T ),
we can extend−w0 to−Ad(n0) ∈ Aut k. Outer automorphisms of k are induced ([24],
Prop.D.40, p. 498) by graph automorphisms of theDynkin diagram
 of H in the sense
that (Aut k)/(Ad H) ∼= Aut 
. SinceW acts simply transitively onWeyl chambers, and
−w0 stabilizes but does not fix the positive closedWeyl chamberC , the automorphism
−Ad(n0) of k is not inner and hence its outer isomorphism class corresponds to a
nontrivial automorphism θ of 
. This means the induced θ ∈ Aut t is the restriction
of −Ad(n0k) ∈ Aut k for some k ∈ NH (T ), so that θ fixes Ad(k−1)s. 
�

It thus remains to find the fixed point subalgebras of nontrivial diagram automor-
phisms for Lie algebras of type An , D2n+1, and E6. In all of these proofs, we use
the fact that the W -equivariant isomorphism t∨ ∼−→t induced by the invariant inner
product is also equivariant with respect to θ = −w0, and so identifies the fixed point
subspaces (t∨)θ and tθ .

Proposition 4.12 In a Lie algebra of type An, a point v ∈ t∨ < Rn+1 of the dual
Cartan algebra is fixed by the automorphism θ of Figure 1 if and only if a permutation
of the coordinates of v yields −v.
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Fig. 1 The graph involution of An

Fig. 2 The graph involution of D2n+1

Proof Thediagramautomorphism θ acts on simple roots of An by exchangingα j ←→
αn− j . The θ–fixed point subspace of t∨ is spanned by the sums α j + αn− j and so
consists of those vectors

∑

c jα j ∈ t∨ for which c j = cn− j . The α j are usually
identified with e j − e j+1 ∈ Rn+1, where (e�)1���n+1 is the standard basis and the
resulting embedding t∨ Rn+1 takes

∑

c jα j �−→ [

c1 (c2 − c1) · · · (cn − cn−1) − cn
] =:

∑

v�e�,

translating the symmetry requirement c j = cn− j to the antisymmetry condition v� =
−vn+1−�. 
�
Corollary 4.13 A circular subgroup S is reflected in SU(n) if and only if the exponent
multiset J of the inclusion of any conjugate of S into the standard maximal torus T
satisfies J = −J .

Proof Let v span the tangent space s < t. Recalling the Weyl groupWAn = Sn+1 acts
on Rn+1 by permuting coordinates, by Proposition 4.12 a permutation of the entries
of v yields −v just if some w ∈ WAn sends v into tθ , and by Proposition 4.11, S is
reflected just if this occurs. 
�
Remark 4.14 (a) The root subsystems of A2� and A2�−1 fixed by θ are respectively
of types Bn and Cn , corresponding to the inclusions SO(2� + 1) ↪−→ SU(2� + 1)
and Sp(n) ↪−→ SU(2n) respectively induced by the ring injections R ↪−→ C and
H C2×2. These subgroups are fixed points of involutive automorphisms of SU(n)

yielding the symmetric spaces SU(n)/SO(n) and SU(2n)/Sp(n).
(b) In terms of the self-duality criterion Corollary 4.8, the representation τ of S

on Cn given by restricting the defining representation of SU(n) to S is a direct sum
⊕n

j=1 ρ⊗a j of tensor powers of the defining representation ρ : S1 AutC C, and

the dual representation τ∨ = ⊕n
j=1 ρ⊗(−a j ), will be isomorphic to τ just if J = −J .
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Fig. 3 The graph involution of E6

Proposition 4.15 In a Lie algebra of type D2n+1, a point λ ∈ t∨ of the dual Cartan
algebra is fixed by an automorphism of the Dynkin diagram if and only if the last
coordinate of λ is zero.

Proof The nontrivial graph automorphism θ of the Dynkin diagram of D2n+1, shown
in Fig. 2, fixes all simple roots except α2n and α2n+1, which it exchanges. The fixed
point subspace of (t∨)θ is spanned by {α j } j<2n ∪ {α2n + α2n+1}. The roots α j for
j � 2n are usually identified with e j − e j+1 ∈ R2n+1 and α2n+1 with en + en+1,
where (e j )1� j�n+1 is again the standard basis. The image of the composite embedding
(t∨)θ ↪→ t∨ → R2n+1 is R2n × {0} since α2n + α2n+1 = 2e2n . 
�
Corollary 4.16 A circular subgroup S is reflected in Spin(4n + 2) if and only if it is
conjugate into a Spin(4n) subgroup.

Proof Let v span the tangent space s < t = R2n+1. Recalling the Weyl group
WD2n+1 = {±1}2n � S2n+1 acts on R2n+1 by permuting its coordinates and negat-
ing an even number of them, by Proposition 4.15 some entry of v is 0 just if some
w ∈ WAn sends v into tθ , and by Proposition 4.11, S is reflected just if this occurs. 
�
Remark 4.17 The sublattice of a D2n+1 lattice fixed by θ is of type B2n and corre-
sponds to a Spin(4n) subgroup of Spin(4n + 2), the fixed point set of an involutive
automorphism of Spin(4n+2) yielding the symmetric space V2(R4n+2) = Spin(4n+
2)/Spin(4n) = SO(4n + 2)/SO(4n).

Proposition 4.18 In a Lie algebra of type E6, a point λ ∈ t∨ of the dual Cartan
algebra is fixed by the nontrivial automorphism of the Dynkin diagram if and only if
it lies in a certain F4 sublattice.

Proof The fixed-point subspace (t∨)θ of the nontrivial automorphism θ of the Dynkin
diagram of E6 depicted in Fig. 3 is spanned by � = {α1 + α6, α2 + α5, α3, α4}. By
assumption, we have αi · α j = −2|αi ||α j | for adjacent αi , α j and = 0 otherwise, so
� is a simple root system of type F4 with a1 + α6 and α2 + α5 long and α3 and α4
short. 
�
Proposition 4.19 A circular subgroup S is reflected in E6 or its universal cover ˜E6
if and only if it is conjugate into a Spin(8) subgroup.

Proof It follows from Proposition 4.11 and Proposition 4.18 that the tangent lines s
to reflected circles S are precisely those sent into tθ by some w ∈ WE6 . As (t∨)θ is
spanned by an F4 sublattice of the E6 root lattice, its dual tθ is tangent to the maximal
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torus T 4 of an F4 subgroup. In the series of inclusions Spin(8) < F4 < E6, the first
two share a maximal torus T 4, so tθ is actually tangent to the maximal torus of a
Spin(8). 
�

It may be of interest to count these four-dimensional tori.

Proposition 4.20 Within any given maximal torus T 6 of E6 or ˜E6, there are forty-five
distinct Weyl-conjugate maximal tori T 4 of Spin(8) subgroups, all reflected.

Proof The Spin(8) tangent to T 4 corresponds to a D4 sublattice of t spanning tθ .
Within a set of positive roots for a root system of type D4, it is not hard to check there
are precisely three spanning sets of mutually orthogonal roots, so the number of tori in
question will be a third of the number of sets of four mutually orthogonal roots in the
root system �(E6). Any given set {α, β, γ, δ} of four mutually orthogonal positive
roots in �(E6) corresponds to

∣

∣{±1}4 � S4
∣

∣ = 384 different mutually orthogonal
ordered quadruples of arbitrary roots, so the number of tori T 4 can be obtained by
dividing the number of such quadruples by 384 · 3 = 1152 = ∣

∣WF4

∣

∣. We will then be
done if we can show WE6 , which is of cardinality 51, 840 = 45 · 1152, acts simply
transitively on mutually orthogonal ordered quadruples (α, β, γ, δ) in �(E6).

For this, Carter observes ([17], Lem. 11.(i), p. 14) thatWE6 acts transitively on roots
α ∈ �(E6), that StabWE6

α acts transitively on the A5 subsystem of roots β orthogonal
to α, and that StabWE6

(α, β) acts transitively on the A3 subsystem the roots γ orthog-
onal to both α and β, so that WE6 acts transitively on mutually orthogonal ordered
triples (α, β, γ ). From there we may further see StabWE6

(α, β, γ ) acts transitively on
the A1 subsystem {±δ} of roots orthogonal to all of α, β, γ . That the transitivity on
quadruples is simple follows, since

∣

∣�(A1)
∣

∣ = 2, from repeated applications of the
orbit–stabilizer theorem:

51, 840
︸ ︷︷ ︸

|WE6 |
= 720

︸︷︷︸

| Stabα|
· 72

︸︷︷︸

|�(E6)|
= 24

︸︷︷︸

| Stab(α,β)|
· 30

︸︷︷︸

|�(A5)|
·72 = 2

︸︷︷︸

| Stab(α,β,γ )|
· 12

︸︷︷︸

|�(A3)|
· 30 · 72. 
�

Remark 4.21 If we view T 4 as the maximal torus of F4 < E6, it follows from the
equation |WE6 | = 45 · |WF4 | that WF4 injects into WE6 as the normalizer of T 4. The
author is advised this result can be understood from Carter’s book ([18], Sec. 13.3).

Remark 4.22 A standard system of simple roots for E6 in R5 × R3 is given ([8],
Planche V, p. 260) by

� := {

ζ := 1
2 [1 1 1 1 1; 1 1 1],

−γ12 := −[1 1 0 0 0; 0 0 0],
δ12 := [1 −1 0 0 0; 0 0 0],
δ23 := [0 1 −1 0 0; 0 0 0],
δ34 := [0 0 1 −1 0; 0 0 0],
δ45 := [0 0 0 1 −1; 0 0 0]}.

These roots span the six-dimensional subspace
(

R5 × {0}3) + R · [1 1 1 1 1; 1 1 1]
of R8 and one obtains a system � of 72 roots obtained from permutation of the first

123



218 J. D. Carlson

five coordinates of

ζ, γ12, δ12, η12 := ζ − γ12, ε1 := ζ − 2γ12 + 2δ12 + 3δ23 + 2δ34 + δ45

= 1
2 [1 −1 −1 − 1 − 1; 1 1 1].

and multiplication by ±1. We may choose the positive roots �+ to be the 36 in the
union of the following 135 maximal mutually orthogonal sets:

(60) {εa, ηab, γac, δde}, where
∣

∣{a, b, c, d, e}∣∣ = 5 and d < e,

(30) {ηab, ηcd , γac, γbd}, where
∣

∣{a, b, c, d}∣∣ = 4,

(15) {ηab, ηcd , δab, δcd}, where
∣

∣{a, b, c, d}∣∣ = 4 and a < b and c < d,

(15) {γab, γcd , δab, δcd}, where
∣

∣{a, b, c, d}∣∣ = 4 and a < b and c < d,

(15) {ζ, εa, δbc, δde}, where
∣

∣{a, b, c, d, e}∣∣ = 5 and b < c and d < e.

These 135, found by brute force, form bases of the tangent spaces to the 45 tori
figuring in Proposition 4.20, and each torus is reflected by the product of the four
corresponding root reflections.

For example, the spanR4 × {0}4 of {γ12, δ12, γ34, δ34}meets�+ in {γab, δab : 1 �
a < b � 4}. Among these, the roots orthogonal to δab are {γab, γcd , δcd} (where
∣

∣{a, b, c, d}∣∣ = 4) and likewise the roots orthogonal to γab are {δab, γcd , δcd}, so the
spanning quadruples are determined by the (three) partitions of {1, 2, 3, 4} into pairs
of pairs

{{a, b}, {c, d}}.
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A. Leray and Koszul’s theorem on H∗(G/S1)

In order to obtain Proposition 1.4, we needed some grasp on the cohomology ring
H∗(G/S) of a homogeneous space G/S, for G compact connected and S a circle.

Theorem 1.7 Let G be a compact, connected Lie group and S a circular subgroup.

1. If H1G −→ H1S is surjective, then H∗(G/S) −→ H∗G is injective and its
image is the exterior algebra �P̂ on the intersection P̂ of ker(H∗G → H∗S)

with the graded vector space P of primtive elements of the exterior Hopf algebra
H∗G = �P. Noncanonically, there is a z1 ∈ H1G whose image spans H1S and

H∗(G/S) = �P̂ ∼= H∗G/

(z1).
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2. If H1G −→ H1S is zero, then the image of H∗(G/S) −→ H∗G is the exterior
algebra on a codimension-one subspace P̂ of P and P/P̂ ∼= Qz3 is graded in
degree 3. The image of H∗

S −→ H∗(G/S) is the subalgebra Q[s]/(s2) generated
by a nonzero s ∈ H2(G/S), and there are noncanonical isomorphisms

H∗(G/S) ∼= �P̂ ⊗ Q[s]
(s2)

∼= H∗G
(z3)

⊗ Q[s]
(s2)

.

We found belatedly that this is a trivial generalization of long-known results. Gen-
eral statements on the cohomology of a homogeneous space were already available to
Leray in 1946, the year after his release from prison ([41], §3, item (4)). In the second
of his four Comptes Rendus announcements from that year ([40], bottom of p. 1421),
he states the following result.2

Theorem A.1 (Leray 1946) Let K be a compact, simply-connected Lie group and S
a closed, one-parameter subgroup [viz. a circle]. Write π : K −→ K/S for the pro-
jection. Then H∗(K/S; Q) is generated as a commutative graded algebra by finitely
many classes zα of odd degree and one class s ∈ H2(K/S; Q), subject to the sole
relation sn+1 = 0 for a certain [positive natural] n. The ring H∗(K ; Q) is freely
generated as a commutative graded algebra by the classes π∗zα and one further class
z2n+1 ∈ H2n+1(K ; Q).

More explicitly, if P is a homogeneous vector space of generators for the exterior
algebra H∗K = �P , then the image of H∗(K/S) −→ H∗K is an exterior subalgebra
�P̂ on a subspace P̂ ∼= P/Qz2n+1 of codimension 1, and lifting P̂ back to H∗(K/S)

induces a Q-algebra isomorphism

H∗(K/S) ∼= Q[s]/(sn+1) ⊗ �P̂ . (A.1)

The second clause of Theorem 1.9 is clearly a refinement of this result; if one omits
Leray’s hypothesis K be simply-connected and admits the possibility n be 0, then so
is the first clause.

The following year, Koszul published a note ([39], p. 478, display), also in the
Comptes Rendus, regarding Poincaré polynomials for these spaces, which implies
n = 1 in Leray’s result.

Theorem A.2 (Koszul 1947) Let K be a compact, connected Lie group and S a
compact, connected 1-dimensional subgroup [again, a circle] such that the image of
H1(S; Q) −→ H1(K ; Q) is zero. Then the Poincaré polynomials (in the indeterminate
t) of K/S and K are related by

p(K )(1 + t2) = p(K/S)(1 + t3).

Koszul, unlike Leray, does include an indication of a proof, which we translate without
elaboration, leaving it to the reader to decide for themself how much further detail

2 See also Borel ([6], par. 12); only due to Borel’s account are we confident “compact Lie group” was the
accurate contemporary reading of Leray’s groupe bicompact.
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they require and provide it if they can. After we will provide an alternate proof of
Theorem 1.9 and hence of Leray’s and Koszul’s theorems.

Koszul’s proof A choice of K -biinvariant Riemannian metric B on K induces an
isomorphism φ : v �−→ B(v,−) from the Lie algebra k, conceived as the space of
left-invariant vector fields on K , to the space �1 := �1(K )K of left-invariant 1-
forms. This allows us to define a Lie bracket on�1(K )K , and to associate to S the Lie
subalgebra�1,0 := φ(s) and its B-orthogonal complement�0,1. Then the differential
algebra�•(K )K is bigraded by�p,q = ∧p

�1,0 ∧∧q
�0,1, and particularly we may

consider the spectral sequence associated to the filtration by ideals I q = �•,�q . In
this spectral sequence, one has

E0,•
1

∼= �•(K/S)K ,

E0,•
2

∼= H∗(K/S),

E0,•∞ ∼= im
(

H∗(K/S) −→ H∗K
)

.

Observe that given any nonzero element α ∈ �1,0, we always have dα ∈ I 2. We can
uniquely decompose the Cartan invariant 3-form ω : u ∧ v ∧ w �−→ B

([u, v], w)

on
K as ω = ∑

ω j for ω j ∈ �3− j, j . Now dω = 0 and ω0 = 0, so we have

(dα)2 = d(α ∧ dα) = 3B(α, α)dω2 = −3B(α, α)dω3,

which simultaneously lies in I 4 and is the exterior derivative of an element of I 1. Thus
the image of H∗(K/S) −→ H∗K cannot contain the class [ω].3 
�

Before our proof, we illustrate with a representative example the features of the
general case.

Example A.3 Let S be a circle contained in the second factor of the groupG = U(2)×
Sp(1). The cohomology of G is the exterior algebra H∗G = �[z1, z3, q3], where
deg z1 = 1 and deg z3 = deg q3 = 3, and the cohomology H∗

S = H∗(BS) = Q[s],
where deg s = 2. Since G/S = U(2) × (

Sp(1)/S
) ≈ U(2) × S2, we expect to find

E∞ ∼= (

Q[s]/(s2)) ⊗ �[z1, z3] in the Serre spectral sequence (Er , dr ) associated to
G → SG → BS. Indeed, its E2 page is the tensor product H∗

S ⊗ H∗G. From the
fact the map H1G −→ H1S is zero it will be shown to follow that the differential
d2 is zero. Next, E4 = E2 for lacunary reasons. The differential d4 can be shown to
annihilate each of s, z1, z3 and take q3 �−→ s2.

3 This is not made explicit by Koszul, but we have ��2,• = 0, so ω = ω2 + ω3 really. If we pick a
B-orthonormal basis of�1 including α, and expand in terms of structure constants, we [12] getω2 = α∧dα
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z1z3q3 sz1z3q3 s2z1z3q3 · · ·
6 z3q3 sz3q3 s2z3q3 · · ·

z1z3 z1q3 sz1z3 sz1q3 s2z1z3 s2z1q3 · · ·

3 z3 q3 sz3 sq3 s2z3 s2q3 · · ·

z1 sz1 s2z1 · · ·

0 1 s s2 · · ·

E4 0 2 4 · · ·

z1z3 sz1z3

3 z3 sz3

z1 sz1

0 1 s

E∞ 0 2

Because d4 is an antiderivation, its kernel is the subalgebra Q[s]⊗�[z1, z3] and its
image the ideal (s2) in that subalgebra. Elements mapped to a nonzero element by d4
are marked as blue in the diagram and elements in the image in red; the vector space
spanned by these elements vanishes in E5. Thus E5 = (

Q[s]/(s2)) ⊗ �[z1, z3]. For
lacunary reasons, E5 = E∞.

We work with a general compact, connected Lie group G and closed, connected
subgroup H , specializing to the desired case at the end. Because the Borel fibration
G → GH → BH is a principal G-bundle, it admits a classifying map to BG,
which can be seen to be (homotopic to) the map BH = EG/H → EG/G = BG
functorially induced by the inclusion H ↪→ G. The resulting map of principal G-
bundles

G

��

G

��
GH

ψ
��

��

EG

��
BH

ρ
�� BG

induces a map (ψ∗
r ) of Serre spectral sequences. Each page of the right sequence

(˜Er , d̃r ) is of tensor form, and the transgressions d̃2k : ˜E0,2k−1
2k −→ ˜E2k,0

2k induce ([5],
Thm. 13.1) a degree-one linear isomorphism

PH∗G ∼−→ H�1
G

/

H�1
G H�1

G

between the space of primitive elements of the Hopf algebra H∗G and the space
of indecomposables of the polynomial ring H∗

G = H∗BG, which one should think
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of as residues of homogeneous generators. This bijection completely determines the
differentials d̃r , and in turn the differentials of the left spectral sequence (Er , dr ) are
completely determined by the chain relations ψ∗

r d̃r = drψ∗
r . A lifting of the linear

isomorphism to a degree-one linear injection τ : PH∗G −→ H∗BG, followed by the
map ρ∗ : H∗BG −→ H∗BH induces a unique derivation d = ρ∗ ◦ τ on the page
E2 = H∗BH ⊗ H∗G which vanishes on the H∗BH factor and simultaneously lifts
all the differentials dr . Borel shows ([5], Thm. 25.2) the cohomology of the resulting
algebra (H∗

H ⊗ H∗G, d), the Cartan algebra is isomorphic to H∗(G/H).4 In fact,
one recovers the Serre spectral sequence again as the spectral sequence induced from
the Cartan algebra by the filtration induced from the grading of H∗

H .
An important feature of this cdga is that typically some of the differentials dz of

primitives z ∈ PH∗G are “redundant” in the sense they lie in the ideal H�1
G ·d(PH∗G)

generated by positive-degree multiples of such differentials. The space P̂ of these
primitives with redundant differential is called the Samelson space, and if we denote
its complement by P̌ := PH∗G/P̂ , the filtration spectral sequence induced by the
grading on H∗

K shows the Cartan algebra factors as a tensor product

(H∗
H ⊗ H∗G, d) ∼= (H∗

H ⊗ �P̌, d) ⊗ (�P̂, 0)

of cdgas [2] ([29], Thm. 2.15.V, p. 73) ([44], Prop. 8.5.4, p. 141); moreover, viewing
the filtration spectral sequence as the Serre spectral sequence ofG → GH → BH , we
may identify �P̂ with the image of H∗(G/H) −→ H∗G. A pure Sullivan algebra
is a free commutative graded algebra Q[Q] ⊗ �P on an evenly- and positively-
graded rational vector space Q and an oddly- and positively-graded P equipped with
a derivation d vanishing on Q such that d2 = 0 and dP < Q[Q]. For such a cdga, a
Samelson space P̂ is similarly defined as {z ∈ P : dz ∈ (Q · dP)}.

Proof of Theorem 1.9 If H1G −→ H1S is surjective, then H∗G ∼= H∗S⊗H∗(G/S)

by Samelson’s theorem ([45], Satz VI(b), p. 1134), yielding the first clause.
Otherwise, we compute H∗(G/S) as the cohomology of the Cartan algebra

(H∗
S ⊗ H∗G, d). Write H∗

S = Q[s] for s ∈ H2BS1. Since Q[s] is a graded principal
ideal domain, in any homogeneous basis (z j ) of PG, all but one dz j is a redun-
dant generator of the ideal (dz j ) � Q[s], so the Samelson subspace P̂ generating
im

(

H∗(G/S) → H∗G
)

has dimension rk G − 1, and hence H∗(G/S) has the form
claimed in (A.1) (i.e., G/S is formal in the sense of rational homotopy theory). The
map H2BG −→ H2BS = Q · s is conjugate through transgression isomorphisms to
the map H1G −→ H1S and hence by assumption is trivial. It follows from Proposi-
tion 4.2 that S lies in the commutator subgroup K of G and we can factor the map of
interest as H∗

G → H∗
K → H∗

S . The first map is surjective since G has a finite central
extension ˜G of the form ˜K × (˜G/˜K ), so that H ∗̃

K
∼= H∗

K is a tensor factor of H ∗̃
G

∼= H∗
G

4 Cartan earlier arrived at the same algebra by very different methods ([16], Thm. 5, p. 216). Borel’s
proof can be seen in retrospect to be a consequence of a general method in rational homotopy theory ([22],
Prop. 15.5,8) which converts compatible models of a fibration E −→ B and of a map ρ : B′ −→ B into a
model of the total space of the pullback ρ∗E −→ B′.
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(Lemma 3.13) and we may just consider the image of H∗
K −→ H∗

S . By the following
lemma this is (s2), so n = 1 in (A.1). 
�
Lemma A.4 Let K be a semisimple Lie group containing a circle S. The image of
H∗
K −→ H∗

S
∼= Q[s] contains s2 ∈ H4

S .

Proof Let T be a maximal torus of K containing S. By Lemma 3.5, H∗
K −→ H∗

T is
an injection with image the invariant subring (H∗

T )W under the action of W = WK .
Write R[t] for the graded algebra of polynomial functions on the Lie algebra t of
T , assigning nonzero linear forms degree 2. Extending coefficients to R, the Chern–
Weil homomorphism ([38], Thm. 2.4) and Chevalley restriction theorem ([19], §IV)
translate the sequence

H∗
K

∼−→(H∗
T )W ↪−→ H∗

T H∗
S

into

R[k]K rest−−→∼ R[t]W ↪−→ R[t] rest R[s].

In particular, elements of H4
K correspond to W -invariant quadratic forms on t and

H4
K −→ H4

S is surjective if any such form does not vanish on s. But the Killing
form B of K is a (Ad K )-invariant bilinear form on k, negative definite since K is
semisimple ([11], Prop. V.(5.13), p. 214), so precomposing the diagonal inclusion
t t2 ↪→ k2 yields a W -invariant quadratic form on t restricting nontrivially to any
one-dimensional subspace s. 
�
Remark A.5 The author’s original proof of this lemma proceeded laboriously by cases
through the simple groups.He is indebted toMathewWolak for pointing out theKilling
form is invariant and definite.

B. Partial reductions

Some fragments of the results we are interested in persist even in the case G is merely
assumed to be a pro-Lie group, not necessarily connected, but as the surviving results
are not so powerful as one might like, they have been deferred to this appendix. We
can nevertheless prove the expected result when the isotropy group remains a circle.

B.1. Connected groups

Let G be a topological group and K a closed subgroup. We would like to reduce the
question of when (G, K ) is isotropy-formal to the same for connected components
(G0, K0) of the identity in each, but that is too much to hope. There is at least the
following diagram:
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G0/K0 ��

i

��

G/K0
δ ��

j

��

G/K

k

��
K0G0/K0 �� K0G/K0

ε ��

η

��

K0G/K

θ

��
KG/K0

ζ �� KG/K .

As K0 lies in G0, the map j can be understand as the disjoint union of π0G parallel
copies of i , so the one surjects in cohomology just if the other does. Less can be said
about the other maps.

Proposition B.1 Assume π0K is finite. If j∗ : H∗
K0

(G/K0) −→ H∗(G/K0) is sur-
jective, then so is k∗ : H∗

K0
(G/K ) −→ H∗(G/K ), and (θ ◦ k)∗ is surjective as well if

and only if additionally the left action of K on G/K induces a trivial action of π0K
on H∗(G/K ). Suppose additionally K lies in G0 and H∗

K0
is free over H∗

K . Then if
k∗ is surjective, so also are (θ ◦ k)∗ and (η ◦ j)∗ and j∗.

Proof Themaps δ, ε, and ζ in the diagram are coverings induced by a rightπ0K -action
in such a way that j and η and hence j∗ and (η ◦ j)∗ are π0K -equivariant. Since we
assume π0K is finite, a standard lemma ([30], Prop. 3G.1) identifies δ∗, ε∗, and ζ ∗
with inclusions of invariants so that k∗ becomes the restriction H∗

K0
(G/K0)

π0K −→
H∗(G/K0)

π0K and (θ ◦ k)∗ the restriction H∗
K (G/K0)

π0K −→ H∗(G/K0)
π0K . If

j∗ is surjective, then k∗ must be as well, and if (η ◦ j)∗ is, then so is (θ ◦ k)∗,
in both cases by averaging. Now, the map (θ ◦ k)∗ : H∗

K (G/K ) −→ H∗(G/K ) is
surjective if and only if the Serre spectral sequence associated to the Borel fibration
G/K → KG/K → BK collapses at E2 and the action of π1BK on the cohomology
of the fiberG/K is trivial ([5], Prop. 4.1, p. 129) so triviality of the action is necessary.
On the other hand, if k∗ is surjective and the action is trivial, then the map of Serre
spectral sequences induced by the map K0G/K KG/K is represented on the E2
page by an injection H∗

K ⊗H∗(G/K ) H∗
K0

⊗H∗(G/K ), and since all differentials

vanish on E0,•
2

∼= Q ⊗ H∗(G/K ) in the larger sequence, the same holds in the smaller,
so it also collapses and (θ ◦ k)∗ is surjective.

In general, in a Borel fibration X → XK → BK , the action of π1BK = π0K on
the fiber X descends from the action of K on X , so if we assume K lies in G0, then
by path-connectedness of the latter, π0K acts trivially on the right on the fibers G,
K0G, and KG of the Borel fibrations over BK , the cohomology of whose total spaces
is in question. If we assume additionally that H∗

K0
is free over H∗

K , then Corollary
B.3 applies to identify j∗ with idH∗

K0
⊗H∗

K
k∗ and (η ◦ j)∗ with idH∗

K0
⊗H∗

K
(θ ◦ k)∗,

meaning in either pair of maps, the latter is surjective if and only if the former is. If
k∗ is surjective, then, by the argument of the previous paragraph, so also is (θ ◦ k)∗,
and then by Corollary B.3 so also are (η ◦ j)∗ and j∗. 
�

As limiting as the hypotheses seem, they are necessary. We will discuss their dis-
appointing asymmetry in Remark B.4.
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Lemma B.2 Let a map of fibrations with homotopy fiber F be given as in (3.1) such
that π1B0 acts trivially on H∗F and H∗B is a flat module over H∗B0. Then there is
an H∗E0-algebra isomorphism

ψ : H∗B ⊗
H∗B0

H∗E0
∼−→H∗E

natural in ξ .

Proof The map induces a map (ψ0
r ) of Serre spectral sequences (E0

r , d
0
r ) −→

(Er , dr ). As each E0
r is an H∗B0-algebra and each Er an H∗B-algebra, we obtain a

collection of maps

ψr : E ′
r := H∗B ⊗

H∗B0
E0
r −→ H∗B ⊗

H∗B
Er

∼−→Er .

If we assign E ′
r the differential d

′
r := id⊗ d0r , then (E ′

r , d
′
r ) is a spectral sequence by

flatness:

H∗E ′
r = H∗B ⊗

H∗B0
H∗E0

r = H∗B ⊗
H∗B0

E0
r+1 = E ′

r+1.

Since (ψ0
r ) was a spectral sequence map, so also is (ψr ). As we assume simple coef-

ficients, ψ2 is the canonical isomorphism. Inductively, since each cochain map ψr is
an isomorphism, so also is the map ψr+1 it induces in cohomology. Thus ψ∞ is an
isomorphism. As ψ∞ is the map of associated graded algebras induced from ψ , it
follows ψ is an isomorphism as well. 
�
Corollary B.3 Let a Lie group K act on X in such a way that the action of π1BK
on H∗X induced by the Borel fibration X → XK → BK is trivial. Suppose H is a
subgroup of K such that H∗

H is free as an H∗
K -module. Then there is an isomorphism

H∗
H ⊗H∗

K
H∗
K X ∼−→H∗

H X natural in X.

Proof Apply Lemma B.2 to the map XH −→ XK . 
�
Remark B.4 In case H∗

K is not free over H∗
G , Corollary B.3 can fail. To see this,

consider the block-diagonal inclusion of H = SU(3)2 in K = SU(6) and let each act
on the right of X = U(6) by multiplication. We want to determine whether the map

H∗
SU(6) ⊗

H∗
SU(3)2

H∗(U(6)/SU(6)
) −→ H∗(U(6)/SU(3)2

)

is an isomorphism. But U(6)/SU(6) ∼= S1 has cohomology ring �z1 concentrated
in odd degree, so the map H∗

SU(6) −→ H∗(U(6)/SU(6)
)

is trivial and the domain is
isomorphic to

(

HSU(3)2 ⊗
H∗
SU(6)

Q
) ⊗ �z1.
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On the other hand, it is easy to see from the Cartan algebra of Appendix A that
H∗(U(6)/SU(3)2

) ∼= H∗(SU(6)/SU(3)2
) ⊗ �z1, so the map in question is an iso-

morphism only if HSU(3)2 ⊗H∗
SU(6)

Q −→ H∗(SU(6)/SU(3)2
)

is. This is, however,
untrue ([29], pp. 486–488): the target is the ring Tor∗H∗

SU(6)
(Q, H∗

SU(3)2
) and the sources

the proper subring Tor0H∗
SU(6)

(Q, H∗
SU(3)2

).

The condition that K lie within G0 is severe as well, but without it, the right action
of K on G/K0 already induces a nontrivial action of π1BK = π0K on H0(G/K0).

B.2. Lie groups

To make as complete as possible the attempted reduction of the problem of isotropy-
formality to the case of a torus in a semisimple group, we include the case of compact
groups. We get surprisingly far, as there are relatively few algebraic obstacles, but we
only achieve a complete reduction if the isotropy group is Lie. In case the isotropy
group is a circle, we do get back a version of Theorem 1.5, namely Corollary B.15.

Every compact Hausdorff group G can be realized as an inverse limit of Lie group
homomorphisms ([32], Ex. 3.4, p. 137), which is to say the limit in the category of
topological groups of a directed system

(Gα, φα→β : Gα −→ Gβ)α�β

ofLie groups, themapsφα→β betweenwhichmaybe taken surjective ([31], Prop. 1.33,
p. 21). Such a realization comes equipped with unique surjections φα : G −→ Gα for
each Gα such that φβ = φα→β ◦ φα whenever α � β. If K is a closed subgroup of
G, let Kα := φαK � Gα; then the restrictions φα→β � Kα realize K as lim←− Kα . The
inclusion map of inverse systems (Kα, φα→β � Kα) −→ (Gα, φα→β) induces a quo-
tient system (Gα/Kα, φ̄α→β) of continuous surjections of homogeneous spaces and
the left action of (Kα, φα→β � Kα) induces a system (KαGα/Kα, φ̄′

α→β) of homo-
topy quotients. The canonical map G/K −→ limGα/Kα is a continuous bijection
of compact Hausdorff spaces, hence a homeomorphism (in fact, this is still the case
if G and K are non-compact pro-Lie groups ([43]), Lem. 1). We take as our realiza-
tion of E(−) −→ B(−) the Milnor construction [42]. The functorially induced map
EG −→ lim EGα is actually a G-equivariant homeomorphism, inducing a homeo-
morphism BG −→ lim BGα . Thus the map EK × G/K −→ lim(EKα × Gα/Kα)

is a K -equivariant homeomorphism as well, so finally we can write KG/K as
lim KαGα/Kα . Then the fiber inclusion i : G/K −→ KG/K is identified with
lim(iα : Gα/Kα −→ KαGα/Kα).

Čech cohomology (with coefficients in the constant sheaf Q, henceforth) converts
inverse limits to direct limits ([50], pp. 318–9); the essential point is that an inverse
limit can be viewed as an intersection.

Example B.5 The solenoid � which is the inverse limit of the sequence · · · →
S1

2→ S1
2→ S1, though connected, has continuum-many path components, so

particularly H0� is large. Nevertheless, applying Ȟ0 to the sequence yields iso-

morphisms · · · ← Q
id← Q

id← Q and Ȟ1 isomorphisms · · · ← Q
2← Q

2← Q, so
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Equivariant formality of isotropic torus actions 227

Ȟ0� ∼= Q ∼= Ȟ1�. If we identify the map Ȟ1S1 ∼−→Ȟ1� induced by projection to
the last circle with idQ, then projection to the nth-from-last induces multiplication by
1/2n .

Thus we can identify the restriction Ȟ∗(G/K ↪−→ KG/K ) with

lim−→
(

H∗
Kα

(Gα/Kα)
i∗α−→ H∗(Gα/Kα)

)

. (B.1)

The following is then clear.

Proposition B.6 If there is a cofinal subset of indices α such that the associated i∗α
are surjective, then so is i∗.

But i∗ can be surjective though no individual map H∗
Kα

(Gα/Kα) −→ H∗(Gα/Kα)

be.

Example B.7 Set H1 = SU(6) and for each k � 2 set Hk = S
(

U(3) × U(6)
)

. Let G
be the product

∏

k�1 Hk and K the subgroup
{

(A1 ⊕ B1)
�(Bk−1, Ak ⊕ Bk)k�2 ∈

H1 × ∏

k�2 Hk : Ak, Bk ∈ SU(3)
}

, where Ak ⊕ Bk ∈ SU(6) denotes the 6 × 6
block-diagonal matrix with nonzero 3×3 blocks Ak and Bk . Then (G, K ) is isotropy-
formal, and is the limit of the quotientsGn = ∏

k�n Hk , with the expected projections
φn : G −→ Gn and Kn = φnK , but none of the pairs (Gn, Kn) is isotropy-formal.

There is an evident artifice to this example. The groups Hk for k � 2 contain
subgroups H ′

k = SU(3) × SU(6) and also admit ˜Hk = SU(3) × SU(6) × S1 as six-
fold covers, and these are decomposable. ReplacingG with ˜G = H1×∏

k�2
˜Hk , with

˜Gn = ∏

k�n
˜Hk , and K with the isomorphic subgroup ˜K of G ′ with entries 1 in all S1

factors and Ak, Bk in special unitary factors as before, or replacingG withG ′ = H1×
∏

k�2 H
′
k and maintaining the old K , the cohomological behavior of

(

˜Gn, im(˜K →
˜Gn)

)

is the same as before, each ˜Gn −→ Gn being a 6n−1-fold central cover, and the
behavior of

(

G ′
n, im(K → G ′

n)
)

is similar except that all the H∗S1 tensor factors are
lost. But ˜G is also the limit of the groups ˜G ′

n = (

SU(6) × SU(3) × S1
)n

, and G ′ of
the groups G ′′

n = (

SU(6) × SU(3) × {1})n , and the images ˜K ′
n of ˜K → ˜G ′

n and K ′
n

of K → G ′
n are both isomorphic to

{

(Ak ⊕ Bk, Bk, 1)k�n : Ak, Bk ∈ SU(3)
}

, so the
pairs (˜G ′

n,
˜K ′
n) and (G ′

n, K
′
n) are all isotropy-formal. Thus in a sense we only obtained

this counterexample by perversely choosing a bad inverse system when better— up
to finite coverings—were plainly available. The author still does not know if more
meaningful counterexamples exist.

In the event G and K are connected, the pure Sullivan models of Cartan and
Kapovitch ([16], Thm. 5, p. 216) ([5], Thm. 25.2) ([37], Prop. 1) ([23], Thm. 3.50)
express each i∗α from (B.1) as the map induced in cohomology by cdga maps

(H∗
Kα

⊗ H∗
Kα

⊗ H∗Gα, d̃α

) −→ (H∗
Kα

⊗ H∗Gα, dα

)

. (B.2)

With some care, we can realize i∗ = lim−→ i∗α as the cohomology of a colimit of these
models.
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228 J. D. Carlson

Proposition B.8 Let (G, K ) be a pair of compact, connected Hausdorff groups. Then
the cohomology of the fiber inclusion G/K −→ KGK is induced by a map

(Ȟ∗
K ⊗ Ȟ∗

K ⊗ Ȟ∗G, d̃
) −→ (Ȟ∗

K ⊗ Ȟ∗G, d). (B.3)

of pure Sullivan algebras given as follows.5 The differential d is the unique derivation
vanishing on H∗

K and extending the composition

P Ȟ∗G τ−→∼ QȞ∗
G =: Ȟ�1

G / Ȟ�1
G Ȟ�1

G
s−→ Ȟ∗

G
ρ∗
−→ Ȟ∗

K ,

where τ is the transgression in the Serre spectral sequence of G → EG → BG, the
map s is a certain graded linear lifting of the indecomposables of Ȟ∗

G to generators,
and ρ = B(K ↪→ G) is the canonical map. The differential d̃ is the unique derivation
vanishing on Ȟ∗

K ⊗ Ȟ∗
K and taking z ∈ P Ȟ∗G to 1⊗ dz − dz ⊗ 1 ∈ Ȟ∗

K ⊗ Ȟ∗
K . The

map of differential graded algebras is that quotienting out the ideal Ȟ�1
K ⊗ Ȟ∗

K ⊗ Ȟ∗G.

Proof First we show this is a map of pure Sullivan algebras, then that it computes the
map in cohomology claimed. For the former, we need only see the commutative graded
algebras underlying the proposed models are free, which is to say Ȟ∗

K is a polynomial
ring and Ȟ∗G an exterior algebra. This results from the rather restricted nature of
surjective homomorphisms G G ′ between compact, connected Lie groups: such a
map induces a surjection g g′ of reductive Lie algebras, which is a factor projection.
The group map is thus finitely covered by a factor projection:

G ′′ × ˜G ′ �� ��

��

˜G ′

��
G �� �� G ′.

If K is a subgroup of G and K ′ its image in G ′, then K K ′ is likewise finitely
covered by a factor projection K ′′ × ˜K ′

˜K ′.6 Since we take rational coefficients,
by Proposition 3.12 the maps in cohomology are then tensor factor inclusions of
the form H∗G ′ ∼→H∗

˜G ′ −→ H∗G ′ ⊗ H∗G ′′ ∼→H∗G and H∗BK ′ −→ H∗BK ′ ⊗
H∗BK ′′ ∼→H∗BK . Thus each of the maps between the models of KαGα/Kα and
Gα/Kα may be replaced with a tensor factor inclusion. But the direct limit of such
a system is a tensor product by definition, and a tensor product of free commutative
algebras is again free. As Čech cohomology converts inverse limits to direct limits,
we can substitute Ȟ∗

K for lim−→ H∗
Kα

and Ȟ∗G for lim−→ H∗Gα .

5 It is tempting to call these algebras Sullivan models, but to do so would require cga quasi-isomorphisms
from our algebras to the algebras of polynomial differential forms APL(K G/K ) and APL(G/K ). We can
construct such maps at each level of the inverse system, but as APL computes singular cohomology, it is
unclear we will still have quasi-isomorphisms when we are done.
6 But not necessarily in such a way that K ′′ is contained in G′′ and ˜K ′ in ˜G′. For example, let K = �K ′
be a diagonally embedded copy of K < G in G × G and consider the factor projection G × G G.
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Equivariant formality of isotropic torus actions 229

To see the cohomology of the map is as claimed, we must construct the differentials
to be the colimit of the Cartan and Kapovitch differentials for the Lie pairs (Gα, Kα).
Note that thesemodels are not quite functorial, in the sense that the differentials dα and
d̃α—given as in the statement of the theorem if (G, K ) = (Gα, Kα)—each depend
on an arbitarily chosen section QH∗

Gα
−→ H∗

Gα
of the reduction H∗

Gα
−→ QH∗

Gα
.

For there to be a colimit at all, the sections must be chosen coherent in the sense the
obvious squares

QH∗
Gα
��

sα

��

QH∗
Gβ

��
sβ

��

��Q(Bφα→β)∗��

HGα H∗
Gβ

��
(Bφα→β)∗
��

(B.4)

commute for all α � β. One might hope to achieve this by defining s first and then
restricting, but then it is not necessarily the case that the image of the composition
QH∗

Gα
QȞ∗

G
s→ Ȟ∗

G lies in the image of HGα Ȟ∗
G . Instead, note that the limit

G will not change if we extend the diagram to include all quotients of all Gα , so we
do. Next, since a finite covering induces an isomorphism in rational cohomology, we
may, by picking one ring in each isomorphism class, replace the diagram of graded
rings H∗

Gα
by a skeleton in which no nonidentity arrow is an isomorphism.7 Since the

Gα are Lie groups, the indexing partial order is discrete and has minimal elements,
which are now of the form H∗

S1
or H∗

Gα
for Gα simple. Now an induction is possible.

For the base case, QH∗
Gα

is one-dimensional and sα is uniquely determined. For the
induction step, because we have included all quotient groups in the diagram, each H∗

Gα

is limβ<α H∗
Gβ

. As the sβ have been chosen to make the squares (B.4) commute, the
limit s�α := limβ<α sβ makes sense and we may take sα to be the composition

QH∗
Gα

∼−→ limβ<α QH∗
Gβ

s�α limβ<α H∗
Gβ

∼−→H∗
Gα

.

This constructs sα for all α; now we may take s = lim sα .
It is now clear that (B.3) is the colimit of the maps (B.2), so as colimit is an exact

functor, wemay commute the colimit in (B.1) with cohomology to arrive at an identifi-
cation of Ȟ∗(G/K ↪−→ KG/K )with the cohomology of themodel (B.3) as claimed.
�

From the existence of these pure Sullivan algebras we can with little effort extract
generalizations of results known ifG is a Lie group. The common thread in the proofs is
that the assumption from the Lie case that the space of generators is finite-dimensional

7 To appreciate how drastic this reduction is, note that if the solenoid � of Example B.5 is a quotient of
G, say G = H × �, then the corresponding parts of the diagram of Q-algebras comprise solely factors
H∗
Hα

and H∗
Hα

⊗ H∗
S1
. Of course, this staggering swindle is only possible because we have already passed

to a diagram of graded vector spaces; nothing like this can be hoped to hold in the original diagram of Lie
groups.
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is actually irrelevant. We say a cdga is formal if it can be connected through a zig-
zag of cdga quasi-isomorphisms to its own cohomology, viewed as a cdga with
differential zero. A space is formal if its algebra APL(X) of polynomial differential
forms is.

Proposition B.9 (Cf. ([29, pp. 83, 152], ([44, Thm. 12.6.2, p. 211], [13, Thm. 7.4.7,8])
Let (G, K ) be a pair of compact, connected Hausdorff groups. The model (Ȟ∗

K ⊗
Ȟ∗G, d) is formal if and only if the ideal of Ȟ∗

K generated by the image of

ρ∗ : Ȟ�1
G −→ Ȟ�1

K is also generated by a regular sequence contained in this image.
(For any finitely-generated pure Sullivan algebra these conditions are equivalent to
the equality dim P̂ = dim P − dim Q.)

Proposition B.10 (Cf. ([15, Thms. A, 3.4]) If a pair (G, K ) of compact, connected
Hausdorff groups is isotropy-formal for Čech cohomology with rational coefficients,
then the models of G/K and KG/K considered above are formal, and the cohomology
of the latter is isomorphic to

Ȟ∗
K ⊗ Ȟ∗

K ⊗ im(Ȟ∗
KGK −→ Ȟ∗G)

Ȟ∗
G

as an (Ȟ∗
K ⊗ Ȟ∗

K )-algebra.

Remark B.11 IfG is a Lie group, these propositionsmeanG/K and KG/K are formal
in the sense of rational homotopy theory, butwe do not recover this statement in general
because Čech and singular cohomology H∗X = H∗(APL(X)

)

will differ.

Proposition B.12 (Cf. ([16, p. 218], [29, Thm. 2.15.V, p. 73], [44, §8.4]) Let (G, K )

be a pair of compact, connected Hausdorff groups such that the model of G/K
considered above is formal and let Q̌ < Ȟ∗

G be a graded vector subspace sent bijec-
tively by ρ∗ : Ȟ∗

G −→ Ȟ∗
K to the space spanned by a regular sequence generating

(ρ∗ Ȟ�1
G ) � Ȟ∗

K . Suppose there is a graded subspace Q̂ < Ȟ∗
G, meeting Q̌ trivially,

such that Ȟ∗
G is the symmetric algebra on Q̌ ⊕ Q̂ and ρ∗ Q̂ � (ρ∗ Ȟ�1

G ) · (ρ∗ Ȟ�1
G ).

Then (G, K ) is isotropy-formal for Čech cohomology with rational coefficients.

Proof Wehave the liberty to choose the sectionQȞ∗
G −→ Ȟ∗

G to take ker ρ∗+Ȟ1
G ·Ȟ1

G

into ker ρ∗ itself. By assumption for each x in a homogeneous basis of Q̂ we can find
a j , b j ∈ Ȟ1

G with x ′ = x − ∑

a jb j ∈ ker ρ∗. Replacing each x with x ′, we obtain
from Q̂ a different set Q̂′ such that ρ∗ Q̂′ = 0 but Q̌+ Q̂′ still irredundantly generates
Ȟ∗
K . The suspension maps Ȟ∗

Gα
Ȟ�1
Gα

/Ȟ�1
Gα

· Ȟ�1
Gα

∼→P Ȟ∗Gα ↪→ Ȟ∗Gα colimit to

a map σ : Ȟ∗
G −→ Ȟ∗G taking Q̌ + Q̂ bijectively onto a space of exterior generators

P < Ȟ∗G. If we write Ȟ∗G = �P and σQ̌ = P̌ and σQ̂′ = P̂ then the model

(Ȟ∗
K ⊗ Ȟ∗

K ⊗ Ȟ∗G, d̃) factors as (Ȟ∗
K ⊗ Ȟ∗

K ⊗�P̌, d̃)⊗(�P̂, 0) and the resultingmap

(Ȟ∗
K ⊗ Ȟ∗

K ⊗ Ȟ∗G, d̃) −→
(

Ȟ∗
K ⊗ Ȟ∗

K

/

(d̃ P̌) ⊗ �P̂, 0
)

is a quasi-isomorphism. Likewise, formality of the model of G/K implies (Ȟ∗
K ⊗

Ȟ∗G, d) −→ (

Ȟ∗
K /(d P̌) ⊗ �P̂, 0

)

is a quasi-isomorphism, so the cohomology of
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Equivariant formality of isotropic torus actions 231

the restriction map (B.3) modeling the fiber inclusion G/K ↪−→ KG/K can be iden-
tified with the surjection (Ȟ∗

K ⊗ Ȟ∗
K )/(d̃ P̌)⊗�P̂ Ȟ∗

K /(d P̌)⊗�P̂ , and (G, K )

is isotropy-formal for Čech cohomology. 
�

These models give us the desired converse of Proposition B.6 if K is a Lie group.
In this case Kα

∼= K far enough up in the partial order. We can loosen this obvious
sufficient condition a bit by asking only that the images of the differentials d̃α stabilize
in a suitable sense.

Proposition B.13 Let (G, K ) be a pair of compact, connected Hausdorff groups,
presented as a projective limit of compact, connected Lie groups (Gα, Kα). Endow
the Cartan and Kapovitch models with differentials such that the obvious ring maps
aredga homomorphisms, as in the proof of Proposition B.8, and suppose there is some
index ω such that for all α � ω the ideal (d̃αPH∗Gα) of H∗

Kα
⊗ H∗

Kα
is generated

by the image of d̃ωPH∗Gω under (Bφ′
α→ω)∗ ⊗ (Bφ′

α→ω)∗. Then (G, K ) is isotropy-
formal if and only if (Gω, Kω) is.

Proof This heavy-handed hypothesis ensures that for all α � ω the primitive elements
P̂⊥

α of H∗Gα not in the image of H∗Gω −→ H∗Gα lie in the Samelson subspace for
both the Kapovitch and the Cartan algebras, so that we can coherently tensor-factor
the exterior algebra on P̂⊥

α := PH∗Gα/PH∗Gω, equipped with trivial differential,
out of these models. Moreover the induced differentials of the nontrivial factors
(H∗

Kα
)⊗2 ⊗ H∗Gω are determined by the compositions

PH∗Gω −→ (H∗
Gω

)⊗2 (H∗
Kω

)⊗2 (H∗
Kα

)⊗2 (H∗
Kβ

)⊗2,

for β � α � ω, where the last two maps represent each target ring as a free module
over the source so the Kapovitch model

(

(H∗
Kα

)⊗2 ⊗ H∗Gα, d̃α

)

of KαGα/Kα factors
as

(

(H∗
Kα

)⊗2, 0
) ⊗

(

(H∗
Kω

)⊗2,0
)

(

(H∗
Kω

)⊗2 ⊗ H∗Gω, d̃ω

) ⊗ (�P̂⊥
α , 0)

for α � ω and likewise the Cartan model (H∗
Kα

⊗ H∗Gα, dα) of Gα/Kα factors as

(H∗
Kα

, 0) ⊗
(H∗

Kω
,0)

(H∗
Kω

⊗ H∗Gω, dω) ⊗ (�P̂⊥
α , 0).

In the colimit this describes a decomposition of the model of G/K ↪−→ KG/K
inducing the map
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(Ȟ∗
K )⊗2 ⊗

(H∗
Kω

)⊗2
H∗((H∗

Kω
)⊗2 ⊗ H∗Gω, dω

) ⊗ �P̂⊥

−→ Ȟ∗
K ⊗

H∗
Kω

H∗(H∗
Kω

⊗ H∗Gω, dω) ⊗ �P̂⊥. (B.5)

in cohomology.
If the map H∗((H∗

Kω
)⊗2 ⊗ H∗Gω, dω

) −→ H∗(H∗
Kω

⊗ H∗Gω, dω) of Proposi-
tion B.8 arising from Gω/Kω ↪−→ KωGω/Kω is surjective, clearly (B.5) is too. On the
other hand, as Ȟ∗

K is a free module A⊗H∗
Kω

over H∗
Kω

, reduction modulo the augmen-

tation ideal of A makes H∗
Kω

a Ȟ∗
K -module, and because Ȟ∗

K acts on the ring on the

right-hand side of (B.5), so also does (Ȟ∗
K )⊗2 by the reduction Ȟ∗

K ⊗ Ȟ∗
K Q⊗ Ȟ∗

K .
This action makes (B.5) a map of modules over (Ȟ∗

K )⊗2 ⊗ �P̂⊥. If this map is sur-

jective, then the map obtained by applying
(

(H∗
Kω

)⊗2 ⊗ Q
) ⊗

(Ȟ∗
K )⊗2 ⊗�P̂⊥ − is also

surjective; but this is just the cohomology of the model of Gω/Kω ↪−→ KωGω/Kω

from Proposition B.8. 
�
If the Kα themselves stabilize to K , then the ideals (d̃αPH∗Gα) in Proposition

B.13 must stabilize as well simply since H∗
K ⊗ H∗

K is Noetherian.

Corollary B.14 Let (G, K ) be a pair of compact, connected Hausdorff groups. If K
is a Lie group, then (G, K ) is isotropy-formal if and only if G admits some Lie quotient
φ : G G such that K ∩ ker φ = 1 and (G, φK ) is isotropy-formal.

This gives us back a version of our circle result.

Corollary B.15 Let G be a compact, connected Hausdorff group and S a circle
subgroup. Then (G, S) is isotropy-formal if and only if S is not contained in the
commutator subgroup of G or otherwise there is some Lie quotient G of G in which
the image of S is a reflected circle, as described in Theorem 1.5.
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