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Abstract We introduce the quasicategory of frames of a cofibration category, i.e. a
new model of the (∞, 1)-category associated with a cofibration category.
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Introduction

There are a number of ways of constructing a quasicategory associated with a cofibra-
tion category. For example one could take the derived homotopy coherent nerve [4] of
its hammock localization [5,6] or apply the derived functor of the Quillen functor i∗1
of [11] to its classification diagram [15]. Of course these constructions only depend
on the weak equivalences and not on cofibrations.

In this paper we introduce a new one called the quasicategory of frames of a cofi-
bration category. It has a number of convenient features compared to the constructions
above. It directly yields a quasicategory so that no fibrant replacement in the Joyal
model structure (or any of related model categories) is necessary. It does not rely on
simplicial enrichment. It takes advantage of the structure of a cofibration category in
such a way that homotopy colimits constructed using methods of homotopical algebra
can be quite directly translated into quasicategorical colimits.
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578 K. Szumiło

This paper is the second in the series of three that summarize the results of the
author’s thesis [19] (see also [20] for a slightly edited version). The first one [21]
constructs a fibration category of cofibration categories which provides a convenient
framework for the homotopy theory of cofibration categories. In particular, the notion
of a fibration of cofibration categories introduced there is a crucial tool in the present
paper. The third one [22] shows that it is possible to reconstruct a cofibration category
from a cocomplete quasicategory in a way that establishes an equivalence between the
homotopy theory of cofibration categories and the homotopy theory of cocomplete
quasicategories. Moreover, in a paper joint with Chris Kapulkin [13] we prove that the
quasicategory of frames models the simplicial localization of a cofibration category.

As an example of an application of this construction, it can be shown that the
simplicial localization of any categorical model of dependent type theory is a locally
cartesian closed quasicategory [12]. This problem has proven difficult when working
with known models of simplicial localization. However, every categorical model of
type theory is a fibration category [1, Theorem 3.2.5] and hence, by results of the
present paper, its localization is a quasicategory with finite limits and our methods can
also be used to prove that it is locally cartesian closed. This result can be seen as a
step towards describing internal languages of higher categories.

We startwith Sect. 1whereweprove a number of preliminary results about diagrams
in cofibration categories andfibrations betweenfibration categories. This section builds
directly on [21]. In Sect. 2 we construct a functor from cofibration categories to
cocomplete quasicategories. To each cofibration category C we associate a nerve-like
simplicial set denoted by NfC and called the quasicategory of frames in C (the letter f
in Nf stands either for frames since those are the objects in NfC or for fractions since
the morphisms in NfC are certain generalizations of left fractions). In Sect. 3 we show
that NfC is a quasicategory an in Sects. 4 and 5 that it is cocomplete.

Our results are parametrized by a regular cardinal κ . We fix such κ and show
that if C is a κ-cocomplete cofibration category, then NfC is a κ-cocomplete qua-
sicategory. In Sects. 2 and 3, to simplify the notation, we take κ = ℵ0 since the
results and methods sections do not depend on κ . However, the discussion of cocom-
pleteness splits into two cases. The (easier) case of κ > ℵ0 is dealt with in Sect. 4
and the case of κ = ℵ0 in Sect. 5.

1 Cofibration categories of diagrams

Our results are based on the techniques of [21] and we start by summarizing the
contents of this paper. The central notion is that of cofibration categories which are
slightly modified duals of Brown’s categories of fibrant objects [3].

Definition 1.1 [21, Definition 1.1] A cofibration category is a category C equipped
with two subcategories: the subcategory of weak equivalences (denoted by

∼→) and
the subcategory of cofibrations (denoted by �) such that the following axioms are
satisfied (here, an acyclic cofibration is a morphism that is both a weak equivalence
and a cofibration).

(C0) Weak equivalences satisfy the 2-out-of-6 property, i.e. if
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Frames in cofibration categories 579

W X Y Z
f g h

are morphisms of C such that both g f and hg are weak equivalences, then so are
f , g and h (and thus also hg f ).
(C1) Every isomorphism of C is an acyclic cofibration.
(C2) An initial object exists in C.
(C3) Every object X of C is cofibrant, i.e. if 0 is the initial object of C, then the
unique morphism 0 → X is a cofibration.
(C4) Cofibrations are stable under pushouts along arbitrary morphisms of C (in
particular these pushouts exist in C). Acyclic cofibrations are stable under pushouts
along arbitrary morphisms of C.
(C5) Every morphism of C factors as a composite of a cofibration followed by a
weak equivalence.
(C6) Cofibrations are stable under sequential colimits, i.e. given a sequence of
cofibrations

A0 A1 A2 · · ·
its colimit A∞ exists and the induced morphism A0 → A∞ is a cofibration.
Acyclic cofibrations are stable under sequential colimits.
(C7-κ) Coproducts of κ-small families of objects exist. Cofibrations and acyclic
cofibrations are stable under κ-small coproducts.

The last two axioms are optional. If we drop them, then cofibration categories can be
considered as models of finitely cocomplete homotopy theories. If we include (C6)
and (C7-κ) for a fixed regular cardinal κ > ℵ0, we obtain models of κ-cocomplete
homotopy theories, we call them (homotopy) κ-cocomplete cofibration categories.
For κ = ℵ0 the name (homotopy) ℵ0-cocomplete cofibration category will refer to a
cofibration category satisfying the axioms (C0–5). The definition readily dualizes to
yield fibration categories which are models of finitely complete homotopy theories or
κ-complete homotopy theories depending on the choice of axioms.

The main result of [21] establishes the homotopy theory of cofibration categories
in the form of a fibration category. We recall the prerequisite definitions before stating
the theorem.

Definition 1.2 A functor F : C → D between cofibration categories is exact if it
preserves cofibrations, acyclic cofibrations, initial objects and pushouts along cofibra-
tions.

If C and D are κ-cocomplete, then F is κ-cocontinuous if, in addition, it preserves
colimits of sequences of cofibrations and κ-small coproducts.

The category of (small) κ-cocomplete cofibration categories and κ-cocontinuous
functors will be denoted byCofCatκ . It is equipped with classes of weak equivalences
and fibrations as defined below.

Definition 1.3 An exact functor F : C → D is a weak equivalence if it induces an
equivalence Ho C → HoD.
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580 K. Szumiło

Definition 1.4 [21, Definition 2.3] Let P : E → D be an exact functor of cofibration
categories.

(1) P is an isofibration if for every object A ∈ E and an isomorphism g : PA → Y
there is an isomorphism f : A → B such that P f = g.

(2) It is said to satisfy the lifting property for factorizations if for any morphism
f : A → B of E and a factorization

PA PB

X

P f

j t
∼

there exists a factorization

A B

C

f

i s
∼

such that Pi = j and Ps = t (in particular, PC = X ).
(3) It has the lifting property for pseudofactorizations if for anymorphism f : A → B

of E and a diagram

PA PB

X Y

P f

j

t
∼

v∼

there exists a diagram

A B

C D

f

i

s
∼

u∼

such that Pi = j , Ps = t and Pu = v (in particular, PC = X and PD = Y ).
(4) We say that P is a fibration if it is an isofibration and satisfies the lifting properties

for factorizations and pseudofactorizations.

Theorem 1.5 [21, Theorem 2.8] The category CofCatκ of small κ-cocomplete cofi-
bration categories with weak equivalences and fibrations as above is a fibration
category.

In the remainder of this sectionwewill introduce a general technique of constructing
fibrations of cofibration categories which relies on the notions of direct categories and
Reedy cofibrations. We will not discuss the basic theory of Reedy cofibrations since
it is already well covered in the literature. A good general reference is [17] which is
written from the perspective of Reedy categories and model categories. The theory of
diagrams over general Reedy categories requires using both colimits and limits. Thus
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Frames in cofibration categories 581

in the case of cofibration categories we have to restrict attention to a special class
of Reedy categories called direct categories where colimits suffice. Specific results
concerning Reedy cofibrations in cofibration categories are explained in [14] from
where we will cite a few most relevant to the purpose of this paper.

Definition 1.6 (1) A category I is direct if it admits a functor deg : I → N that
reflects identities, i.e. if ϕ : i → j is a morphism of I such that deg i = deg j ,
then i = j and ϕ = idi (we consider N as a poset with its standard order).

(2) For a direct category I and i ∈ I , the latching category at i is the full subcategory
of the slice I↓i on all objects except for idi . It is denoted by ∂(I↓i).

(3) Let X : I → C be a diagram in some category and i ∈ I . The latching object of
X at i is the colimit of the composite diagram

∂(I↓i) → I → C

where ∂(I↓i) → I is the forgetful functor sending a morphism of I (i.e. an object
of ∂(I↓i)) to its source. The latching object (if it exists) is denoted by Li X and
comes with a canonical latching morphism Li X → Xi induced by the inclusion
∂(I↓i) → I↓i .

(4) Let C be a cofibration category. A diagram X : I → C is Reedy cofibrant if for all
i ∈ I the latching object of X at i exists and the latching morphism Li X → Xi

is a cofibration.
(5) Let f : X → Y be a morphism of Reedy cofibrant diagrams I → C. It is called a

Reedy cofibration if for all i ∈ I the induced morphism

Xi 	Li X LiY → Yi

is a cofibration (observe that this pushout exists since X is Reedy cofibrant).

The main purpose of this section is to construct certain cofibration categories of
diagrams and establish some practical criteria for verifying that particular functors
between them are weak equivalences or fibrations.

Proposition 1.7 Let C be a cofibration category and J a homotopical direct category
with finite latching categories.

(1) The category C J
R of homotopical Reedy cofibrant diagrams with levelwise weak

equivalences and Reedy cofibrations is a cofibration category.
(2) The category C J of all homotopical diagrams with levelwise weak equivalences

and levelwise cofibrations is a cofibration category.
(3) The inclusion functor C J

R ↪→ C J is a weak equivalence.

Proof (1) [14, Theorem 9.3.8 (1a)]
(2) [14, Theorem 9.3.8 (1b)]
(3) The inclusion functor satisfies the approximation properties of [21, Proposition

2.2] as follows from Lemma 1.9 (1) (in fact, from its standard special case of
D = [0] and I = ∅). 
�
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582 K. Szumiło

The crucial step in the proof of the above proposition is the construction of factor-
izations. In Lemma 1.9 we revisit that construction in order to prove a more general
version which will be a key technical tool in many arguments of this paper.

A homotopical functor f : I → J is a homotopy equivalence if there is a homo-
topical functor g : J → I such that g f is weakly equivalent to idI and f g is weakly
equivalent to idJ (where “weakly equivalent”means “connected by a zig-zag of natural
weak equivalences”).

Lemma 1.8 Let C be a cofibration category and f : I → J a homotopical functor
where I and J are homotopical direct categories with finite latching categories.

(1) The induced functor f ∗ : C J → C I is exact.
(2) If f is a homotopy equivalence, then f ∗ : C J → C I is a weak equivalence of

cofibration categories.
(3) If f is a homotopy equivalence and induces an exact functor f ∗ : C J

R → C I
R, then

it is also a weak equivalence.

Proof The functor f ∗ is clearly exact with respect to the levelwise structures and it is
a homotopy equivalence when f is.

For the last statement, consider the commutative square of exact functors

C J
R C I

R

C J C I

f ∗

f ∗

the vertical maps are weak equivalences by Proposition 1.7 so the conclusion follows
by 2-out-of-3. 
�

The utility of direct categories comes from the fact that it is easy to construct
diagrams and morphisms of diagrams inductively. For our purposes it will be most
convenient to state this in terms of sieves. A functor I → J is called a sieve if it is
an inclusion of a full downwards closed subcategory, i.e. if it is injective on objects,
fully faithful and if i → j is a morphism of J such that j ∈ I , then i ∈ I . If I and
J are homotopical categories, we will further assume as a part of the definition of a
sieve I → J that it preserves and reflects weak equivalences, i.e. a morphism of I is
a weak equivalence if and only if its image in J is.

The first part of the next lemma generalizes the standard construction of factor-
izations into Reedy cofibrations followed by weak equivalences. It says that given a
morphism of diagrams J → C and compatible factorizations of its restriction along a
sieve I ↪→ J and its image under a fibration P : C → D, there is a factorization of the
original morphism compatible with both of them. The other two parts say the same
for lifts for pseudofactorizations and for cofibrations (when P is an acyclic fibration
as in [21, Proposition 2.5]).

Lemma 1.9 Let P : C � D be a fibration between cofibration categories. Let J be a
homotopical direct category with finite latching categories and I ↪→ J a sieve.

(1) Let f : X → Y be a morphism in C J . If X is Reedy cofibrant,
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Frames in cofibration categories 583

PX ˜YP PY and X |I ˜YI Y |IkP kIsP
∼

sI
∼

are factorizations of P f and f |I into Reedy cofibrations followed by weak equiv-
alences such that PkI = kP |I and PsI = sP |I (in particular, P˜YI = ˜YP |I ),
then there is a factorization

X ˜Y Yk s
∼

of f into a Reedy cofibration followed by a weak equivalence such that Pk = kP ,
k|I = kI , Ps = sP and s|I = sI (in particular, P˜Y = ˜YP and ˜Y |I = ˜YI ).

(2) Let f : X → Y be a morphism in C J . If both X and Y are Reedy cofibrant,

PX PY and X |I Y |I

˜YP ̂YP ˜YI ̂YI

kP kI

sP
∼

sI
∼

P f f |I

lP∼ lI∼

are pseudofactorizations of P f and f |I such that Pk = kp, k|I = kI , Pl = lP ,
l|I = lI , Ps = sP and s|I = sI (in particular, P˜YI = ˜YP |I and P̂YI = ̂YP |I ),
then there is a pseudofactorization

X Y

˜Y ̂Y

k

s
∼

f

l∼

such that Pk = kP , k|I = kI , Pl = lP , l|I = lI , Ps = sP and s|I = sI (in
particular, P˜Y = ˜YP, ˜Y |I = ˜YI , P̂Y = ŶP and ̂Y |I = ̂YI ).

(3) If P is acyclic, X is a Reedy cofibrant diagram in C J and

PX ZP X |I Z I
kP kI

are Reedy cofibrations such that PkI = kP |I , then there exists a Reedy cofibration

X Zk

such that Pk = kP and k|I = kI (in particular, P Z = ZP and Z |I = ZI ).

Proof The proofs of three parts are similar to each other so we only provide the first
one. (the second one uses the lifting property for pseudofactorizations and the third
one uses the lifting property of [21, Proposition 2.5]).

It suffices to extend the factorization f |I = sI kI over an object j ∈ J\I of a
minimal degree. Then the statement will follow by an induction over the degree.

By the minimality of the degree of j , Reedy cofibrancy of X and since I ↪→ J
is a sieve the latching objects L j X and L j˜YI exist. Moreover, the induced functor of
latching categories ∂(I↓ j) → ∂(J↓ j) is an isomorphism.Thus P sends themorphism
X j 	L j X L j˜YI → Y j to the analogous morphism PX j 	L j PX P˜YI → PY j . The
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584 K. Szumiło

latter factors as

PX j 	L j PX P˜YI � (˜YP ) j
∼→ PY j

and since P is a fibration we can lift this to a factorization of the former as

X j 	L j X L j˜YI � ˜Y j
∼→ Y j .

This extends the factorization f |I = sI kI over j .
The resulting diagram˜Y is homotopical since it is weakly equivalent to homotopical

Y . 
�
The most typical examples of fibrations are restrictions along sieves.

Lemma 1.10 Let C be a cofibration category. If I and J are homotopical direct
categories with finite latching categories and f : I → J a homotopical functor such
that for every i ∈ I the induced functor of the latching categories ∂(I↓i) → ∂(J↓ f i)
is an isomorphism, then the functor f ∗ : C J → C I induces a functor f ∗ : C J

R → C I
R

which is exact.
Moreover, if f is a sieve, then f ∗ is a fibration.

Proof If f induces isomorphisms of the latching categories, then f ∗ preserves Reedy
cofibrations (and, in particular, Reedy cofibrant diagrams). It also preserves weak
equivalences and colimits that exist in C J

R so it is exact.
If f is a sieve, then it satisfies the exactness criterion above. Moreover, f ∗ is a

fibration by parts (1) and (2) of Lemma 1.9. 
�
The next few lemmas establish some connections between sieves and fibrations

which are reminiscent of classical homotopical algebra if we think of sieves as “cofi-
brations” and sieves I ↪→ J inducing weak equivalences C J

R → C I
R as “acyclic

cofibrations”. This does not quite fit into the classical picture since such “cofibra-
tions” do not really belong to the same category as the fibrations. The situation bears
some resemblance to the “pushout product property” of a simplicial model category
M (see e.g. [8, Definition 4.2.18]), but is different. In the present context it is essential
that Reedy cofibrant diagrams can be seen as “morphisms” from direct categories to
cofibration categories, while in the context of the pushout product property there is
usually no meaningful notion of a morphism from a simplicial set to an object ofM.

Lemma 1.11 Let f : I ↪→ J be a sieve between homotopical direct categories with
finite latching categories and P : C → D a fibration of cofibration categories. Then
the induced exact functor ( f ∗, P) : C J

R → C I
R ×D I

R
DJ

R

(1) is a fibration,
(2) is an acyclic fibration provided that P is acyclic,
(3) is an acyclic fibration provided that both f ∗ : C J

R → C I
R and f ∗ : DJ

R → D I
R are

weak equivalences.

Proof First observe that the pullback in question exists since f ∗ is a fibration by
Lemma 1.10.
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Frames in cofibration categories 585

(1) This follows by parts (1) and (2) of Lemma 1.9.
(2) This follows by (1) above and part (3) of Lemma 1.9.
(2) This follows by (1) above and a diagram chase using the fact that acyclic fibrations

are closed under pullbacks.


�
Lemma 1.12 If C is a cofibration category,

I J

K L

is a pushout square of homotopical direct categories with finite latching categories
and both I ↪→ J and I ↪→ K are sieves, then the resulting square

CL
R CK

R

C J
R C I

R

is a pullback of cofibration categories.

Proof By the construction of pullbacks of cofibration categories it will suffice to verify
that a morphism of diagrams over L is a Reedy cofibration if and only if it is one when
restricted to both J and K . For this it will be enough to observe that both J ↪→ L
and K ↪→ L are sieves and hence for an object l ∈ L we have either l ∈ J and then
∂(J↓l) → ∂(L↓l) is an isomorphism or l ∈ K and then ∂(K↓l) → ∂(L↓l) is an
isomorphism. 
�

Let f : I → J be a homotopical functor of homotopical direct categories and
F : C → D an exact functor of cofibration categories. We say that f has the Reedy
left lifting property with respect to F (or F has the Reedy right lifting property with
respect to f ) if every lifting problem

I C

J D

X

Y

f F

where X and Y are homotopical Reedy cofibrant diagrams has a solution that is also
a homotopical Reedy cofibrant diagram.

Lemma 1.13 Let f : I ↪→ J and g : K → L be sieves between homotopical direct
categories with finite latching categories and F : C → D an exact functor of cofibra-
tion categories. Then there is a natural bijection between Reedy lifting problems (and
their solutions) of the forms

I CL
R (I × L) 	I×K (J × K ) C K C J

R

J CK
R ×DK

R
DL

R J × L D L C I
R ×D I

R
DJ

R.
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586 K. Szumiło

Proof This this will follow from standard adjointness arguments, e.g. as in [10, Propo-
sition D.1.18], if we can verify that a diagram X : J × L → C is Reedy cofibrant if
and only if the corresponding diagram ˜X : J → CL is Reedy cofibrant as a diagram
J → CL

R .
First, assume that X is Reedy cofibrant. For j ∈ J , the diagrams ˜X j , L j ˜X : L → C

can be computed as the left Kan extensions of (restrictions of) X along the projections
(J↓ j) × L → L and ∂(J↓ j) × L → L . These Kan extensions exist and are Reedy
cofibrant by [14, Theorem 9.4.3 (1)]. Moreover, it follows from [14, Theorem 9.4.1
(1)] that the induced morphism L j ˜X → ˜X j is a Reedy cofibration since the inclusion
∂(J↓ j)× L ↪→ (J↓ j)× L is a sieve. Thus ˜X is a Reedy cofibrant diagram J → CL

R .
Conversely, assume that ˜X is a Reedy cofibrant diagram J → CL

R . For all j ∈ J
and l ∈ L , we need to verify that the latching object L j,l X exists and the latching
morphism L j,l X → X j,l is a cofibration. Proceeding by induction, we may assume
that this true for all objects of J × L lying strictly below ( j, l). This implies that the
composite diagram

∂(J × L↓( j, l)) → J × L → C

is Reedy cofibrant and hence L j,l X exists. Moreover, there is a pushout square of
direct categories

∂(J↓ j) × ∂(L↓l) (J↓ j) × ∂(L↓l)

∂(J↓ j) × (L↓l) ∂(J × L↓( j, l))

(where allmaps are sieves)which implies that L j,l can also be computed as the pushout

Ll(L j ˜X) Ll(˜X j )

(L j ˜X)l L j,l X ,

i.e. L j,l X coincides with the relative latching object of the morphism L j ˜X → ˜X j at
l. Hence L j,l X → X j,l is a cofibration since ˜X is Reedy cofibrant. 
�

Lemma 1.14 Let P : C → D be a fibration of cofibration categories. The following
are equivalent:

(1) P is acyclic,
(2) P has the Reedy right lifting property with respect to all sieves between direct

homotopical categories with finite latching categories,
(3) P has the Reedy right lifting property with respect to [0] ↪→ [1] and [1] ↪→ ̂[1].

Proof If P is acyclic, then it has the Reedy right lifting property with respect to
all sieves between homotopical direct categories with finite latching categories by
Lemma 1.9 (3), in particular, with respect to [0] ↪→ [1] and [1] ↪→ ̂[1].
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Frames in cofibration categories 587

Conversely, by Lemma 1.11 it suffices to see that if P has the Reedy right lifting
property with respect to [0] ↪→ [1] and [1] ↪→ ̂[1], then it satisfies (App1) and has
the right lifting property in CofCat with respect to the inclusion of [0] into

0 1.

The latter is equivalent to the Reedy right lifting property with respect to [0] ↪→ [1].
To see that the Reedy right lifting property with respect to [1] ↪→ ̂[1] implies (App1)
take a morphism f : X → Y in C such that P f is a weak equivalence. Factor f as

X ˜Y Y .
j ∼

Then P j is a weak equivalence by 2-out-of-3 and hence so is j by the Reedy right
lifting property with respect to [1] ↪→ ̂[1]. Thus f is a weak equivalence, too. 
�
Lemma 1.15 If a sieve f : I → J between homotopical direct categories has the
Reedy left lifting property with respect to all fibrations of cofibration categories, then
for every cofibration category C the induced functor f ∗ : C J

R → C I
R is an acyclic

fibration.

Proof Since f is a sieve, f ∗ is a fibration by Lemma 1.10. Thus, by Lemma 1.14,
it will suffice to check that f ∗ has the Reedy right lifting property with respect to
[0] ↪→ [1] and [1] ↪→ ̂[1]. These are equivalent to the Reedy right lifting property of

C[1]
R → C[0]

R and Ĉ[1]
R → C[1]

R with respect to I ↪→ J by Lemma 1.13. 
�

2 Quasicategories of frames

Before introducing quasicategories of frames we need to explain a preliminary con-
struction which will play an essential role in the remainder of this paper. It depends
on properties of direct and homotopical categories discussed in Sect. 1.

Let �� denote the subcategory of injective maps in � and let J be a homotopical
category. We construct a direct homotopical category DJ and a homotopical functor
pJ : DJ → J as follows. The underlying category of DJ is the comma category
��↓J , i.e. objects are all functors [m] → J for allm and a morphism from x : [m] →
J to y : [n] → J is an injective order preservingmap ϕ : [m] ↪→ [n] such that x = yϕ.
The functor pJ : ��↓J → J (sometimes called the last vertex projection) is defined
by sending x : [m] → J to xm and a morphism ϕ as above to the induced morphism
xm = yϕ(m) → yn . The weak equivalences in DJ are created by pJ . Then DJ is
homotopical category, pJ is a homotopical functor and DJ is also direct (by setting
the degree of [m] → J to m). We can think of DJ as a direct approximation to J .
Observe that D is a functor from homotopical categories to homotopical categories
and that DJ has a non-trivial homotopical structure even if J has the trivial one (unless
J is empty). This construction has multiple motivations which will be given right after
the definition of quasicategories of frames below.

First, we need to verify that Reedy cofibrant diagrams over DJ are well behaved
with respect to homotopical functors I → J . If f is such a functor we will abbrevi-
ate the induced functor (Df )∗ : CDJ

R → CDI
R to f ∗ to simplify the notation. Recall
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588 K. Szumiło

that CDJ
R refers to the cofibration category of homotopical Reedy cofibrant diagrams

DJ → C with levelwise weak equivalences and Reedy cofibrations which exists by
[14, Theorem 9.3.8 (1a)].

Lemma 2.1 Let C be a cofibration category. If f : I → J is a homotopical functor
of small homotopical categories, then the induced functor f ∗ : CDJ

R → CDI
R is exact.

If f is injective on objects and faithful, then f ∗ is a fibration.

Proof For every x : [m] → I , the induced functor of latching categories ∂(DI↓x) →
∂(DJ↓ f x) is an isomorphism since both are essentially copies of ∂(��↓[m]). More-
over, if f is injective on objects and faithful, then Df is a sieve. Thus both statements
follow from Lemma 1.10. 
�

For a cofibration category C we define the quasicategory of frames in C as a sim-
plicial set denoted by NfC where (NfC)m is the set of all homotopical Reedy cofibrant
diagrams D[m] → C ([m] is a homotopical category with only identities as weak
equivalences). The simplicial structure is given by functoriality of D (usingLemma2.1
to see that simplicial operators preserve Reedy cofibrancy). Since exact functors of
cofibration categories preserve Reedy cofibrant diagrams, Nf is a functor from the
category of cofibration categories to the category of simplicial sets.

Remark 2.2 As a side note, we point out that this construction can be enhanced as
follows. If ̂[n] denotes the homotopical poset [n] with all morphisms as weak equiva-
lences, then the bisimplicial set

[m], [n] �→ {homotopical Reedy cofibrant diagrams D([m] × ̂[n]) → C}

is a complete Segal space with NfC as its 0th row. This enhancement will be closely
analyzed in [13].

This definition can be motivated as follows. First, the objects of NfC are called
frames in C. They are counterparts to frames in amodel categoryM, i.e. homotopically
constant Reedy cofibrant diagrams� → Mwhich can be used to enrich the homotopy
category HoM in the homotopy category of simplicial sets as explained in [8, Chapter
5]. In cofibration categories we are forced to replace � by �� since working with �

would require referring to the matching objects of cosimplicial objects which are
defined as certain limits and hence are not available in a cofibration category. The
homotopically constant diagrams over �� are precisely the homotopical diagrams
over D[0]. Again, one can prove using such frames that the homotopy category Ho C
is enriched in the category of homotopy types, see [18, Theorems 3.10 and 3.17].1

Our construction can be seen as an alternative way of using frames to enrich Ho C in
homotopy types, namely, by using the mapping spaces of the quasicategory NfC.

The second motivation is that NfC can be seen as an enhancement of the calculus
of fractions. Let Sd[m] denote the poset of non-empty subsets of m. It can be seen

1 This result differs from its counterpart for model categories since it uses presimplicial sets (a.k.a. �-sets
or semisimplicial sets) asmodels of homotopy types. Presimplicial sets are less well-behaved than simplicial
sets, but their homotopy theory is equivalent to that of simplicial sets, see e.g. [16, Proposition 2.1].
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as the full subcategory of D[m] spanned by the non-degenerate simplices of [m] as
explained in more detail on p. 21. Homotopical Reedy cofibrant diagrams over D[m]
can be seen as resolutions of their restrictions to Sd[m]. Therefore an object of NfC is
a resolution of an object of C and a morphism is a resolution of a diagram of the form

X0 X01 X1,
∼

i.e. a left fraction from X0 to X1. Similarly, a 2-simplex of NfC is a resolution of a
diagram of the form

X1

X0 X2

X01 X12

X02

X012

∼

∼

∼

∼

∼

which consists of two fractions going from X0 to X1 and from X1 to X2 along with
a composite fraction going directly from X0 to X2. Such diagrams simultaneously
encode the composition of left fractions and the notion of equivalence of fractions.
Higher simplices encode the higher homotopy of the mapping spaces of C in a similar
manner.

Itmight be tempting to simplify the definition ofNfC by replacing D[m]withSd[m].
This would not work since functors Sd[m] → Sd[n] induced by degeneracy operators
[m] � [n] do not respect Reedy cofibrant diagrams and thus this modification would
not even yield a simplicial set.

Here is our main result. It is parametrized by a regular cardinal κ . In the first two
sections we will assume that κ = ℵ0 to simplify the exposition.

Theorem 2.3 If C is a κ-cocomplete cofibration category, thenNfC is a κ-cocomplete
quasicategory.

Before proceeding with the proof, we will give another version of the D construc-
tion. For a simplicial set K we define a homotopical direct category DK as follows.
The underlying category of DK is the category of elements of K but only with face
operators as morphisms, i.e. objects of DK are all simplices of K and a morphism
from x ∈ Km to y ∈ Kn is an injective order preserving map ϕ : [m] ↪→ [n] such that
x = yϕ.

Such a morphism is a generating weak equivalence if yν is a degenerate edge of
K where ν : [1] → [n] is defined by ν(0) = ϕ(m) and ν(1) = n. The generating
weak equivalences do not necessarily satisfy the 2-out-of-6 property (they are not
even closed under composition in general). Thus we define the subcategory of weak
equivalences as the smallest subcategory containing the generating weak equivalences
and satisfying the 2-out-of-6 property. Of course, in order to verify that a functor from
DK to a homotopical category is homotopical it suffices to check that it sends the
generating weak equivalences to weak equivalences.
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This construction is functorial in K . Moreover, the next lemma says that if K is
the nerve of a category J , then DK coincides with DJ in the sense of the previous
definition.

Lemma 2.4 Let J be a category with the trivial homotopical structure. Then the
homotopical categories DJ and DN J coincide.

Proof The underlying categories of DJ and DN J are the same by definition. The
generating weak equivalences of DN J are mapped to identities by pJ : DJ → J and
hence it suffices to see that every weak equivalence created by pJ can be obtained
from the generating ones by applying the 2-out-of-6 property. Let ϕ,ψ ∈ DJ and
consider a morphism ϕ → ψ mapped by pJ to an isomorphism f : x → y of J . Then
we have a diagram

x xy xyx xyxy

ϕ ψ

∼

∼∼ ∼

in DJ where xyxy denotes the sequence

x y x y
f ff −1

and the remaining objects in the first row are its initial segments. The indicated mor-
phisms are generating weak equivalences and hence by 2-out-of-6 ϕ → ψ is also a
weak equivalence of DN J . 
�
Lemma 2.5 The functor D : sSet → Cat (i.e. when we disregard the homotopical
structures of DKs) preserves colimits.

Proof Since N : Cat → sSet is fully faithful it reflects colimits (see [2, Proposition
2.2.9]). Thus it will suffice to verify that the composite functor K �→ NDK preserves
colimits. This follows from the fact that

(NDK )m =
∐

[ j0]↪→[ j1]↪→···↪→[ jm ]
K jm .


�
Let X : DK → C be a homotopical Reedy cofibrant diagram. For each simplex

x : �[m] → K consider the restriction x∗X : D[m] → C which is an m-simplex of
NfC (recall that x∗ is an abbreviation of (Dx)∗). These simplices fit together to form
a simplicial map K → NfC.
Proposition 2.6 Let C be a cofibration category and K a simplicial set. The map
described above is a natural bijection between

• the set of homotopical Reedy cofibrant diagrams DK → C
• and the set of simplicial maps K → NfC.
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Proof Denote the former set by R(DK , C) and observe that R(D−, C) is a con-
travariant functor from simplicial sets to sets. The statement says that this functor is
representable and the representing object is NfC. This will follow if we can verify that
if we consider any simplicial set K as a colimit of its simplices, then this colimit is
preserved (i.e. carried to a limit) by R(D−, C).

First, note that by Lemma 2.5 the functor Cat(D−, C) carries colimits to limits.
Since R(D−, C) is a subfunctor of Cat(D−, C) it will suffice to see that a diagram
X : DK → C is homotopical and Reedy cofibrant if and only if for all x ∈ Km the
induced diagram x∗X is homotopical and Reedy cofibrant. The cofibrancy statement
follows by Lemma 1.10.

It is clear that if X is homotopical then so are all x∗X . In order to prove the
converse it suffices to consider the generating weak equivalences of DK . Let x ∈ Km ,
y ∈ Kn and ϕ : [m] ↪→ [n] be such that x = yϕ and yν is a degenerate edge where
ν : [1] → [n] is defined by ν(0) = ϕ(m) and ν(1) = n. We need to prove that Xϕ is a
weak equivalence in C. First, let’s assume that ϕ(m) = n, then ϕ is a weak equivalence
when seen as a morphism ϕ → id[n] in D[n]. Therefore Xϕ = (y∗X)ϕ is a weak
equivalence since y∗X is a homotopical diagram. Next, assume that ϕ(m) < n, then ν

is injective and can be seen as a morphism yν → y in DK and we have a commutative
diagram on the left in�� which can be reinterpreted as a diagram in the middle in DK
which in turn yields the diagram on the right in C (here εi : [0] → [k] is the morphism
with image i).

[0] [m] yεm yϕ X (yεm) X (yϕ)

[1] [n] yν y X (yν) Xy

εm

ν

ε0 ϕ

εm

ν

ε0 ϕ

Xεm

Xν

Xε0 Xϕ

Now, εm and ν are weak equivalences when seen as morphisms of D[m] and D[n]
respectively. Thus Xεm and Xν are weak equivalences. The edge yν is degenerate, i.e.
yν = yεnσ0, so the diagram (yν)∗X : D[1] → C factors through (yεn)∗X : D[0] →
C. Since all morphisms of D[0] are weak equivalences it follows that (yν)∗X sends all
morphisms, including ε0 above, to weak equivalences thus Xε0 is a weak equivalence
and hence so is Xϕ. 
�

3 Reedy lifting properties

In Sect. 1 we introduced Reedy lifting properties. Let f : I → J be a homotopical
functor of homotopical direct categories and F : C → D an exact functor of cofibration
categories. We say that f has the Reedy left lifting property with respect to F (or F
has the Reedy right lifting property with respect to f ) if every lifting problem
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I C

J D

X

Y

f F

where X and Y are homotopical Reedy cofibrant diagrams has a solution that is also
a homotopical Reedy cofibrant diagram.

The previous proposition immediately implies the following.

Corollary 3.1 Let i : K → L be a simplicial map and F : C → D an exact functor
between cofibration categories. Then NfF has the right lifting property with respect
to i if and only if F has the Reedy right lifting property with respect to Di. 
�

Ourpresent goal is to verify thatNfC is aquasicategory, i.e. that it has the right lifting
property with respect to the inner horn inclusions, that is inclusions �i [m] ↪→ �[m]
for 0 < i < m. To this endweemploy the results of Sect. 1 andverify the corresponding
Reedy lifting properties of the sieves D�i [m] ↪→ D[m] induced by the inner horn
inclusions. We will proceed by comparing both D[m] and D�i [m] to [m] and various
“generalized inner horns”.

Lemma 3.2 For every m ≥ 0 the functor p[m] : D[m] → [m] is a homotopy equiva-
lence of homotopical categories.

Proof Let f : [m] → D[m] be the functor that sends i ∈ [m] to the standard inclusion
[i] ↪→ [m]. This is a homotopical functor and we have p[m] f = id[m]. We will verify
that f p[m] is weakly equivalent to idD[m] which will finish the proof.

To this end define s : D[m] → D[m] as follows. Represent an object x ∈ D[m] as a
non-empty finite non-decreasing sequence of elements of [m]. Then s(x) is obtained by
inserting one extra occurrence of each of the elements 0, 1, . . . , p[m](x) into x . Every
such element i is added “at the end” of the (possibly empty) block of is already present
in x . This explains the functoriality of s. Namely, given ϕ : x → y and i ≤ p[m](x), the
map s(ϕ) acts on the “old” occurrences of i as ϕ does and sends the “new” occurrences
to the “new” occurrences. Thus the functor s is homotopical and admits natural weak
equivalences

id s f p[m]
∼ ∼

where the map on the left inserts x onto the “old” occurrences in s(x) and the right
one inserts f p[m](x) onto the “new” ones. 
�

Let A ⊆ [m], we define the generalized horn �A[m] as the simplicial subset of
�[m] generated by its codimension 1 faces containing all vertices of A (equivalently,
codimension 1 faces lying opposite of vertices not in A). Observe that �{i}[m] =
�i [m].
Lemma 3.3 The inclusion functor D�{1,...,m−1}[m] ↪→ D[m] induces a weak equiv-
alence CD[m]

R → CD�{1,...,m−1}[m]
R for every cofibration category C and each m ≥ 2.
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Proof The functor CD[m]
R → CD�{1,...,m−1}[m]

R is exact by Lemma 1.10. By Proposition
1.7 (3) it suffices to verify the statement for the levelwise structures and hence it will
be enough to show that the composite D�{1,...,m−1}[m] ↪→ D[m] → [m] induces a
weak equivalence with respect to the levelwise structures.

In the diagram

D[m − 2] D[m − 1]

[m − 2] [m − 1]

D[m − 1] D�{1,...,m−1}[m]

[m − 1] [m]

δm−1

δ0 δm−1

δ0

the back square is a pushout of two sieves hence it induces a homotopy pullback of the
associated categories of Reedy cofibrant diagrams by Lemma 1.12. The front square is
a pushout along a sieve, but the vertical map is not a sieve. Nonetheless, the conclusion
of Lemma 1.12 holds because of a particularly simple form of the latching categories
in totally ordered sets so that a map of diagrams [m−1] → C is a Reedy cofibration if
and only if it is one when restricted along both δ0 and δm−1. Hence both squares induce
homotopy pullbacks on levelwise categories of diagrams and then the assumptions of
the Gluing Lemma are satisfied by Lemma 3.2 which finishes the proof. 
�

An interval is a subset of [m] of the form {x ∈ [m] | i ≤ x ≤ j} for some i ≤ j ∈
[m]. In the next lemma we will consider generalized horns �A[m] with A ⊆ [m]
such that [m]\A is not an interval (e.g. A = {1, . . . ,m − 1}). Such horns are called
generalized inner horns.

Lemma 3.4 Let A ⊆ B be subsets of [m] whose complements are not intervals. Then
the inclusion �B[m] ↪→ �A[m] is a composite of pushouts of inner horn inclusions
in dimensions at most m − |A|. Moreover, all these horns are attached along injective
maps.

Proof This follows by the proof of [10, Proposition 2.12 (iv)]. 
�
It will now follow that NfC takes values in quasicategories. In fact, we show more.

Recall that an inner fibration is a simplicial map with the right lifting property with
respect to the inner horn inclusions.

Proposition 3.5 The functor Nf carries fibrations of cofibration categories to inner
fibrations. In particular, if C is a cofibration category, then NfC is a quasicategory.

Proof By Lemma 1.11 it suffices to check that D�i [m] ↪→ D[m] induces a weak

equivalence CD[m]
R → CD�i [m]

R for every cofibration category C and 0 < i < m. By
Lemma 3.3 it will be enough to check that D�{1,...,m−1}[m] ↪→ D�i [m] induces
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a weak equivalence CD�i [m]
R → CD�{1,...,m}[m]

R for every cofibration category C and
0 < i < m.

That follows by an induction with respect to m since this inclusion is built out
of pushouts of horn inclusions in dimensions below m by Lemma 3.4. Since these
are pushouts along injective maps Lemma 1.12 says that they induce pullbacks of
cofibration categories of Reedy diagrams. 
�

In the remainder of this section we will verify some auxiliary lifting properties.
First, we consider Reedy lifting properties of [0] ↪→ DE[1] which will be dealt with
by constructing an explicit contraction of DE[1] = DE(1) (here, E(1) stands for the
groupoid freely generated by one morphism 0 → 1 and E[1] for its nerve).
Lemma 3.6 The functor f : [0] → DE(1) given by the sequence 0 ∈ DE(1) is a
homotopy equivalence of homotopical categories.

Proof The proof is similar to that of Lemma 3.2. This time objects of DE(1) are
represented as arbitrary finite non-empty binary sequences. Let p : DE(1) → [0]
be the unique functor to [0] and let s : DE(1) → DE(1) append a new 0 to every
sequence (as before, s(ϕ) acts on “old” elements as ϕ and sends the “new” 0 to the
“new” 0). Every morphism of E(1) is an isomorphism so the homotopical structure
on DE(1) is the maximal one. Hence the functor s is homotopical and admits natural
weak equivalences

id s f p
∼ ∼

where the map on the left inserts x onto the “old” occurrences in s(x) and the right
one inserts f p(x) onto the “new” 0. 
�

Before completing the main result of this section we record a corollary which
considerably simplifies constructions of E[1]-homotopies. An equivalence in a qua-
sicategory C is a morphism classified by a map �[1] → C that extends along
�[1] ↪→ E[1]. By [10, Proposition 4.22] a morphism is a equivalence in C if and
only if it becomes an isomorphism in its homotopy category.

Corollary 3.7 For a cofibration category C a homotopical Reedy cofibrant diagram
X : D[1] → C is an equivalence when seen as a morphism of NfC if and only if it is
homotopical with respect to D̂[1].
Proof If X is an equivalence, then it extends to DE[1]. Hence it is homotopical with
respect to D̂[1].

Conversely, consider a diagram

D[0] D̂[1] DE[1]

[0] ̂[1]
� �

�

�

where the indicated maps are homotopy equivalences, the vertical ones by (the proof
of) Lemma 3.2, the top one by Lemma 3.6 and the bottom one by direct inspection.
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Hence so is themap D̂[1] → DE[1]which is also a sieve so that the induced restriction
functor CDE[1]

R → CD̂[1]
R is an acyclic fibration and thus every homotopical Reedy

cofibrant diagram on D̂[1] extends to one on DE[1]. 
�
An isofibration is a simplicial map between quasicategories with the right lifting

property with respect to the inclusion �[0] → E[1].
Proposition 3.8 The functor Nf carries fibrations of cofibration categories to isofi-
brations.

Proof By Lemma 1.11 it suffices to check that D[0] ↪→ E(1) induces a weak equiv-
alence CDE(1)

R → CD[0]
R for every cofibration category C. Lemma 3.6 asserts that this

is the case for the composite

[0] D[0] DE(1)

while Lemma 3.2 says the same for the first functor. Thus the conclusion follows by
2-out-of-3. 
�
Proposition 3.9 The functorNf carries acyclic fibrations of cofibration categories to
acyclic Kan fibrations.

Proof This follows from Lemmas 1.11 and 1.14 and the fact that D∂�[m] ↪→ D[m]
is a sieve for all m. 
�

Before we are able to formulate the final results of this section we need to introduce
marked simplicial complexes.

Definition 3.10 A marked simplicial complex is a simplicial set K equipped with an
embedding K ↪→ N P where P is a homotopical poset.

Marked simplicial complexes can be seen as certain special marked simplicial sets
which are sometimes used to provide some extra flexibility to the theory of quasicat-
egories.

We extend the definition of DK to a marked simplicial complex K as follows. The
underlying category of DK is the same as previously, but the homotopical structure
is created by the inclusion DK ↪→ DP . This agrees with the old definition when P
has the trivial homotopical structure.

Moreover, for a marked simplicial complex K we define a homotopical poset Sd K
as the full subcategory of DK spanned by the non-degenerate simplices of K and
with the homotopical structure inherited from DP . The category Sd K is known as
the barycentric subdivision of K hence the notation (by analogy we may think of
DK as the fat barycentric subdivision of K ). It is indeed a poset since its objects
can be identified with finite non-empty totally ordered subsets of P that correspond
to non-degenerate simplices of K (just as in the classical definition of an ordered
simplicial complex above) and morphisms with inclusions of such subsets. With this
interpretation an inclusion A ⊆ B is aweak equivalence if andonly ifmax A → max B
is a weak equivalence of P (of course, if P has the trivial homotopical structure, then
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this condition reduces to max A = max B). In the case when K = N P wewill usually
write Sd P in place of Sd K .

The next two lemmas will allow us to reduce constructions of diagrams over DK
to constructions of diagrams over Sd K .

Lemma 3.11 For any marked simplicial complex K the inclusion f : Sd K → DK
is a homotopy equivalence.

Proof The construction is a minor modification of the one used in Lemma 3.2. Let
P denote the underlying homotopical poset of K . We define qK : DK → Sd K by
sending each simplex of K seen as a map [k] → P to its image and s : DK → DK
by inserting one extra occurrence of each p ∈ P that is already present in a given
x ∈ DK . Just as in Lemma 3.2 a new occurrence is inserted at the end of the block of
the old occurrences which yields analogous weak equivalences

id s f qK .
∼ ∼

Moreover, qK f = idSd K which finishes the proof. 
�
Lemma 3.12 Let K ↪→ L be an injective map of finite marked simplicial complexes
(which means that it covers an injective homotopical map of the underlying homotopi-
cal posets). Then for every cofibration category C the inclusion DK ∪ Sd L ↪→ DL
induces an acyclic fibration CDL

R → CDK∪Sd L
R .

Proof We have the following pushout square of sieves between homotopical direct
categories on the left and hence a pullback square of cofibration categories on the right
by Lemma 1.12.

Sd K Sd L CDK∪Sd L
R CDK

R

DK DK ∪ Sd L CSd LR CSd KR

The fibration CDK
R � CSd KR is acyclic by Lemma 3.11 and therefore so is

CDK∪Sd L
R � CSd LR . Moreover, we have a triangle of fibrations

CDL
R CSd LR

CDK∪Sd L
R

where CDL
R � CSd LR is acyclic again by Lemma 3.11 and thus so is CDL

R � CDK∪Sd L
R .


�
For future reference we will reinterpret lifting properties for special outer horns in

terms of certain homotopical structures on categories D�0[m] and D�m[m] (special
outer horns in a quasicategory C are diagrams �0[m] → C that carry 0 → 1 to an
equivalence and diagrams �m[m] → C that carry m − 1 → m to an equivalence).

For each m > 1 let 〈m] denote the homotopical poset with the underlying poset
[m] and 0

∼→ 1 as the only non-identity weak equivalence. Similarly, let [m〉 denote
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the homotopical poset with the underlying poset [m] and m − 1
∼→ m as the only

non-identity weak equivalence. Let �0〈m] and �m[m〉 denote the outer horns seen as
marked simplicial complexes with the underlying homotopical posets 〈m] and [m〉.
Lemma 3.13 For every cofibration category C the inclusion D�0〈m] ↪→ D〈m]
induces a weak equivalence CD〈m]

R → CD�0〈m]
R .

The same holds for D�m[m〉 ↪→ D[m〉.

Proof By Lemma 1.15 it will suffice to see that the inclusion D�0〈m] ↪→ D〈m] has
the Reedy left lifting property with respect to all fibrations of cofibration categories.

By Proposition 2.6 every Reedy lifting problem of D�0〈m] ↪→ D〈m] against
a fibration of cofibration categories P : C → D is equivalent to a problem of lifting
�0〈m] ↪→ 〈m] against Nf P where the latter is an inner isofibration by Propositions 3.5
and 3.8 and the horn is special byCorollary 3.7.Hence it has a solution by [10, Theorem
4.13].

The same argument works for D�m[m〉 ↪→ D[m〉. 
�

We briefly recall the join of simplicial sets. It will be used in the proof of the next
lemma and in the following section. As a functor � : �×� → � it is defined by con-
catenation: [m], [n] �→ [m+1+n]. Then the general join is defined as the unique func-
tor sSet×sSet → sSet which agrees with the above on the representable simplicial
sets and such that for each K the resulting functor K �−: sSet → K↓sSet preserves
colimits. More explicitly, the join of simplicial sets K and L can be described as

(K � L)p =
∐

m+1+n=p

Km × Ln

where m, n ≥ −1 and K−1 and L−1 are understood to be one element sets.
The functor K � −: sSet → K↓sSet has a right adjoint. Its value at an object

X : K → L is called the slice of X under L and denoted by X\L . See [9, Section 3]
for details.

Let [k+˜1+m] denote a homotopical category with underlying category [k+1+m]
and k

∼→ k+1 as the only non-identity weak equivalence. Let �[k][k+˜1+m] denote
the generalized horn �[k][k + 1 + m] seen as a marked simplicial complex with the
underlying homotopical poset [k +˜1+m]. The next lemma is a generalization of the
previous one.

Lemma 3.14 The inclusion D�[k][k +˜1 + m] ↪→ D[k +˜1 + m] has the Reedy left
lifting property with respect to all fibrations of cofibration categories. Hence for any

cofibration category C it induces a weak equivalence CD[k+˜1+m]
R → CD�[k][k+˜1+m]

R .

Proof The case of k = 0 is just the previous lemma (with m replaced by 1+m). The
case of k > 0 can be reduced to the case of k = 0 as follows. We have [k + 1+m] ∼=
[k] � [m] and �[k][k + 1+m] ∼= �[k] � ∂�[m] and hence it will suffice to solve every
lifting problem
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�[k] � ∂�[m] C

�[k] � �[m] D

X

Y

P

where X andY send the edge k → k+1 to an equivalence and P is an inner isofibration
(by Proposition 2.6). This problem is equivalent to

{k} � ∂�[m] X ′\C

{k} � �[m] Y ′\D
where X ′ and Y ′ are the restrictions of X and Y to�[k−1] so that the resulting horn is
special (under identifications {k}��[m] ∼= �[1+m] and {k}�∂�[m] ∼= �0[1+m]).
The map X ′\C → Y ′\D is an inner isofibration between quasicategories by [10,
Theorem 3.19]. Thus a solution exists by the case of k = 0. 
�

We conclude this section with a technical observation about limits of cofibration
categories. Corollary 3.16.1 below is a version of Lemma 1.12.

Lemma 3.15 Let f : K � L be a surjective simplicial map. Then for every cofi-
bration category C, a diagram X : DL → C is Reedy cofibrant if and only if f ∗X
is.

Proof For a simplex y ∈ Lm pick a simplex x ∈ Km such that f x = y. Then the
induced functor of latching categories ∂(DK↓x) → ∂(DL↓y) is an isomorphism
since both are essentially copies of ∂(��↓[m]). Thus the latching map of K at x is a
cofibration if and only if the latching map of L at y is. 
�

Corollary 3.16 (1) If

A K

B L

is a pushout square of simplicial sets (along a monomorphism A ↪→ B), then the
square of cofibration categories

CDL
R CDB

R

CDK
R CDA

R

is a pullback.
(2) If a simplicial set K is a colimit of a sequence of monomorphisms

K0 ↪→ K1 ↪→ K2 ↪→ · · · ,
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Frames in cofibration categories 599

then CDK
R is the limit of the tower of fibrations

· · · � CDK2
R � CDK1

R � CDK0
R .

Proof We verify the first statement, the proof of the second one is similar.
By Lemma 2.5, it is enough to verify that a diagram X : DL → C is homotopical

Reedy cofibrant if and only if its restrictions to DB and DK are. For cofibrancy, it
follows by Lemma 3.15 applied to the surjection B

∐

K � L .
For the other part, assume that X |DB and X |DK are homotopical. Take y ∈ Ln

and ϕ : [m] ↪→ [n] such that yϕ → y is a generating weak equivalence in DL (i.e.
yν is a degenerate edge of L where ν : [1] → [n] is defined by ν(0) = ϕ(m) and
ν(1) = n). It will be enough to verify that it arises from a weak equivalence in DB or
DK . By 2-out-of-6 we can assume that m = 0, n = 1, ϕ = δ1 and ν = id[1] so that
yν = y (if ν is not injective, the conclusion is immediate). We consider two cases.

(1) If y is a simplex of K , it is also degenerate in K since K → L is injective. Thus
yϕ → y is a weak equivalence in DK .

(2) If y is not a simplex of K , then it comes from a unique simplex x of B. This simplex
is also degenerate since otherwise it would have more distinct degeneracies than y
and the square would not be a pushout. In this case, xϕ → x is a weak equivalence
in DB. 
�

4 Cocompleteness: the infinite case

In the last two sections we will verify that Nf takes values in κ-cocomplete quasicate-
gories and κ-cocontinuous functors. From this point on the cases of finitely cocomplete
cofibration categories andκ-cocomplete cofibration categories forκ > ℵ0 will diverge.
The general approaches to both cases are still analogous, but they differ in technical
details and there seems to be no way of presenting them in a completely uniform
manner. The presence of infinite homotopy colimits allows us to use simpler construc-
tions so we will consider the case of κ > ℵ0 first (so in this section, C will denote a
κ-cocomplete cofibration category with κ > ℵ0, see Sect. 1). The remaining case of
κ = ℵ0 will be covered in the next section.

First, we briefly review colimits in quasicategories. Given a simplicial set K , we
denote K � �[0] by K� and call it the cone under K . Given a quasicategory C and a
diagram X : K → C, any extension of X to K� is called a cone under X . Such a cone
S is universal or a colimit of X if for any m > 0 and any diagram of solid arrows

K � ∂�[m] C

K � �[m]

U

where U |K� = S there exists a dashed arrow making the diagram commute. Given
a regular cardinal κ , we say that C is κ-cocomplete all diagrams in C indexed over
κ-small simplicial sets admit colimits.
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600 K. Szumiło

Before we show that NfC is such a quasicategory, we need a few preliminary
lemmas. If I is a discrete category, then colimits over [0] � I are called wide pushouts.
A wide pushout of a diagram X : [0] � I → C will be denoted by

∐

X0
i∈I

Xi .

In order to understand colimits in NfC, we need to analyze diagrams over direct
categories of the form D(K � �[m])
Lemma 4.1 Let C be a κ-cocomplete cofibration category and K a κ-small simplicial
set. If X : D(K � �[m]) → C is a homotopical Reedy cofibrant diagram, then the
induced morphism

X[m] → colimD(K��[m]) X

is a weak equivalence.

Proof The morphism in question factors as

X[m] → colimD[m] X → colimD(K��[m]) X

where the first morphism is a weak equivalence by [13, Lemma 3.17] and Lemma 3.2.
Thus it will be enough to check that the second one is.

It will suffice to verify that this statement holds when K is a simplex and that
it is preserved under coproducts, pushouts along monomorphisms and colimits of
sequences of monomorphisms.

Let K = �[k] and let ι be the composite [m] ↪→ [k] � [m] ∼= [k + 1 + m]. Then
we have a commutative square

X ι colimD[m] X

X id[k+1+m] colimD[k+1+m] X

where the left morphism is a weak equivalence since X is homotopical and so are
the horizontal ones by the argument above. Thus the right morphism is also a weak
equivalence.

Next, consider a pushout square

A K

B L

such that the statement holds for A, B and K . The functor−��[m] preserves pushouts
and so does D by Lemma 2.5. Thus in the cube
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Frames in cofibration categories 601

DA DK

D(A � �[m]) D(K � �[m])

DB DL

D(B � �[m]) D(L � �[m])
both the front and the back faces are pushouts along sieves and the conclusion follows
by [14, Theorem 9.4.1 (1a)] and the Gluing Lemma (here, we also use the fact that a
colimit of a diagram whose indexing category is a colimit of a diagram of categories
can be computed as an iterated colimit).

The case of colimits of sequences of monomorphisms is similar and we omit it.
The case of coproducts is also similar, but there is a difference in the fact that

− ��[m] does not preserve coproducts. Instead, it sends coproducts to wide pushouts
under �[m]. Thus if we have a κ-small family {Ki | i ∈ I } of κ-small simplicial sets
and a diagram X : D((

∐

i Ki ) � �[m]) → C, then there is a canonical isomorphism

∐

colimD[m] X
i∈I

(colimD(Ki ��[m]) X) ∼= colimD((
∐

i∈I Ki )��[m]) X .

The conclusion follows by the fact that in a cofibration category all the structure
morphisms of a wide pushout of acyclic cofibrations are weak equivalences (by [13,
Lemma 3.17] since [̂0] � I is contractible to its cone object as a homotopical category).


�

Note that for any simplicial set K there is a unique functor pK : D(K�) → (DK )�
that restricts to the identity of DK and sends all the objects not in DK to the cone
point of (DK )�. This functor is homotopical. In the next lemma we use it to compare
colimits over DK and D(K�).

Lemma 4.2 Let C be a κ-cocomplete cofibration category, K a κ-small simplicial
set and X : DK → C a homotopical Reedy cofibrant diagram. Consider a morphism
f : colimDK X → Y and the corresponding cone ˜T : (DK )� → C. If T is any Reedy
cofibrant replacement of p∗

K
˜T relative to DK (which exists by Lemma 1.9), then f

factors as

colimDK X → colimD(K� ) T
∼→ Y .

Proof To verify that the above composite agrees with f it suffices to check that it
agrees upon precomposition with Xx → colimDK X for all x ∈ DK . That’s indeed
the case since T |DK = X .

It remains to check that the latter morphism is a weak equivalence. In the diagram
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602 K. Szumiło

colimD(K� ) T Y

T0

the left morphism is a weak equivalence by Lemma 4.1 and so is the diagonal one
since T is a cofibrant replacement of p∗

K
˜T . Therefore the top morphism is also a weak

equivalence. 
�
We will need an augmented version of the D construction. In fact, we will only

need to apply it to [m] and ∂�[m] so we define it only in these cases.
We will denote by Da[m] the category of all order preserving maps [k] → [m]

including the one with [k] = [−1] = ∅. A morphism from x : [k] → [m] to y : [l] →
[m] is an injective order preserving map ϕ : [k] ↪→ [l] such that x = yϕ. In other
words, Da[m] is obtained from D[m] by adjoining an initial object. The homotopical
structure on Da[m] is an extensionof the oneon D[m]where [−1] → [m] is notweakly
equivalent to any other object. We will also consider a slightly richer homotopical
structure ˜Da[m] where [−1] → [m] is weakly equivalent to all the constant maps
with the value 0.

The homotopical categories Da∂�[m] and ˜Da∂�[m] are the full homotopical sub-
categories of Da[m] and ˜Da[m] spanned by the non-surjective maps [k] → [m] [i.e.
by the simplices of ∂�[m] including the “(−1)-dimensional” one].

Similarly, the homotopical posets Sda[m], ˜Sda[m], Sda ∂�[m] and ˜Sda∂�[m] are
the full homotopical subcategories of Da[m], ˜Da[m], Da∂�[m] and ˜Da∂�[m] respec-
tively spanned by their objects that are injective as maps [k] → [m].
Lemma 4.3 The restriction functors

CDa[m]
R → CSda[m]

R CDa∂�[m]
R → CSda ∂�[m]

R

C˜Da[m]
R → C˜Sda[m]

R C˜Da∂�[m]
R → C˜Sda∂�[m]

R

are all acyclic fibrations.

Proof All these functors are induced by sieves so they are fibrations.Wewill construct
a homotopy inverse to f : ˜Sda[m] ↪→ ˜Da[m] which will restrict to homotopy inverses
of all the other sieves in question. The conclusion will follow by Lemma 1.8 (3). The
construction is a minor modification of the one used in Lemma 3.2 (and essentially the
same as in Lemma 3.11). Namely, we define q : ˜Da[m] → ˜Sda[m] by sending each
[k] → [m] to its image and s : ˜Da[m] → ˜Da[m] by inserting one extra occurrence of
each i ∈ [m] that is already present in a given x ∈ ˜Da[m]. Just as in Lemma 3.2 a
new occurrence is inserted at the end of the block of the old occurrences which yields
analogous weak equivalences

id s f q.
∼ ∼

Moreover, q f = id
˜Sda[m] which finishes the proof. 
�

Homotopical Reedy cofibrant diagrams on Da[1] will be used to encode cones on
diagrams in NfC and the ones which are homotopical with respect to ˜Da[1] will cor-
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respond to the universal cones. The following lemma (and, more directly, Lemma 4.5
below) will translate between the universality of such cones in NfC and strict colimits
of the corresponding diagrams in C.
Lemma 4.4 The two functors

(1) C˜Sda[m]
R → C˜Sda∂�[m]

R and

(2) C˜Da[m]
R → C˜Da∂�[m]

R

induced by the inclusion ∂�[m] ↪→ �[m] are acyclic fibrations.
Proof Both inclusions ˜Sda∂�[m] ↪→ ˜Sda[m] and ˜Da∂�[m] ↪→ ˜Da[m] are sieves
hence byLemma1.8 (3) itwill be enough to prove that they are homotopy equivalences.

(1) Consider two homotopical functors i0, i1 : Sda[m − 1] → ˜Sda[m] defined as
i0A = {k + 1 | k ∈ A} and i1A = i0A ∪ {0} for any A ⊆ [m − 1]. We have
i0A ⊆ i1A and the resulting natural transformation induces an isomorphism
of homotopical categories Sda[m − 1] × ̂[1] → ˜Sda[m]. It follows that i0 is
a homotopy equivalence since [0] ↪→ ̂[1] is. This homotopy equivalence also
restricts to a homotopy equivalence Sda[m − 1] ↪→ ˜Sda∂�[m] and thus the
conclusion follows by the triangle

Sda[m − 1]

˜Sda∂�[m] ˜Sda[m].

i0

(2) We have a square

˜Sda∂�[m] ˜Sda[m]

˜Da∂�[m] ˜Da[m]
where the top functor is a homotopy equivalence by the first part of the lemma
and so are the vertical ones by the proof of Lemma 4.3. Therefore so is the bottom
one. 
�

For everym > 0 each object of D(K ��[m]) can be uniquely written as x �ϕ with
x ∈ DaK and ϕ ∈ Da[m]. This yields a functor rK : D(K ��[m]) → Da[m] sending
x � ϕ to ϕ to which we associate the left Kan extension

LanrK : CD(K��[m])
R → CDa[m]

R

which can be constructed as

(LanrK X)ϕ = colimD[k] ϕ∗X

123



604 K. Szumiło

where ϕ : [k] → [m] (this colimit exists since ϕ∗X is Reedy cofibrant by Lemma 2.1).
Analogously, we have a functor sK : D(K � ∂�[m]) → Da∂�[m] and the associated
left Kan extension

LansK : CD(K�∂�[m])
R → CDa∂�[m]

R .

We form pullbacks (the front and back squares of the cube)

C˜D(K��[m])
R C˜Da[m]

R

C˜D(K�∂�[m])
R C˜Da∂�[m]

R

CD(K��[m])
R CDa[m]

R

CD(K�∂�[m])
R CDa∂�[m]

R .

LanrK

LansK

PK

Observe thatC˜D(K��[m]) andC˜D(K�∂�[m]) are just atomic notations for the pullbacks
above, i.e. ˜D(K ��[m]) and ˜D(K �∂�[m]) are not homotopical categories for general
K , although they will be interpreted as such when K is a simplex.

Lemma 4.5 The induced functor PK : C˜D(K��[m])
R → C˜D(K�∂�[m])

R is an acyclic fibra-
tion for every κ-small simplicial set K .

Proof First, we verify that PK is a fibration. The categories C˜D(K��[m])
R and

C˜D(K�∂�[m])
R are full subcategories of CD(K��[m])

R and CD(K�∂�[m])
R respectively. They

are both closed under taking weakly equivalent objects. Hence PK inherits the desired
lifting properties from the fibration CD(K��[m])

R � CD(K�∂�[m])
R .

For the rest of the argument it will suffice to check that PK is a weak equivalence
when K is empty or a simplex and that this property is preserved under coproducts,
pushouts along monomorphisms and colimits of sequences of monomorphisms.

When K is empty then the top square of the cube above happens to be a pullback
and hence P∅ is an acyclic fibration by Lemma 4.4.

For K = �[k] we will check that P�[k] coincides with

CD[k+˜1+m]
R → CD�[k][k+˜1+m]

R

and the conclusion will follow from Lemma 3.14. It is enough to verify that a homo-
topical Reedy cofibrant diagram X : D[k + 1 + m] → C is homotopical with respect
to D[k +˜1 + m] if and only if the induced morphism

colimD[k] X → colimD[k+1] X

is a weak equivalence. This follows from Lemma 4.1. The same argument works with
�[k][k+1+m] in place of [k+1+m], since�[k+1] is contained in�[k][k+1+m]
for m > 0.
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Frames in cofibration categories 605

If

A K

B L

is a pushout square of simplicial sets such that the conclusion holds for A, B and K ,
then there is a pullback square of cofibration categories

C˜D(L��[m])
R C˜D(B��[m])

R

C˜D(K��[m])
R C˜D(A��[m])

R .

An analogous pullback square with D in the place of ˜D results directly from Corol-
lary 3.16 (1). This implies the existence of the one above since pullbacks commute
with pullbacks. Similarly, there is an analogous pullback square with ∂�[m] in place
of �[m]. Hence the conclusion for L follows from the Gluing Lemma.

The last two cases depend on the fact thatCofCatκ is a complete fibration category
as follows from [21, Theorem 2.9].

If K is a colimit of a sequence of monomorphisms K0 ↪→ K1 ↪→ K2 ↪→ · · · , then
C˜D(K��[m])
R is the limit of the tower of fibrations

· · · � C˜D(K2��[m])
R � C˜D(K1��[m])

R � C˜D(K0��[m])
R

and analogously for C˜D(K�∂�[m])
R [this follows from Corollary 3.16 (2), similarly to

the previous case]. Therefore, if PKi is a weak equivalence for all i , then so is PK .
The case of coproducts is handled similarly except that−��[m] does not preserve

coproducts but carries them to wide pushouts. Hence C˜D((
∐

i Ki )��[m])
R is the wide

pullback

∏

CD[m]
R

i

C˜D(Ki ��[m])
R .

The conclusion follows since the wide pullback functor is an exact functor of fibration
categories. 
�

We are ready to characterize colimits in NfC in terms of homotopy colimits in C.
Theorem 4.6 Let C be a κ-cocomplete cofibration category, K a κ-small simplicial
set and S : K� → NfC. Then S is universal as a cone under S|K if and only if the
induced morphism

colimDK S → colimD(K� ) S

is a weak equivalence (with S seen as a homotopical Reedy cofibrant diagram
D(K�) → C by Proposition 2.6). Such a cone exists under every diagram K → NfC.
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Proof If the morphism above is a weak equivalence letU : K �∂�[m] → NfC extend

S. The functor C˜D(K��[m])
R → C˜D(K�∂�[m])

R is an acyclic fibration by Lemma 4.5 and
thus the corresponding homotopical Reedy cofibrant diagram ˜D(K � ∂�[m]) → C
prolongs to ˜D(K � �[m]) → C. Hence S is universal.

Conversely, let S be universal. Define T : D(K�) → C as in Lemma 4.2 where we
take f to be the identity of colimDK S. Then the induced morphism colimDK T →
colimD(K� ) T is a weak equivalence and so T is universal by the argument above
(which proves the existence statement). Therefore S and T are equivalent and hence
there exists a homotopical Reedy cofibrant diagram W : D(K � E[1]) → C which
restricts to S on D(K � {0}) and to T on D(K � {1}), see [9, Proposition 4.4]. In the
diagram

colimDK S colimD(K� ) S S0

colimD(K� ) T colimD(K��[1]) W W01

∼

both bottom horizontal morphisms and the top right one are weak equivalences by
Lemma 4.1 and so is the right vertical one since the homotopical structure of DE[1]
is the maximal one. It follows that colimDK S → colimD(K� ) S is also a weak equiv-
alence. 
�
5 Cocompleteness: the finite case

In this section we will prove that NfC is finitely cocomplete for any cofibration cat-
egory. The arguments of the previous section do not directly apply to this case since
they heavily use the existence of colimits of Reedy cofibrant diagrams over categories
of the form DK . Unfortunately, DK is infinite even when K is a finite (non-empty)
simplicial set. In order to address this problem, we will filter the category DK by finite
subcategories

D(0)K ↪→ D(1)K ↪→ D(2)K ↪→ · · ·

and instead of using a colimit of a Reedy cofibrant diagram X : DK → C we will
consider the resulting sequence of finite colimits

colimD(0)K X � colimD(1)K X � colimD(2)K X � · · ·

If X is homotopical this sequence stabilizes in the sense that from some point on
(depending on K ) all morphisms are weak equivalences and this stable value is a
homotopy colimit of X . However, there is no universal bound onwhen such a sequence
stabilizes when K varies and hence we are forced to think of that entire sequence as a
homotopy colimit of X . It turns out that the proofs of the previous section will work
if we carefully substitute such sequences for actual colimits over categories DK .
The difficult part is constructing such filtrations with all the desired naturality and
homotopy invariance which is the main purpose of this section.
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Let J be a homotopical category and A a set of objects of DJ , we denote the
sieve generated by A in DJ by DA J . Moreover, when J = [m] (possibly with some
non-trivial homotopical structure) we will write objects of D[m] as non-decreasing
sequences of elements of [m] often using abbreviations like 0k1l to denote the sequence
of k 0s followed by l 1s.

The category D[0] can be seen as the category of non-degenerate simplices of a
simplicial set S with exactly one non-degenerate simplex in each dimension. As it
turns out, the skeleton Skk S is weakly contractible for k even but weakly equivalent
to the sphere �[k]/∂�[k] for k odd.

This suggests that the filtration of D[0] by sieves generated by even-dimensional
simplices of S should be well-behaved homotopically. We verify that this is the case
in the next two lemmas and later generalize it to DK for arbitrary finite simplicial
sets K .

Lemma 5.1 For each k the functor t : D0k1
̂[1] → [0] is a homotopy equivalence of

homotopical categories.

Proof Represent objects of D0k1
̂[1] as binary sequences and let j : [0] → D0k1

̂[1]
classify the object 1. Next, define s : D0k1

̂[1] → D0k1
̂[1] by appending a trailing 1 to

each sequence that doesn’t have one. Then there are natural weak equivalences

id
D0k1

̂[1] s j t .
∼ ∼

Moreover, we have t j = id[0] which finishes the proof. 
�
The images of the composite functors

Sd[k] ↪→ D[k] → D[0] and Sd ∂�[k + 1] ↪→ D∂�[k + 1] → D[0]

are both D0k+1[0]. In the next lemma we consider the resulting functors

t : Sd[k] → D0k+1[0] and t : Sd ∂�[k + 1] → D0k+1[0].

Lemma 5.2 Let k ≥ 0 and let C be a cofibration category. If X : D0k+1[0] → C is a
homotopical Reedy cofibrant diagram, then

(1) the induced morphism

colimSd�[k] t∗X → colim
D0k+1 [0] X

is a weak equivalence when k is even,
(2) the induced morphism

colimSd ∂�[k+1] t∗X → colim
D0k+1 [0] X

is a weak equivalence when k is odd.
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Proof We prove both statements by an alternating induction with respect to k.
The functor Sd[0] → D0[0] is an isomorphism, so condition (1) holds for k = 0.
Next, we assume that condition (2) holds for a given odd k and prove that condition

(1) holds for k + 1. The category Sd ∂�[k + 1] is nothing but the latching category
of D0k+2 [0] at 0k+2 and hence the inductive construction of the colimit of X yields a
pushout square

colimSd ∂�[k+1] t∗X colim
D0k+1 [0] X

colimSd�[k+1] t∗X colim
D0k+2 [0] X

where the top morphism is a weak equivalence by the inductive hypothesis. Since the
left vertical morphism is a cofibration, it follows by the Gluing Lemma that the bottom
morphism is also a weak equivalence.

Finally, we assume that condition (1) holds for a given even k and prove that
condition (2) holds for k + 1. We have the following diagram of homotopical direct
categories

Sd �k+2 [̂k + 2] Sd ∂�[k + 2] D0k+2 [0]

D0k+11
̂[1] D0k+11,0k+2

̂[1] D0k+2 [0]

D0k+11
̂[1] D0k+1[0]

id

where the indicated maps are sieves, the top left and bottom right squares are pushouts
and all functors respect Reedy cofibrant diagrams by Lemma 1.10 (the functor on the
very left is induced by 0k+21 : [k + 2] → [1]). Hence there is an induced diagram in
C

colim
Sd �k+2 [̂k+2] t

∗X colimSd ∂�[k+2] t∗X colim
D0k+2 [0] X

colim
D0k+11

̂[1] t
∗X colim

D0k+11,0k+2
̂[1] t

∗X colim
D0k+2 [0] X

colim
D0k+11

̂[1] t
∗X colim

D0k+1 [0] X

id

where the indicated maps are cofibrations by [14, Theorem 9.4.1 (1a)] and the top left
and bottom right squares are pushouts (here, we use the fact that a colimit of a diagram
whose indexing category is a colimit of a diagram of categories can be computed as
an iterated colimit).

Thus the proof will be completed when we verify that both morphisms

colim
Sd�k̂+2 ˆ[k+2] t

∗X → colim
D0k+11

̂[1] t
∗X

colim
D0k+1 [0] t

∗X → colim
D0k+11

̂[1] X
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are weak equivalences. For the former we use [13, Lemma 3.17] and Lemmas 5.1 and
3.13. For the latter we use [13, Lemma 3.17], Lemma 5.1 and the inductive assumption.


�
In the next two lemmas we generalize the filtration of D[0] to D[m] for all m ≥ 0.

Lemma 5.3 Let C be a cofibration category. Assume that every fiber of ϕ : [k] → [m]
has an odd number of elements and let X : Dϕ[m] → C be a homotopical Reedy
cofibrant diagram. Then Xϕ → colim X is a weak equivalence.

Proof We proceed by induction with respect to m (simultaneously for all C and X ).
For m = 0 the conclusion follows by Lemma 5.2.

If m > 0, we will prolong X to the augmented sieve Dϕ
a [m] by setting the missing

value to an initial object of C which does not change the colimit. If the fiber of ϕ overm

has k+1 elements for some even k, then Dϕ
a [m] ∼= Dϕ′

a [m−1]×D0k+1

a [0] (here, ϕ′ is

the restriction of ϕ to ϕ−1[m − 1]). We apply Lemma 5.2 in the category CDϕ′
a [m−1]

R to

the corresponding diagram ˜X : D0k+1

a [0] → CDϕ′
a [m−1]

R (this diagram is indeed Reedy
cofibrant by the proof of Lemma 1.13). This way, we obtain a weak equivalence
˜Xk → colim

D0k+1
a [0] ˜X and hence by the inductive assumption the composite

Xϕ = ˜Xk,ϕ′ → colim
Dϕ′
a [m−1]

˜Xk → colim
Dϕ′
a [m−1] colimD0k+1

a [0] ˜X ∼= colim X

is also a weak equivalence. 
�
For each k,m ≥ 0 we define sets Ak,m and Bk,m of objects of D[m]. We proceed

by induction with respect to m. First, we set Ak,0 = Bk,0 = {[2k] → [0]}. For m > 0
we set

Bk,m = {ϕ : [2k − m] → [m] | each fiber of ϕ has an odd number of elements}
Ak,m = Bk,m ∪

⋃

i∈[m]
δi Ak,m−1.

We set D(k)[m] = DAk,m [m]. In particular, we have D(k)[0] = D[2k][0], i.e.
D(k)[m] generalizes the filtration of D[0] by sieves corresponding to even-dimensional
skeleta of S as discussed on p. 33. There S was defined as a simplicial set with exactly
one non-degenerate simplex in each dimension. Similarly, there is a simplicial set Sm
whose non-degenerate p-simplices correspond to all simplicial operators [p] → [m]
(with degenerate ones adjoined freely). Then the sieve generated by Bk,m corresponds
to the (2k)-skeleton of Sm . However, these sieves do not match exactly whenm varies
and the definition of Ak,m corrects that.

Lemma 5.4 For every simplicial operator χ : [m] → [n] and k ≥ 0 we have an
inclusion χD(k)[m] ⊆ D(k)[n].
Proof It suffices to verify the statement when χ is an elementary face or degeneracy
operator. For the elementary face operators it follows directly from the definition.
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Hence assume that χ = σ j for some j ∈ [n]. We will check that σ j Ak,n+1 ⊆ D(k)[n]
by induction with respect to n.

If ϕ : [2k−n−1] → [n+1] has all fibers of odd cardinality, then the same holds for
σ jϕ except at the fiber over j . Then σ jϕ is in the sieve generated by ϕ′ : [2k−n] → [n]
obtained by adding one extra element to the fiber of σ jϕ over j (so that ϕ′ ∈ Ak,n).

If ψ ∈ Ak,n , then σ jδiψ is either equal to ψ or is of the form δi ′σ j ′ψ . In the
first case the conclusion holds trivially, in the second one it follows by the inductive
hypothesis. 
�

Now, we can generalize the filtration of D[m] to DK for arbitrary finite K . Let
x ∈ Km and k ≥ 0. We define a sieve D(k)K in DK as follows. Write x = x�x� with
x� non-degenerate and x� a degeneracy operator (this can be done in exactly one way
by the Eilenberg–Zilber Lemma, see e.g. [7, Section II.3]). Define x to be an element
of D(k)K if x� ∈ D(k)[n] (where n is the dimension of x�). It follows from Lemma 5.4
that this definition coincides with the previous one when K is a simplex.

Lemma 5.5 Every simplicial map f : K → L carries D(k)K to D(k)L for all k ≥ 0.

Proof Let x ∈ D(k)K . Then we have a diagram of simplicial sets

�[m] �[n] K

�[n′] L

x� x�

( f x)�
( f x�)� f

( f x�)�

and by definition x� ∈ D(k)[n]. Lemma 5.4 implies that ( f x)� ∈ D(k)[n′] so that
f x ∈ D(k)L . 
�
Lemma 5.6 For all k ≥ m, a cofibration category C and a homotopical Reedy cofi-
brant diagram X : D(k)[m] → C the morphism X[m] → colimD(k)[m] X is a weak
equivalence.

Proof First,wewill check that themorphism X[m] → DBk,m [m] is aweak equivalence.
Indeed, let P be the subposet of N

m+1 consisting of tuples x = (x0, . . . , xm) such
that each xi is odd and x0 + · · · + xm ≤ 2k − m + 1. Let ϕx be the unique object of
D[m] whose fiber over each i ∈ [m] has cardinality xi . Then we have DBk,m [m] =
colimx∈P Dϕx [m] since a colimit of a diagram whose indexing category is a colimit
of a diagram of categories can be computed as an iterated colimit.

It follows from Lemma 5.3 that for each x ∈ P the morphism X[m] →
colimDϕx [m] X is a weak equivalence. The sequence (1, . . . , 1) is the bottom ele-
ment of P , hence if we consider P as a homotopical poset with all maps as weak
equivalences, then {(1, . . . , 1)} → P is a homotopy equivalence. It follows by [13,
Lemma 3.17] that X[m] → DBk,m [m] is a weak equivalence.

We are ready to prove the lemma by induction with respect to m. If m = 0, then
the conclusion is a special case of Lemma 5.3. For m > 0, we consider diagrams
Y (k−1),Y (k) : Sd ∂�[m] → C defined as

Y (k−1)
ϕ = colimDϕAk−1,n [m] X and Y (k)

ϕ = colimDϕAk,n [m] X
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where ϕ : [n] ↪→ [m]. The resulting morphism Y (k−1) → Y (k) is a Reedy cofibration
by [14, Theorem 9.4.1 (1a)]. It is also a weak equivalence by the inductive hypothesis
since DϕAk−1,n [m] ∼= DAk−1,n [n] and DϕAk,n [m] ∼= DAk,n [n]. Therefore, the induced
morphism colim Y (k−1) → colim Y (k) is an acyclic cofibration. This morphism is also
isomorphic to colimD(k−1)∂�[m] X → colimD(k)∂�[m] X since

D(k−1)∂�[m] = colimϕ∈Sd ∂�[m] DϕAk−1,n [m]
and D(k)∂�[m] = colimϕ∈Sd ∂�[m] DϕAk,n [m].

Finally, we observe that DBk,m [m]∩D(k)∂�[m] = D(k−1)∂�[m]. This yields pushout
square

colimD(k−1)∂�[m] X colimDBk,m [m] X

colimD(k)∂�[m] X colimD(k)[m] X

which along with the first part of the proof yields the final conclusion. 
�
Lemma 5.7 For each k the functor D(k) : sSet → Cat (i.e. when we disregard the
homotopical structures of D(k)Ks) preserves colimits.

Proof If K is any simplicial set, then D(k) preserves the colimit of its simplices by
Lemma 2.5 and the definition of D(k)K . Hence for every small category J we have
the following sequence of isomorphisms natural in both K and J .

Cat(D(k)K , J ) ∼= Cat(D(k) colim�[m]→K �[m], J )

∼= lim
�[m]→K

Cat(D(k)[m], J )

∼= lim
�[m]→K

sSet(�[m],Cat(D(k)[−], J ))

∼= sSet(K ,Cat(D(k)[−], J ))

It follows that J �→ Cat(D(k)[−], J ) is a right adjoint of D(k) and the conclusion
follows. 
�

Finally, we are ready to start translating the results of Sect. 4 to the case of κ = ℵ0.
The following is a counterpart to Lemma 4.1.

Lemma 5.8 Let C be a cofibration category and K a finite simplicial set. For every
homotopical Reedy cofibrant diagram X : D(K � �[m]) → C and all k ≥ dim K +
1 + m, the induced morphism

X[m] → colimD(k)(K��[m]) X

is a weak equivalence.

123



612 K. Szumiło

Proof The proof is analogous to the proof of Lemma 4.1 using Lemma 5.7 in the place
of Lemma 2.5. 
�

For a cofibration category C we introduce a new cofibration category C˜N

R (here, ˜N

does not refer to any homotopical structure on N, C˜N

R should be seen as an atomic
notation). Its objects are Reedy cofibrant diagrams X : N → C (i.e. sequences of
cofibrations in C) that are eventually (homotopically) constant, i.e. such that there is
a number k such that for all l ≥ k the morphism Xk → Xl is a weak equivalence.
A morphism f : X → Y of such diagrams is called an eventual weak equivalence if
there is k such that for all l ≥ k the morphism fl is a weak equivalence in C. This
cofibration category is designed as an enlargement of the cofibration category ĈN

R of
(homotopically) constant sequences. It is necessary since sequences arising as colimits
over filtrations D(−)K are only eventually constant.

Lemma 5.9 If C is a cofibration category, then the category C˜N

R with Reedy cofibra-
tions and eventual weak equivalences is also a cofibration category. Moreover, the
inclusion ĈN

R ↪→ C˜N

R is a weak equivalence.

Proof The construction of the cofibration category C˜N

R is a straightforward modifica-
tion of the construction of CN

R , see e.g. [14, Theorem 9.3.5 (1)].
We will verify the approximation properties [21, Proposition 2.2]. By 2-out-of-3 a

morphism between homotopically constant sequences is a levelwise weak equivalence
if and only if it is an eventual weak equivalence. Hence (App1) holds.

Next, let X → Y be a morphism with X homotopically constant and Y eventually
constant. Assume thatY is homotopically constant fromdegree k on. Let˜Y beY shifted
down by k. Then ˜Y is homotopically constant and iterated structure morphisms of Y
yield a morphism Y → ˜Y which is an eventual weak equivalence (starting from k).
This yields a commutative square

X Y

˜Y ˜Y

∼

id

which proves (App2). 
�
We define a functor |−| : DK → N by sending x ∈ DK to the smallest k ∈ N

such that x ∈ D(k)K . We call |x | the filtration degree of x . Here, we do not consider
any particular homotopical structure on N so |−| is not a homotopical functor. We
will be interested in the left Kan extension of a homotopical Reedy cofibrant diagram
X : DK → C along |−|. It can be computed as

(Lan|−| X)k = colimD(k)K X .

We will denote (Lan|−| X)k by �(k)X and when k varies �(−)X will stand for the
resulting sequence N → C.
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Just as colimits can be defined in terms of cones, left Kan extensions can be defined
in terms of certain generalized cones.We describe such cones for Kan extensions along
|−|. Let DK �|−| N denote the cograph (or collage) of |−| defined as the category
whose set of objects is the disjoint union of the sets of objects of DK and N and

(DK �|−| N)(x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

DK (x, y) when x, y ∈ DK ,

N(x, y) when x, y ∈ N,

N(|x |, y) when x ∈ DK and y ∈ N,

∅ otherwise.

Alternatively, DK �|−| N can be constructed as the pushout square

DK × {1} N × {1}

DK × [1] DK �|−| N.

|−| × id{1}

The left Kan extension of X : DK → C along |−| is nothing but an initial extension
of X to DK �|−| N so that morphisms �(−)X → Y in CN correspond to diagrams
on DK �|−| N restricting to X and Y on DK and N respectively. Such an extension
of X is a family of cones under the restrictions of X to all D(k)K s. We will compare
them to extensions to D(K�) using a functor pK : D(K�) → DK �|−| N defined as
follows. Write an object of D(K�) as x � ϕ with x ∈ DaK and ϕ ∈ Da[0] and set

pK (x � ϕ) =
{

|x � ϕ| when ϕ ∈ D[0],
x otherwise.

This allows us to state and prove a version of Lemma 4.2 for finitely cocomplete
cofibration categories.

Lemma 5.10 Let C be a cofibration category, K a finite simplicial set and X : DK →
C a homotopical Reedy cofibrant diagram. Consider a morphism f : �(−)X → Y and
the corresponding cone ˜T : DK �|−| N → C. If T is any Reedy cofibrant replacement
of p∗

K
˜T relative to DK (i.e. T is Reedy cofibrant and comes with a weak equivalence

T
∼→ p∗

K
˜T that is an identity over DK , such a replacement exists by Lemma 1.9),

then f factors as

�(−)X → �(−)T
∼→ Y

where the latter morphism is an eventual weak equivalence (starting at dim K + 1).

Proof To verify that the above composite agrees with f it suffices to check that at
each level k it agrees upon precomposition with Xx → �(k)X for all x ∈ D(k)K .
That’s indeed the case since T |DK = X .

It remains to check that the latter morphism is an eventual weak equivalence. For
i ≥ dim K + 1 in the diagram

123



614 K. Szumiło

colimD(i)(K� ) T Yi

T0 T02i+1

the left morphism is a weak equivalence by Lemma 5.8 and so is the right one since
T is a cofibrant replacement of p∗

K
˜T . The bottom morphism is a weak equivalence by

the homotopical structure of D(K�) and therefore so is the the top one. 
�
For every m ≥ 0 each object of D(K � �[m]) can be uniquely written as x � ϕ

with x ∈ DaK and ϕ ∈ Da[m]. This yields a functor rK : D(K � �[m]) → Da[m]
sending x � ϕ to ϕ and to which we can associate the “filtered” left Kan extension
functor

LanfiltrK : CD(K��[m])
R → (C˜N

R )
Da [m]
R

defined as (LanfiltrK X)ϕ = �(−)ϕ∗X for ϕ ∈ Da[m]. The functor LanfiltrK is exact by
[14, Theorem 9.4.3(1)]. Similarly we have

LanfiltsK : (C˜N

R )
D(K�∂�[m])
R → (C˜N

R )
Da∂�[m]
R

where sK : D(K � ∂�[m]) → Da∂�[m] is a functor defined in the same way as rK .
We form pullbacks (the front and back squares of the cube)

C˜D(K��[m])
R (C˜N

R )
˜Da [m]
R

C˜D(K�∂�[m])
R (C˜N

R )
˜Da∂�[m]
R

CD(K��[m])
R (C˜N

R )
Da [m]
R

CD(K�∂�[m])
R (C˜N

R )
Da∂�[m]
R .

LanfiltrK

LanfiltsK

PK

Observe thatC˜D(K��[m]) andC˜D(K�∂�[m]) are just atomic notations for the pullbacks
above, i.e. ˜D(K ��[m]) and ˜D(K �∂�[m]) are not homotopical categories for general
K , although they will be interpreted as such when K is a simplex.

The following is a finite variant of Lemma 4.5.

Lemma 5.11 The functor PK : C˜D(K��[m])
R → C˜D(K�∂�[m])

R is an acyclic fibration for
every finite simplicial set K .

Proof The proof is virtually identical to the proof of Lemma 4.5 except that now we
do not consider the cases of coproducts and colimits of sequences of monomorphisms
and we use Lemma 5.8 in the place of Lemma 4.1. 
�

Finally, we can characterize colimits in NfC in terms of homotopy colimits in C in
a manner similar to Theorem 4.6.
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Theorem 5.12 Let C be cofibration category, K a finite simplicial set. A cone
S : K� → NfC is universal if and only if the induced morphism

�(−)(S|K ) → �(−)S

is an eventual weak equivalence (where S is seen as a homotopical Reedy cofibrant
diagram D(K�) → C by Proposition 2.6). Such a cone exists under every diagram
K → NfC.

Proof The proof is almost identical to the proof of Theorem 4.6 except that we use
Lemmas 5.8, 5.10 and 5.11 in the place of Lemmas 4.1, 4.2 and 4.5 respectively. 
�
Acknowledgements This paper is based on a part ofmy thesis [19]whichwaswrittenwhile Iwas a doctoral
student in Bonn International Graduate School in Mathematics and, more specifically, Graduiertenkolleg
1150 “Homotopy and Cohomology” and International Max Planck Research School for Moduli Spaces.
I want to thank everyone involved for creating an excellent working environment. I want to thank Clark
Barwick, Bill Dwyer, André Joyal, Chris Kapulkin, Lennart Meier, Thomas Nikolaus, Chris Schommer-
Pries, Peter Teichner andMarek Zawadowski for conversations on various topics whichwere very beneficial
to my research. I am especially grateful to Viktoriya Ozornova and Irakli Patchkoria for reading an early
draft of my thesis. Their feedback helped me make many improvements and avoid numerous errors. Above
all, I want to express my gratitude to my supervisor Stefan Schwede whose expertise was always invaluable
and without whose support this thesis could not have been written.

References

1. Avigad, J., Kapulkin, K., Lumsdaine, P.L.: Homotopy limits in type theory. Math. Struct. Comput. Sci.
25(5), 1040–1070 (2015)

2. Borceux, F.: Handbook of categorical algebra. 1. Encyclopedia of Mathematics and its Applications,
vol. 50, Cambridge University Press, Cambridge. Basic category theory (1994)

3. Brown, K.S.: Abstract homotopy theory and generalized sheaf cohomology. Trans. Am. Math. Soc.
186, 419–458 (1973)

4. Cordier, J.M.: Sur la notion de diagramme homotopiquement cohérent. Cahiers Topologie Géom.
Différentielle 23(1), 93–112 (1982) (French). Third Colloquium on Categories, Part VI (Amiens,
1980)

5. Dwyer, W.G., Kan, D.M.: Simplicial localizations of categories. J. Pure Appl. Algebra 17(3), 267–284
(1980)

6. Dwyer, W.G., Kan, D.M.: Calculating simplicial localizations. J. Pure Appl. Algebra 18(1), 17–35
(1980)

7. Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und
ihrer Grenzgebiete, vol. 35. Springer-Verlag New York Inc, New York (1967)

8. Hovey,M.:Model categories,Mathematical Surveys andMonographs, vol. 63.AmericanMathematical
Society, Providence, RI (1999)

9. Joyal, A.: Quasi-categories and Kan complexes. J. Pure Appl. Algebra 175(1–3), 207–222 (2002).
doi:10.1016/S0022-4049(02)00135-4. Special volume celebrating the 70th birthday of Professor Max
Kelly. MR1935979

10. Joyal, A.: The Theory of Quasi-Categories and its Applications. Quadern 45, Vol. II, Centre de Recerca
Matemàtica Barcelona (2008)

11. Joyal, A., Tierney, M.: Quasi-categories vs Segal spaces. Categories in algebra, geometry and mathe-
matical physics, Contemp. Math., vol. 431, pp. 277–326. Amer. Math. Soc., Providence, RI (2007)

12. Kapulkin, K.: Locally Cartesian Closed Quasicategories From Type Theory. arXiv:1507.02648
13. Kapulkin, K., Szumiło, K.: Quasicategories of frames of cofibration categories. Appl. Categ. Struct.,

1–25 (2016)
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