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Abstract
In this study, we explore the impact of symmetry energy on the transitions between hadron and quark phases within compact 
stars. We investigate the properties of potential configurations of quark-hadron hybrid stars using energy-density functional 
(EDF) models and the flavor SU(2) Nambu–Jona-Lasinio (NJL) model, employing Schwinger’s covariant proper-time regu-
larization scheme. In this theoretical framework, we utilize equations of state (EoSs) of hadronic matter obtained from EDF 
models to describe the hadronic phase, and the flavor SU(2) NJL model with varying repulsive-vector interaction strengths 
represents the quark phase. By solving the Tolman–Oppenheimer–Volkoff equation, we examine the mass-radius properties 
of the hybrid star configurations for different vector interactions and nuclear symmetry energies. Our findings show that the 
critical density at which the phase transition occurs ranges from 3.6 to 6.7 times the normal nuclear-matter density, depending 
on the symmetry energy and the strength of the vector coupling ( G

v
 ). The value of G

v
 influences the maximum mass of the 

neutron star (NS). In the absence of a repulsive force, the maximum mass of the NS is only about 1.5 times the mass of the 
Sun ( M

⊙
 ). Still, it exceeds 2.0M

⊙
 when the vector coupling constant is approximately half of the attractive scalar coupling 

constant. Interestingly, quark matter does not impact the canonical mass of NS (1.4M
⊙

 ). Therefore, observing the canonical 
mass of NSs can provide valuable constraints on the EoS of hadronic matter at high densities.

Keywords Neutron star · Hadronic matter · Quark matter · Symmetry energy · Equation of state · Quark–hadron transition

1 Introduction

A fundamental question regarding the composition of matter 
at densities several times the nuclear saturation density ( �0 ) 
is how it differs from the state that makes up atomic nuclei. 
It is widely known that several exotic states are potential 
candidates for matter at ultra-high densities: the creation of 
hyperons, the onset of Bose–Einstein condensates, and trans-
formation to quark matter. Using subatomic physics theories, 
one can estimate the conditions under which the new state 
of matter will emerge. However, this new state of matter 
has not yet been established. For example, the appearance 

of hyperons and Δ baryons in matter and how they interact 
with other constituents of matter are still open questions.

In a recent study by Ref. [1], researchers investigated the 
in-medium interaction of the Λ hyperon using non-relativ-
istic nuclear density functional theory. They determined 
parameters for the Λ hyperon interaction to match single-Λ 
hypernuclear data and examined the effect of the density 
dependence of the symmetry energy in more detail. The 
study revealed that the density at which Λ hyperons appear 
strongly depends on the symmetry energy. However, it was 
found that the density at which hyperons appear is always 
greater than 3�0 ( �0 : nuclear saturation density), suggesting 
that hyperons are unlikely to significantly impact the prop-
erties of a canonical neutron star with a mass of 1.4M

⊙
 , as 

the density at the center of such a neutron star is generally 
less than 3�0 . The study also considered kaon condensation 
in both relativistic and non-relativistic models [2, 3]. It was 
concluded that unless the interaction of the kaon in dense 
nuclear matter is super-strongly attractive, the formation of 
kaon condensation is less probable.
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Similarly, the matter composition in neutron stars (NSs) 
can be illustrated as the quarks in the baryons on a micro-
scopic scale. According to the bag model, baryons are 
spherical bags in which quarks are assumed to be confined. 
In the bag model, the proton’s charge radius is expected to 
be around 0.6 to 0.8 fm, corresponding to a volume of 0.9 
to 2.1 fm3 . The inverse of the number density ( � ) gives the 
volume occupied by a nucleon. At the saturation density, if 
�0 = 0.16 fm−3 , one nucleon occupies 6.25 fm3 , which is 
larger than the volume of a nucleon, indicating that nucleons 
are spatially separated. At densities in the range of three-
to-six times �0 , the volume per nucleon becomes equal to 
the volume of a nucleon, causing the nucleons to begin to 
overlap. As the matter density increases above the onset of 
overlapping, the nucleons overlap more, making it difficult 
to define the confinement of a quark in a specific bag. The 
matter then transforms into the phase of deconfined quarks. 
A similar condition is expected to occur in neutron stars.

The equation of state (EoS) of dense matter allows for the 
calculation of the bulk properties of neutron stars, such as 
mass, radius, and particle distribution in the core, by solving 
the Tolman–Oppenheimer–Volkoff (TOV) equations. Using 
nuclear models constrained by nuclear properties, nuclear-
matter properties from heavy-ion collision experiments, ab 
initio calculations, and modern neutron star observation data 
[4–9], the density at the center of a canonical mass of NS 
is found to be about or less than 3�0 , and for the heaviest 
stars ( ≥ 2M

⊙
 ) is around 6�0 . The core of NSs with masses 

in the range (1.4–2.0)M
⊙

 may likely transform from hadron 
to quark degrees of freedom.

The main focus of this study is to investigate the uncer-
tainty surrounding the critical density ( �c ) at which the 
transition from the hadronic phase to the deconfined quark 
matter begins and its impact on the properties of neutron 
stars. To achieve this goal, we utilize the KIDS (Korea-
IBS-Daegu-SKKU) energy-density functional (EDF) for the 
equation of state of hadronic matter (HM), with the density 
dependence of the symmetry energy calibrated to the radius 
of 1.4M

⊙
 mass NSs in the range R1.4 = (11.8 − 12.5) km [8]. 

The KIDS0, KIDS-A, KIDS-B, KIDS-C, and KIDS-D mod-
els and the standard Skyrme SLy4 model are employed, each 
with distinct density dependence of the symmetry energy. 
The results obtained will provide a range of �c within the 
uncertainty of the nuclear-matter EoS.

On the quark matter (QM) side, the proper-time NJL 
model is used for the EoS of the deconfined quark state. 
Considering that massive NSs are likely to have a QM phase 
in the core, we investigate the range of parameters in the NJL 
model that are compatible with NS masses greater than 2M

⊙
 . 

This allows us to determine the ranges of the parameters in 
the QM EoS.

By combining the EoSs of the KIDS model with those 
of the NJL model, we determine the range of �c from the 

condition PHM(�c) = PQM(�c) at �HM = �QM = �c , where 
PHM , PQM , �HM , and �QM represent the pressure in the had-
ronic phase, pressure in quark phase, density in hadronic 
phase, and density in quark phase, respectively. The results 
will provide insights into (i) the effect of the symmetry energy 
on the change of phase in the NS core, (ii) the consistency of 
the hybrid models with the NS properties determined from 
astronomical observations, and (iii) the uncertainty of the EoS 
in the hadronic and quark phases.

This work is organized as follows. In Sect. 2, we briefly 
introduce models for both hadronic matter and deconfined 
quark matter. The KIDS-EDF model is used to describe the 
hadronic matter. In contrast, the quark matter is described 
using the flavor SU(2) Nambu–Jona–Lasinio model with the 
Schwinger proper-time regularization scheme, also known as 
the NJLPTR model. We present and discuss the numerical 
results of the current work in Sect. 3, and we summarize the 
work in Sect. 4.

2  Formalism for the hadron and quark 
phases

2.1  Hadronic matter from the KIDS functional

This section will describe HM in the KIDS-EDF model [4, 
10, 11]. This model is based on the Fermi momentum expan-
sion, relevant for infinite nuclear matter and a neutron star. 
The energy per particle for homogeneous hadronic matter, 
expressed in powers of the cubic root of the density, is given by

The kinetic energy denoted by T(�, �) is given as

Here, � = (�n − �p)∕� and � = �n + �p , representing the 
isospin asymmetry and baryon density, respectively, and 
M ≡ (Mn +Mp)∕2 represents the average nucleon mass in 
free space. The symmetric and antisymmetric nuclear–mat-
ter coefficients are denoted by �j and �j.

The symmetry energy S(�) can be straightforwardly deter-
mined by taking the second derivative of the energy per parti-
cle concerning � at the nuclear saturation density. This yields

(1)EHM(�, �) =T(�, �) +

3∑
j=0

(
�j + �j�

2
)
�
1+j∕3.

(2)T(�, �) =
ℏ
2

2M

3

5
(3�2

�)2∕3
[(

1 + �

2

)5∕3

+
(
1 − �

2

)5∕3
]
.

(3)

EHM(�, �) =E(�, 0) + S(�)�2 +O(�4),

S(�) =
ℏ

6M

(
3�2

2

)2∕3

�
2∕3 +

3∑
j=0

�j�
(1+j∕3).
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The pressure for the HM can be calculated from the energy 
per particle concerning baryon density. It takes the follow-
ing form:

In this work, the nuclear many-body system is represented 
by five KIDS-EDF models: KIDS0, KIDS-A, KIDS-B, 
KIDS-C, and KIDS-D, along with the Skyrme force SLy4 
model. These EDF models exhibit different nuclear sym-
metry energies, ranging from soft to stiff nuclear symmetry 
energies. The graph in Fig. 1a displays the results for the 
nuclear symmetry energy of the KIDS0, KIDS-A, KIDS-B, 
KIDS-C, KIDS-D, and SLy4 models. It clearly illustrates 
different ranges of symmetry energies, covering soft and 
stiff symmetry energies that will be used in constructing the 
EoS for the hybrid model. In Fig. 1a, it can be observed that 
for HM, the KIDS-A model provides the stiffest symmetry 
energy, while the SLy4 model offers the softest. Addition-
ally, Fig. 1b shows the pressure of the NS matter as a func-
tion of density. The pressures of symmetric matter obtained 
from the EDF models are consistent with heavy-ion collision 
(HIC) reaction data at high density [12] as well as chiral 
perturbation theory (ChPT) at low density [13].

The graph in Fig. 1c presents the energy densities EHM of 
the NS matter for the hadronic models as a function of den-
sity. Additionally, Fig. 1d displays the PHM-EHM relationship 
for the hadronic models. This equation of state relationship 

(4)PHM =�2
�EHM(�, �)

��
.

is necessary for input into the TOV equation to determine 
the properties of the NSs. The HM model observed that the 
MNS∕M⊙

 results for the KIDS0 and SLy4 models are quite 
similar due to both models having soft symmetry energies. 
In contrast, the KIDS-A and KIDS-B models, which have 
stiff symmetry energies, result in a larger radius for the NS. 
Overall, the mass and radius of the NS results for all KIDS 
models align well with recent observations [14–16].

2.2  Pure quark matter from the NJLPTR model

In this section, we discuss pure (nonstrange) quark mat-
ter (PQM) within the framework of the flavor SU(2) 
Nambu–Jona–Lasinio model [17–26]. This model is con-
structed using the quark degrees of freedom in the form 
of four-fermion contact interactions. As a result, it is well 
suited and powerful for describing quark matters. The gen-
eral NJL Lagrangian density for two quark flavors can be 
expressed as

In this model, the quark field is represented by 
�q = (�u,�d)

T , 𝜏  denotes the Pauli isospin matrices, and 
m̂q = diag[mu,md] is the current (bare) quark mass. Assum-
ing isospin symmetry, we have mu ≈ md . The constants Gs , 
G

�
 , and G

�
 represent the scalar, isoscalar–vector, and isovec-

tor–vector coupling constants, respectively. It is important 

(5)
NJL = �̄q

(

i∕� − m̂q
)

�q + Gs
[

(�̄q�q)2 + (�̄q�5�⃗�q)2
]

− G�(�̄q���q)2 − G�(�̄q���⃗�q)2.

Fig. 1  Numerical results of the 
NS matter from the KIDS EDFs 
and the SLy4 model: a the sym-
metry energy, b pressure, and c 
energy density of HM as func-
tions of �∕�0 , whereas d EoS of 
HM is given as well
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to note that the NJL model encounters a divergence in the 
quark propagator, which requires us to apply a regularization 
scheme to address this issue. In our work, we have applied 
the Pauli–Villars regularization scheme to mitigate the diver-
gence, as suggested by Schwinger [27]. Using the mean-
field approximation (MFA) in the proper-time regulariza-
tion (PTR) scheme, the effective quark mass can be readily 
obtained within the standard NJL formalism

In the equation, the term ⟨�̄�q𝜓q⟩ represents the chiral con-
densate for flavor q and is related to the order parameter of 
the spontaneous breaking of chiral symmetry (SB�S). It is 
important to note that the effective quark mass in Eq. (6) 
has an additional correction in quark matter, which arises 
from the density term in the quark propagator. A similar 
expression for the effective quark mass can be obtained from 
�V

QM

NJL
(Mq,�q)∕�Mq , where VQM

NJL
(Mq,�q) will be given in 

Eq. (10). It is worth noting that the definition of the reduced 
chemical potential will be provided below.

In the quark matter, the NJL Lagrangian density in Eq. (5) 
is modified by adding an extra quark density or quark operator 
chemical potential term. It then has the form

where �̂�q = diag[𝜇u,𝜇d] is the quark chemical potential 
matrix. Thus, considering the density effect, the quark 
propagator for flavor q in momentum space can be written by

where the �̃�q is the so-called the reduced quark chemical 
potential for flavor q and it can be written as

where the second term in the r.h.s. denotes the contribution 
from the vector interaction, and it reduces the chemical 
potential effectively, i.e., diminishing the density by the 
repulsion between quarks. In this work, we use 
�
v
q
≃ ⟨�†

q
�q⟩ = p3

Fi
∕�2 to represent the individual quark 

number densities of flavor q. Here, pFi
 is the Fermi momen-

tum for quark flavor i = (u, d) . For simplicity, we consider 
the vector coupling Gv = G

�
= G

�
 by taking into account 

vector dominance and the small mass differences between � 

(6)

Mq =mq − 2Gs⟨�̄�q𝜓q⟩ = mq +
3GsMq

𝜋2 ∫
∞

Λ−2
UV

d𝜏
exp[−𝜏M2

q
]

𝜏2

−
6GsMq

𝜋2

⎡
⎢⎢⎢⎣
�̂�q

�
�̂�2
q
−M2

q
−M2

q
log

⎛
⎜⎜⎜⎝

�̂�q +
�

�̂�2
q
−M2

q

Mq

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦
.

(7)LNJL →LNJL + �̄�q�̂�q𝛾
0
𝜓q,

(8)Sq(p) =
1[(

p0 + �̃�q

)
𝛾0 − p ⋅ � −Mq

] ,

(9)�̃�q =𝜇q − 2Gv𝜌
v
q
,

and � masses [28, 29]. It is important to note that in this 
work, Gv will be treated as a free parameter.

In the standard method, the effective potential for the 
nonstrange QM in the NJL model is given by [30]

The first term exhibits divergence in the given expression 
and requires regularization using the PTR scheme. The 
reduced quark chemical potentials for u and d quarks are 
denoted by �̃�u = �̃�d = 𝜇u − 2Gv𝜌

v
u
 , as shown in Eq.  (9). 

Here, V0 = 2Gv⟨�†
q
�q⟩ , E2

u
(k) = E2

d
(k) = |k|2 +M2

0
 , and 

M0 represent the vector field (potential), quark energy, and 
the constituent quark mass in free space, respectively. It 
should be noted that a constant (free space) contribution 
( Mq = M0 ) has been subtracted from the effective potential 
in Eq. (10). As a result, the pressure becomes zero in free 
space. With this effective potential definition and the so-
called Gibbs–Duhem relation, the energy density also van-
ishes in free space [31].

Using the effective potential in Eq. (10), the pressure 
and energy density for the normal (nonstrange) QM are 
expressed as

The QM EoS calculation involved fitting the NJL parameters 
to the pion mass m

�
= 0.14 GeV and the pion weak decay 

constant f
�
= 0.093 GeV. This resulted in Gs = 3.17 GeV−2 

and ΛUV = 1.0789 GeV. The constituent quark mass M0 is 
0.20 GeV, and the current quark mass mq = 0.0055 GeV, 
similar to the PDG values [32].

The results for the effective quark mass, pressure, and 
energy density of the quark matter for vector interaction 
couplings Gv = (0.00, 0.25, 0.50)Gs are illustrated in Fig. 2 
as functions of the nucleon density. Assuming that the 
quark content of the nucleon is three quarks N ∼ qqq and 
isospin symmetry is intact, we have the relation between 
the quark density �q and the nucleon density � as � = �q∕3 
and the relation for the chemical potential � = 3�q where 
� and �q denote the nucleon and quark chemical potential, 
respectively. It is observed that the effective quark masses 
decrease as the density increases, as shown in Fig. 2a. 
Moreover, the effective quark mass is not significantly 

(10)

QM
NJL(Mq ,�q) =2iNc

∑

q=u,d
∫

d4k
(2�)4

log

[

k2 −M2
q + i�

k2 −M2
0 − i�

]

+
∑

q=u,d

(Mq − mq)2

8Gs

−
∑

q=u,d

(M0 − mq)2

8Gs

−2Nc
∑

q=u,d
∫

d3k
(2�)3

Θ
[

�̃q − Eq(k)
] [

�̃q − Eq(k)
]

−
∑

q=u,d

V2
0

8Gv
.

(11)

PQM = − V
QM

NJL
(Mq,�q) − Vl(�l),

EQM = − PQM +
∑
q=u,d

�q�
v
q
,

�q = −
�V

QM

NJL

(
Mq,�q

)
��q

.
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influenced by changes in the values of the vector repulsive 
interaction coupling; the rate of change is relatively low. 
This result for the effective quark mass is consistent with 
the findings in Refs. [21, 30].

The results for the pressure of the PQM are depicted in 
Fig. 2b. The pressure becomes more pronounced with a 
higher value of Gv . This behavior is a natural and expected 
outcome, because a higher Gv value reinforces the repul-
sive force. Additionally, the results for the E-� relation of 
the PQM for different values of Gv are presented in Fig. 2c. 
A similar trend with the pressure is observed: the energy 
density increases as the Gv value and density increase. This 
relationship can be clearly understood from the equations 
PQM = −V

QM

NJL
− Vl and EQM = −PQM +

∑
q �q�

�

q
 , as given in 

Eq. (11). It implies that the increase in pressure is solely due 
to the increase in energy density and vice versa, as explained 
in the visualization of Fig. 12 of Ref. [21]. Figure 2d illus-
trates the EoS P-E relation for different values of Gv . The 
pressure rises alongside the energy density and Gv . This also 
indicates that the EoS of the QM becomes stiffer for higher 
values of Gv.

2.3  Properties of the static hybrid star

Here, we input the obtained equations of state for hadronic 
and quark matters, with various values of Gv and symmetry 
energies, into the TOV equation. This allows us to numeri-
cally calculate the properties of a non-rotating neutron star 
and obtain the mass–radius (M–R) relation, which describes 

the structure of the hybrid star. The TOV equations can be 
found in Refs. [33–35]

where P(r) and E(r) are the pressure and energy density at 
radial position r. G and M(r) represent the gravitational con-
stant and the mass within the sphere of radius r, respectively. 
Using the equations of state of the constructed hybrid stars 
as input, we can derive the M–R relation. The EoSs of the 
hybrid stars are illustrated in Fig. 3.

3  Numerical result

3.1  Critical density of the hybrid star

In this section, we present the results of the critical densities 
of the phase transition from hadronic to quark matter for 
different KIDS models and the Skyrme model. The critical 
density �c is determined by finding the point where PHM and 
PQM intersect. It is important to note that �c is the density 
at which the phase transition from the hadronic to quark 
phases occurs when PHM(�c) = PQM(�c) and �HM = �QM . 
In Fig. 3, PHM is shown for each hadronic model and PQM 

(12)

dP(r)
dr

= −
G[E(r) + P(r)][M(r) + 4�r3P(r)]

r[r − 2GM(r)]
,

dM(r)
dr

= 4�r2E(r),

Fig. 2  From the NJLPTR 
model: a effective quark mass 
for different values of G

v
 as a 

function of �∕�0 , b pressure 
of QM as a function of �∕�0 , c 
energy density of QM as a func-
tion of �∕�0 , and d EoS of PQM
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with three values of the vector coupling constant Gv = 0 , 
0.25Gs , and 0.5Gs . Figure 3a shows PHM for the KIDS0 
model and PQM for the NJL model with different values of 
Gv . The critical density for PHM and PQM for Gv = 0.00Gs 
is around �c = 3.60�0 . The �c increases as the value of Gv 
increases. The �c for the KIDS-A model is shown in Fig. 3b. 
The KIDS-A model has a stiffer symmetry energy com-
pared to the KIDS0 model. The critical densities for the 
KIDS-A model and the NJL model with Gv = 0.00Gs and 
Gv = 0.25Gs are smaller than those for the KIDS0 model. 
However, the critical density for the KIDS-A model and the 
NJL model with Gv = 0.5Gs is larger than that obtained for 
the KIDS0 model. This trend continues for the KIDS-B, 
KIDS-C, and KIDS-D models as shown in Fig. 3c–e. In 
contrast, the SLy4 and the NJL models with different values 
of Gv have similar critical density values to those for the 
KIDS0 model and the NJL model with the corresponding 
values of Gv . This is likely due to KIDS0 and SLy4 models 
having softer nuclear symmetry energies than other KIDS 
models, as shown in Fig. 1. For all the hadronic models and 
the NJL model with different Gv values, comparing the pres-
sures of HM and QM at a given density, it is smaller in the 
hadron phase at low densities, and it becomes smaller in the 
quark phase at high densities.

In comparing the values of �c for larger values of 
Gv = 0.5Gs among the KIDS-A, KIDS-B, KIDS-C, and 
KIDS-D models, we observe that the KIDS-A model has 
the highest value of �c , followed by KIDS-B, KIDS-C, and 
KIDS-D models in decreasing order. The ordering of �c can 
be understood from the stiffness of symmetry energy. A soft 
symmetry energy (small L and Ksym values, where L and 
Ksym are the slope and the curvature of symmetry energies, 
respectively) leads to a small energy required to create a 
neutron. As a result, the �-equilibrium condition allows easy 
neutron creation, resulting in a large fraction of neutrons. 
Pauli blocking strengthens the pressure exerted by the neu-
tron when more neutrons are within the neutron star. For this 
reason, the pressure of KIDS-D is stiffer than that of KIDS-
A. Exact values of �c are summarized in Table 1. Comparing 
the results of KIDS-A and KIDS-D models, one can see 
that, regardless of Gv value, the transition to the quark phase 
occurs at low densities with soft symmetry energy. Values 
of the pressure at �c ( Pc ) are also summarized in the table.

Overall, it indicates that the phase transition is highly 
sensitive to the nuclear symmetry energy in the hadron phase 
and the vector repulsion in the quark phase. Their effect 
on physical observables can be probed by solving the TOV 
equations and obtaining the mass and radius of neutron stars.

Fig. 3  Pressure as a function of 
density for QM with different 
values of G

v
 and for HM in the 

different EDF models: a KIDS0, 
b KIDS-A, c KIDS-B, d KIDS-
C, e KIDS-D, and f SLy4. The 
critical density �

c
 is given by 

the cross point between PHM 
and PQM with different values 
of G

v
 . The thick solid line is 

P-� relation for HM. The thin 
solid line is P-� relation for QM 
with G

v
= 0.00G

s
 , the dashed 

line is P-� relation for QM with 
G

v
= 0.25G

s
 , and the dashed 

line is P-� relation for QM with 
G

v
= 0.50G

s
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3.2  M‑� and M‑R relations of the hybrid star

Figure 4 displays the mass of an NS as a function of the 
density at the center. For the pure hadronic matter, all six 
models produce the NS maximum masses ( Mmax ) greater 
than 2M

⊙
 . The NS maximum mass for the KIDS-D model is 

the largest, as shown in Fig. 4e, and it decreases in the order 
of KIDS-C, KIDS-B, and KIDS-A models as in Fig. 4b–d. 
This result is consistent with the stiffness of EoS in Fig. 1. 
The result changes dramatically if QM exists in the core of 
the star.

The thick solid lines denote the NS mass results of the 
hadronic matter as in Fig. 4a–f. In all the hybrid KIDS-
NJL models, the density at which the thin solid lines begin 
is equal to �c in Table 1, which means that as the transition 

to quark matter occurs, the EoS becomes soft, and the 
matter cannot support strong gravity. As a result, Mmax is 
determined at the density of phase transition. For Gv = 0 , 
�c is not very sensitive to the models, so the NS maximum 
masses are obtained in a narrow range (1.5−1.6)M

⊙
 . These 

values are substantially low in comparison to 2M
⊙

 , so the 
result confirms that vector repulsion must be necessarily 
accounted for in the QM to reproduce the observation of 
the large mass of NS. The dashed lines correspond to the 
result of Gv = 0.25Gs , as shown in Fig. 4a–f. Similar to 
Gv = 0 , the density at which a dashed line begins is the 
same with �c in Table 1, and Mmax is determined at the 
density where the mass is below 2M

⊙
 for all EDF models. 

The result demands that the Gv value must be higher than 
0.25Gs.

Table 1  Transition point 
obtained from the P-�∕�0 
relation for the hybrid KIDS-
NJLPTR models with different 
values of G

v

The units of the coupling constants of G
v
 and G

s
 are MeV−2 , and P is MeV fm−3 . Note that �

c
 is in the unit 

of �0

G
v

KIDS0 KIDS-A KIDS-B KIDS-C KIDS-D SLy4
(P

c
, �

c
) (P

c
, �

c
) (P

c
, �

c
) (P

c
, �

c
) (P

c
, �

c
) (P

c
, �

c
)

0.00G
s

(110.23, 3.60) (89.98, 3.21) (88.21, 3.18) (73.00, 2.86) (78.15, 2.97) (119.73, 3.78)
0.25G

s
(226.44, 4.55) (203.39, 4.29) (181.44, 4.02) (159.28, 3.74) (155.71, 3.69) (261.06, 4.95)

0.50G
s

(464.75, 5.81) (592.96, 6.65) (417.06, 5.47) (365.00, 5.09) (309.08, 4.65) (574.79, 6.54)

Fig. 4  NS mass–density rela-
tions of different hadron–quark 
matter EoS with different 
values of G

v
 for different EDF 

models: a KIDS0, b KIDS-A, c 
KIDS-B, d KIDS-C, e KIDS-D, 
and f SLy4. The thick solid line 
represents the NS mass for the 
HM. The thin solid line is the 
NS mass for the HM+QM with 
G

v
= 0.00G

s
 , the dashed line is 

the NS mass for the HM+QM 
with G

v
= 0.25G

s
 , and the 

dotted line represents the NS 
mass for the HM+QM with 
G

v
= 0.50G

s
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The results of Gv = 0.5Gs , which are shown with dot-
ted lines, are now consistent with the 2M

⊙
 constraint. The 

density at which the QM curve begins is the highest given 
by the KIDS-A model, and it then decreases in the order 
of KIDS-B, KIDS-C, and KIDS-D models. This ordering 
is understood easily in terms of the stiffness of the EoS of 
each model. Contrary to the results of Gv = 0 and 0.25Gs , 
the density at which the dotted curves begin is higher than 
the �c values in Table 1. The difference means that even after 
the QM is formed in the core, its EoS is stiff enough to resist 
gravitational contraction up to a density at which the NS star 
reaches the maximum value. However, the interval between 
�c and the density at the maximum mass of NS is narrow, so 
the fraction of QM in the core of the NS is not significant. 
Summarizing the result, to satisfy the 2M

⊙
 condition, the 

Gv value must be larger than a specific value to obtain the 
QM EoS stiff. The stiff QM EoS increases �c , and the high 
�c value constrains the existence of QM in a limited range.

In Fig. 5, we see the mass–radius (M–R) relation obtained 
from the TOV equations. The data from GW and NICER 
provide information on both the mass and radius of NS, 
allowing for a more stringent constraint on the equation of 
state of HM and QM than the mass data alone. The radius 
of an NS with a canonical mass of 1.4M

⊙
 , denoted as R1.4 , 

is crucial. According to the NICER analysis [36], the NS 
radius is R1.4 = 12.45 ± 0.65 km within a 1� credible inter-
val [36].

On the theoretical side, the density at the center of 
a 1.4M

⊙
 NS is found not to exceed 3�0 in general. Exotic 

states, such as the mixture of hyperons or a transition to QM, 
typically appear at densities above 2�0 , with some uncer-
tainty. Therefore, the properties of a 1.4M

⊙
 NS are crucial 

for probing (i) the EoS of HM at high densities if there is no 
transition to QM or hyperons, or (ii) the consistency of the 
EoS of exotic phases with the data of a 1.4M

⊙
 NS if these 

exotic states exist in its interior.
The M–R result indicates that the effect of QM appears at 

NS masses higher than 1.5M
⊙

 , so the radius of a 1.4M
⊙

 NS 
is unaffected by the transition to QM. Hyperons are another 
source that can soften the EoS of a 1.4M

⊙
 NS. According to 

work in progress [37], if the ΛΛ interaction determined from 
the experimental data of double-Λ hypernuclei is included in 
the EoS of hyperon matter, it makes the EoS stiff. As a con-
sequence, the maximum mass of the NS could be larger than 
2M

⊙
 , and the creation of hyperons has a negligible effect on 

the radius of the 1.4M
⊙
 star. Therefore, an accurate measure-

ment of R1.4 can provide unique constraints on the EoS of 
HM at densities up to 3�0.

Fig. 5  Models and legends 
in each panel are the same as 
Fig. 4 but the results are shown 
for NS M-R relations as func-
tions of the neutron star radius. 
Horizontal error bars show the 
radius of 1.4M

⊙
 and 2.08M

⊙
 

stars determined in the NICER 
analysis [36]
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Our results show some differences compared to others, 
but they are qualitatively compatible overall. In the papers 
by Refs. [38, 39], they discussed the transition or crossover 
to quark matter. Both papers described quark matter in terms 
of the NJL model. However, in the case of the HM, the paper 
[38] used an RMF model, while the paper [39] employed a 
chiral effective field theory ( �EFT) and Togashi equations 
of state.

In Ref. [38], the results of the MS-B+vNJL model are 
comparable to our work. The model assumes three values 
for the vector repulsion of QM, Gv∕Gs = 1.5 , 2.0, and 2.5. 
The results show that the maximum mass of NS is below 
2M

⊙
 when Gv = 1.5Gs , and it becomes obviously above 2M

⊙
 

when Gv = 2.0Gs . Notably, in our calculation, Mmax ≥ 2M
⊙
 

is obtained if Gv ≥ 0.5Gs , showing a significant difference 
in the strength of the vector repulsion. The M–R curve of 
MS-B+vNJL is also very different from what we obtain. 
Transition to QM occurs at � = 1.5�0 or � = 2.0�0 in the 
MS-B+vNJL model, and then, the radius becomes smaller 
than the radius of the HM.

The 1.4 M
⊙

 NS radius is about 12.5 km without QM, but 
it falls in the range 11.7−12.2 km depending on the Gv and 
�c values. The radii of the maximum mass NSs are located 
below 11 km, which is much smaller than the NICER esti-
mation R2.08 = 12.35 ± 0.75 km, where R2.08 represents the 
radius of a 2.08M

⊙
 NS [36]. In Ref. [39], the transition from 

HM to QM is assumed to begin at a density of 1.5�0 , and its 
dependence on Gv is presented. When compared to the R1.4 
of the Togashi EoS, which only accounts for nucleons, the 
radius of a neutron star becomes larger by about 0.2−0.3 km 
when quark matter is included in the core. This is contrary 
to the result of MS-B+vNJL in [38].

The paper shows that the values of Gv must be larger than 
0.84Gs to satisfy the condition Mmax ≥ 2.08M

⊙
 . Addition-

ally, it is indicated that the Gv value in Ref. [39] is much 
larger than the value obtained in our work to satisfy the 2M

⊙
 

condition. However, recent references in the literature [40, 
41] have reported that the strength of Gv is in the same order 
as that used in this work to achieve 2M

⊙
 . It is important to 

note that no strict constraints are currently available for the 
values of Gv . More precise data are required to constrain Gv.

It is worthwhile to compare our result of the neutron star 
radius around the NS maximum mass with the NICER result 
in R2.08 = 11.6 − 13.1 km. With only hadronic matter, the NS 
radii at NS maximum mass are in the 9.8 − 11 km range. The 
NS radii tend to increase in a stiffer EoS, giving the largest 
NS radius for the KIDS-C model. However, even the largest 
NS radius value of the KIDS model is relatively small com-
pared to the lower limit of NICER R2.08 . The inconsistency 
could be understood as a signal for the existence of phases 
other than the hadrons. Comparing the results of KIDS-
A, KIDS-B, KIDS-C, and KIDS-D models, a soft EoS of 
HM gives larger values of �c , so even if the quark matter is 

formed in the core, Rmax (radius of the maximum mass NS) 
is too small to be consistent with the NICER R2.08 range. The 
KIDS-A model clearly shows such behavior. On the other 
hand, stiff EoSs like the KIDS-C and D models show that 
the phase transition occurs at a relatively large NS radius, 
so the NS radius of the maximum mass is shifted to values 
more prominent than those of pure HM. As a result, the NS 
with QM in the core can explain the NICER R2.08 data better 
than the NSs with nucleons only.

The KIDS-A, KIDS-B, KIDS-C, and KIDS-D models 
aim to meet the constraint R1.4 = 11.8 − 12.5 km, which is 
more restrictive than the NICER R1.4 . The SLy4 and KIDS0 
models are designed to match the APR pure neutron matter 
EoS [42] in the isovector component of the functional. As 
a result, the M–R behaviors of the SLy4 and KIDS0 models 
are similar but do not align with NICER R1.4 and R2.08.

The results of this work demonstrate that symmetry 
energy plays a crucial role in controlling the stiffness of 
the equation of state of hadronic matter and in affecting the 
bulk properties of neutron stars with quark matter cores. The 
KIDS-C and D models, with Gv values greater than 0.5Gs , 
are consistent with NS mass data for 1.4M

⊙
 and 2.08M

⊙
 . The 

values of the nuclear symmetry energy parameters L and 
Ksym are 58 and −91.5 MeV for the KIDS-C model and 47 
and −134.5 MeV for the KIDS-D model, respectively. These 
values align with the 95% credible range obtained from the 
KIDS-R14 model set [43], which is L = 49.8 ± 10.4 MeV 
and Ksym = −82.4 ± 67.4 MeV.

4  Summary

The role of nuclear symmetry energy has been studied in 
the transition from hadronic matter to the deconfined quark 
phase in the core of neutron stars. There are two main 
concerns: first, the critical density for the phase transition 
depends on the symmetry energy, and second, the repulsive-
vector coupling plays a role in the equation of state of quark 
matter and neutron star properties. The nuclear symmetry 
energy is determined to be consistent with the data on the 
canonical mass of neutron stars. The impact of the uncer-
tainty related to the symmetry energy becomes apparent in 
the mass–radius relationship of neutron stars with masses 
close to 2M

⊙
.

The equation of state for quark matter is described in 
the NJL model. We used the PTR scheme to address the 
ultraviolet divergence rigorously. It is known that a repul-
sive-vector coupling is crucial for achieving the maximum 
mass of the hybrid star consistent with the observation of 
a 2M

⊙
 astrophysical object. The dependence on the vec-

tor coupling is explored using three different values of 
the vector coupling constants Gv = 0.00, 0.25, and 0.50 
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in units of Gs . The critical density for the phase transi-
tion is determined from the condition PHM(�c) = PQM(�c) 
at �HM = �QM = �c.

We have observed that the symmetry energy highly 
influences the critical density. When comparing the 
�c values among the four models (KIDS-A, KIDS-B, 
KIDS-C, and KIDS-D), we noticed that the value of �c 
tends to decrease with softer symmetry energy, meaning 
𝜌c(A) > 𝜌c(B) > 𝜌c(C) > 𝜌c(D) regardless of the vector 
coupling constant. When the vector repulsion is turned 
off ( Gv = 0 ), the maximum mass of the neutron star is 
obtained at around (1.5 − 1.6)M

⊙
 . This confirms that repul-

sive-vector coupling is essential for obtaining consistent 
results with the observation of 2M

⊙
 . Since the maximum 

masses of the neutron stars are obtained at �c for Gv = 0 , 
the properties of the 1.4M

⊙
 neutron stars are unaffected 

by the transition to QM. Therefore, the equation of state 
of a 1.4M

⊙
 neutron star could be accurately determined in 

terms of the hadronic degrees of freedom.
When Gv = 0.25Gs , once the quark matter is created 

in the neutron star core, the NS reaches its maximum 
mass at around 1.9M

⊙
 , regardless of the model used. To 

match observations, a stronger repulsion is needed. When 
Gv = 0.50Gs , we found that the maximum NS mass aligns 
with astrophysical observations, but the NS radius does 
not match the observed findings. For the KIDS-A and 
B models, the phase transition does not improve the NS 
mass–radius relation, falling outside the range determined 
by the NICER analysis. On the other hand, the KIDS-C 
and D models agree with the NICER range if quark matter 
exists in the NS core.

We have demonstrated that the density dependence of 
the symmetry energy and the vector coupling constant is 
crucial in the transition from hadronic to quark matter. The 
symmetry energy and the vector coupling constant influence 
the critical density. These factors are essential in determin-
ing the mass–radius relationship of hybrid stars with masses 
higher than the canonical mass of neutron stars. Accurately 
measuring the large masses of neutron stars will provide 
a unique opportunity to constrain the symmetry energy in 
hadronic matter and the repulsive-vector coupling in quark 
matter simultaneously.

To this end, it is worth noting that alternatively, in 
describing a more realistic quark matter scenario, it would 
be interesting to consider the quark dynamics in terms of 
momentum dependence as used in Refs. [44, 45]. The work 
on this is still in progress, and the result will appear some-
where else in the near future.
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