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Abstract
We apply the method of Hamiltonian reduction without isometry as a way to find exact solutions to Einstein’s equations. To 
find exact solutions, we introduce two spatial Killing vector fields to the Einstein’s equations obtained through the Hamilto-
nian reduction, and derive the Ernst-like equation in the privileged coordinates. By solving the Ernst-like equation, we found 
a four-parameter family of exact solutions, one of which is interpreted as a deformation of the general Kasner spacetime. We 
extend our method to spacetimes where two independent gravitational degrees of freedom co-exist and interact with each 
other, and obtain a set of two partial differential equations satisfied by them. If we substitute a pre-fixed diagonal mode into 
these equations, and then the equations reduce to a single non-linear partial differential equation, which is interpreted as the 
equation of non-diagonal mode of gravitational waves propagating on the “background” spacetime determined by the diagonal 
mode. We choose three simplest “background” spacetimes, and discuss the corresponding non-diagonal modes in each case.

Keywords  Hamiltonian reduction · 2+2 Formalism · Exact solutions · Ernst equation

1  Introduction

The idea of Hamiltonian reduction is to describe general 
relativity by true gravitational degrees of freedom only, 
after  solving the constraints associated with the spacetime 
diffeomorphisms. It was first suggested by ADM using 
the canonical (3+1) decomposition decades ago, and they 
showed that Hamiltonian reduction can be done successfully 
in asymptotic region of asymptotically flat spacetimes by 
isolating the true gravitational degrees of freedom propagat-
ing in asymtotically flat zone[1]. Beyond asymptotically flat 
spacetimes; however, the Hamiltonian reduction was only 
partially successful, namely, one must introduce extra Kill-
ing symmetries to isolate the true gravitational degrees of 
freedom, free from spacetime diffeomorphisms [2–8].

Recently, one of the authors has shown that, using 
the (2+2) formalism based on the null hypersurface 

decomposition of spacetimes, Hamiltonian reduction can be 
done without assuming any isometry [9, 10]. In this method, 
a set of privileged spacetime coordinates must be introduced, 
which are chosen as functions defined on the phase space of 
Einstein’s theory. In these coordinates, the spacetime con-
straints are solved, in the sense that they turn out to be the 
local conservation equations such as energy and momentum 
conservation equations in ordinary field theories.

In this paper, we will introduce a new method of solving 
Einstein’s equations using the (2+2) Hamiltonian reduction. 
We will first present the complete set of Einstein’s equations 
obtained after Hamiltonian reduction in privileged coordi-
nates, and then impose two spacetime Killing symmetries 
to put the Einstein’s equations in the Ernst form [11]. We 
will solve this Ernst-like equation, which turn out different 
from the usual Ernst equation, and show that it generates 
a four-parameter family of exact solutions. We show that 
some of them correspond to general Kasner solution and 
its deformation, after suitable coordinate transformations 
from the privileged coordinates back to the usual spacetime 
coordinates.

We also study more general case where two gravitational 
polarizations co-exist and interact with each other. Although 
we were not able to find explicit solutions in this case, we were 
able to write down the non-linear partial differential equa-
tions for one polarization interacting with the pre-determined 
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another polarization that defines the “background” solution 
spacetime.

2 � Einstein’s equations in the (2+2) 
Hamiltonian reduction

In the theory of the (2+2) Hamiltonian reduction, it is known 
that the most general form of the spacetime metric in the privi-
leged coordinates (�,R, Ya) is given by [9, 10]

If we assume the “zero-twist” condition, namely, A a
R
= 0 , 

then the Einstein’s equations can be written as the following 
set of equations (i), (ii), (iii), and (iv):

(i) The four constraint equations define the local Hamilto-
nian density −�� and momentum densities �R and �−1�a given 
by

where H is given by

and �ab is the conjugate momentum of the metric �ab of 
the transverse two-surface N2 with a unit determinant 
( det �ab = 1).

(ii) The four equations that relate the superpotential ln(−h) 
to H − �−1 , �R , and �−1�a

(iii) The evolution equations of �ab and �ab are given by

(2.1)
ds2 = −4hdRd� − 2hdR2 + ��ab(dY

a + A a
R
dR)(dYb + A b

R
dR).

(2.2)−�� =H − 2�R ln(−h),

(2.3)�R = − �ab�R�ab,

(2.4)
�−1�a = − �bc �

�Ya
�bc + 2

�

�Yb
(�bc�ac)

−
�

�Ya
{�(H + �R)},

(2.5)
H =�−1�ab�cd�

ac�bd +
1

4
��ab�cd(�R�ac)(�R�bd)

+ �ac�R�ac +
1

2�
,

(2.6)�� ln(−h) =H − �−1,

(2.7)�Rln(−h) = − �R,

(2.8)�aln(−h) = − �−1�a.

(2.9)
�

��
�ab =2�

−1�ac�bd�
cd + �R�ab,

(iv) The topological constraint equation [12–16]

where R(2) is the Ricci scalar of N2 , and ∇(2)
a

 is the covariant 
derivative on N2.

3 � Dynamics of two gravitational degrees 
of freedom with two Killing vectors

In general, the conformal two-metric �ab with a unit determi-
nant has two polarizations, and therefore, it is a functional of 
two independent functions V and W of (�,R, Ya) . The most 
general form of the conformal two-metric with two polariza-
tions can be written as [17]

From the defining Eq. (2.9) of the conjugate momentum, 
�ab is found to be

where �V and �W are conjugate momentum of V and W, 
respectively, which satisfy the relation

and �ab is traceless

From now on, we will assume that �∕�Ya (a = 1, 2) are two 
Killing vectors, and write down the Einstein’s equations in 
terms of V, W, �V and �W , which are functions of � and R 
only. Substitution of (3.1) into the evolution Eqs. (2.9) and 
(2.10) yields the following four equations:

(2.10)

�

��
�ab = − 2�−1�cd�

ac�bd + �R�
ab +

�

2
�ac�bd(�2

R
�cd)

−
�

2
�ai�bj�ck(�R�ic)(�R�jk)

+ 2h�ac�bd{R
(2)

cd
−

1

2
�−2�c�d

+ ∇(2)
c
(�−1�d)}.

(2.11)�R(2) −
1

2
�−2�ab�a�b + ∇(2)

a
(�−1�ab�b) = 0,

(3.1)�ab =

(

eV coshW sinhW

sinhW e−V coshW

)

.

(3.2)
�ab =

�V

2 coshW

(

e−V 0

0 − eV

)

+
�W

2

(

−e−V sinhW coshW

coshW − eV sinhW

)

,

(3.3)�ab���ab =�V��V + �W��W,

(3.4)�ab�ab = 0.

(3.5)�V =� cosh2 W(��V − �RV),

(3.6)�W =�(��W − �RW),
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Equations (2.4) and (2.8) are trivial due to the Killing condi-
tion, and Eqs. (2.6) and (2.7) become

By Eqs. (3.5) and (3.6), Eqs. (3.7), (3.8), (3.9), and (3.10) 
become

respectively. Equations (3.11) and (3.12) are second-order 
partial differential equations for V and W. The function h is 
determined by integrating the r.h.s. of the Eqs. (3.13) and 
(3.14), after solving Eqs. (3.11) and (3.12) for V and W. The 
local Hamiltonian −�� and momentum densities �R are also 
determined by V and W through Eqs. (2.2) and (2.3)

respectively. The remaining Einstein’s equation [Eq. (2.11)] 
is trivial by the Killing condition. Thus, the spacetime met-
ric is completely determined by V and W that satisfies Eqs. 
(3.11) and (3.12).

(3.7)
���V − �R�V =� cosh2 W(�2

R
V)

+ 2� coshW sinhW(�RV)(�RW),

(3.8)
���W − �R�W =��2

R
W + � coshW sinhW

×
{

(��V − �RV)
2 − (�RV)

2
}

.

(3.9)
�� ln(−h) =

1

2� cosh2 W

{

�V + � cosh2W(�RV)
}2

+
1

2�

(

�W + ��RW
)2

−
1

2�
,

(3.10)�R ln(−h) =�V (�RV) + �W (�RW).

(3.11)

(�� − �R)
2V − �2

R
V +

1

�
(��V − �RV)

= −2 tanhW
{

(��V − �RV)(��W − �RW)

−(�RV)(�RW)
}

,

(3.12)
(�� − �R)

2W − �2
R
W +

1

�
(��W − �RW)

= coshW sinhW
{

(��V − �RV)
2 − (�RV)

2
}

,

(3.13)�� ln(−h) =
�

2
cosh

2 W(��V)
2 +

�

2
(��W)2 −

1

2�
,

(3.14)
�R ln(−h) = � cosh2 W(��V − �RV)(�RV)

+ �(��W − �RW)(�RW),

(3.15)
−�� =

1

2� cosh2 W

{

�V − � cosh2 W(�RV)
}2

+
1

2�

×
(

�W − ��RW
)2

+
1

2�
,

(3.16)�R = − �V (�RV) − �W (�RW),

4 � Derivation of Ernst‑like equation 
in privileged coordinates

The line element in the privileged coordinate ( �,R, Ya ) is 
given by

In order to derive the Ernst-like equation, it is useful to intro-
duce the double null coordinates (u, v) defined by

Then, the metric (4.1) becomes

where u ≥ v . In these coordinates, Eqs. (3.11) and (3.12) 
become

respectively. Let us introduce a complex function Z defined 
as[11]

Then, we find that the two Eqs. (4.4) and (4.5) can be written 
as a single complex equation

which can be compactly written as

Here, ∇ is the covariant derivative associated with the metric 
(4.3), and ∇2Z is given by

Equation (4.7) or (4.8) is the sought-for Ernst-like equation 
in the Hamiltonian reduction.

(4.1)
ds2 = − 2h(2d�dR + dR2) + � coshW{eV (dY1)2

+ e−V (dY2)2} + 2� sinhWdY1dY2.

(4.2)u = � + R∕2, v = R∕2.

(4.3)

ds2 = − 8h dudv + (u − v) coshW{eV (dY1)2 + e−V (dY2)2}

+ 2(u − v) sinhWdY1dY2,

(4.4)
2�u�vV =

1

u − v
(�uV − �vV)+ 2 tanhW

{

(�uV)(�vW)

+(�vV)(�uW)
}

,

(4.5)
2�u�vW =

1

u − v
(�uW − �vW)

− 2 coshW sinhW(�uV)(�vV),

(4.6)Z = e−V (sechW + i tanhW).

(4.7)
(Z + Z̄)

{

2𝜕u𝜕vZ −
1

u − v
(𝜕uZ − 𝜕vZ)

}

= 4(𝜕uZ)(𝜕vZ),

(4.8)(Z + Z̄)∇2Z = 2(∇Z)2.

(4.9)∇2Z =
1

√

−g
��(

√

−gg����Z).
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5 � Solutions to the Ernst‑like equation

In this section, we find some solution to the Ernst-like Eq. 
(4.8) in the following two cases, where either V or W polari-
zation is present.

5.1 � V polarization solutions

In this case, we assume W = 0 , and consider the V polariza-
tion only. Then, Eq. (4.5) becomes trivial, and (4.4) becomes 
[18]

We found that a whole class of solutions for V

and Z is given by

where a0 , b0 , and n are constant. In the original ( � , R) coor-
dinates, V becomes

The superpotential Eqs. (3.13) and (3.14) become

which reduce to

respectively. By integrating these equations, we find that 
−2h becomes

where c0 is an arbitrary constant. Thus, we found a four 
parameter family of exact solutions to Einstein’s equations, 
parametrized by four constants (a0, b0, c0, n)

where we introduced the coordinates X and Y defined 
as X = Y1 and Y = Y2 , respectively. Thus, we found a 

(5.1)2�u�vV −
1

u − v
(�uV − �vV) = 0.

(5.2)V = − ln b0 − n ln(u − v) − a0(u + v),

(5.3)Z = e−V = b0(u − v)nea0(u+v),

(5.4)V = − ln b0 − n ln � − a0(� + R).

(5.5)�� ln(−h) =
�

2
(��V)

2 −
1

2�
,

(5.6)�R ln(−h) =�(��V − �RV)(�RV),

(5.7)�� ln (−h) =
a0

2

2
� + a0n +

n2 − 1

2�
,

(5.8)�R ln (−h) =a0n,

(5.9)−2h = c0�
(n2−1)∕2e{a0

2�2∕4+ a0n(�+R)},

(5.10)
ds2 =c0�

(n2−1)∕2e{a0
2�2∕4+ a0n(�+R)}(2dRd� + dR2)

+ b0
−1�−n+1e−a0(�+R)dX2 + b0�

n+1ea0(�+R)dY2,

four-parameter family of solutions to the Ernst-like Eq. (4.7) 
for a diagonal V polarization.

Let us examine this metric in the following spe-
cial cases. When the constants (a0, b0, c0) are chosen as 
a0 = 0, b0 = c0 = 1 , but n is left arbitrary, the metric (5.10) 
becomes

which turns out to be a general Kasner solution. To show 
this, let us make the following coordinate transformations:

Then the metric (5.11) becomes

If we introduce a new coordinate t defined as

then the metric (5.13) can be written in a standard Kasner 
form [17]

where � , p1 , p2 , and p3 are constants defined as

respectively, and p1 , p2 , and p3 satisfy the relations

More generally, when both n and a0 are arbitrary with 
b0 = c0 = 1 , the metric (5.10) becomes

This metric contains a non-trivial extra term that depends 
on arbitrary constant a0 , and therefore, it should be regarded 
as a deformation of the general Kasner solution by a free 
parameter a0.

5.2 � W polarization solutions

In this subsection, we shall solve the Ernst-like equation in 
the opposite case, namely, by assuming V = 0 . The Ernst-
like potential Z then becomes

(5.11)
ds2 = �(n

2−1)∕2(2d�dR + dR2) + �−n+1dX2 + �n+1dY2,

(5.12)T = �, Z = � + R.

(5.13)
ds2 = T (n2−1)∕2(−dT2 + dZ2) + T−n+1dX2 + Tn+1dY2.

(5.14)t =
4

n2 + 3
T (n2+3)∕4,

(5.15)ds2 = − dt2 + (�t)2p1dX2 + (�t)2p2dY2 + (�t)2p3dZ2,

(5.16)
� =

n2 + 3

4
, p1 =

2(−n + 1)

n2 + 3
, p2 =

2(n + 1)

n2 + 3
,

p3 =
n2 − 1

n2 + 3
,

(5.17)
3
∑

i=1

pi =

3
∑

i=1

p2
i
= 1.

(5.18)
ds2 =�(n

2−1)∕2e{a0
2�2∕4+ a0n(�+R)}(2dRd� + dR2)

+ �−n+1e−a0(�+R)dX2 + �n+1ea0(�+R)dY2.
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Let us define a new function Θ by

Then the Eq. (5.19) becomes

By substituting this equation into (4.7), we found two inde-
pendent solutions Θ1 and Θ2 , which are given by

respectively, and where n, a0 , b0 , and b̃0 are arbitrary con-
stants, and the polarization W1 and W2 are given by

respectively. Let us notice that, when V = 0 , Eq. (4.5) 
reduces to

which is a linear differential equation for W. By superposing 
the two solutions W1 and W2 given by (5.24) and (5.25), we 
obtain a more general solution of the type

One can determine the superpotential −h by solving the fol-
lowing equations:

which reduce to

respectively. By integrating these equations, we find that 
−2h becomes

(5.19)Z = sechW + i tanhW.

(5.20)sinΘ = tanhW.

(5.21)Z = eiΘ = cosΘ + i sinΘ.

(5.22)sinΘ1 = tanhW1 =
b0e

a0(u+v) − 1

b0e
a0(u+v) + 1

,

(5.23)sinΘ2 = tanhW2 =
b̃0(u − v)n − 1

b̃0(u − v)n + 1
,

(5.24)W1 = ln b0 + a0(u + v),

(5.25)W2 = ln b̃0 + n ln (u − v),

(5.26)2�u�vW −
1

u − v
(�uW−�vW) = 0,

(5.27)
W = ln b0 + n ln (u − v) + a0(u + v)

= ln b0 + n ln � + a0(� + R).

(5.28)�� ln(−h) =
�

2
(��W)2 −

1

2�
,

(5.29)�R ln(−h) =�(��W − �RW)(�RW),

(5.30)�� ln (−h) =
a0

2

2
� + a0n +

n2 − 1

2�
,

(5.31)�R ln (−h) =a0n,

where c0 is an arbitrary constant. Therefore, the metric is 
given by

where X = Y1 and Y = Y2 . This is another four-parameter 
family of solutions to the Ernst-like equation with a non-
diagonal W polarization only. However, by making the fol-
lowing coordinate transformations:

then one can show that the metric (5.33) becomes

which is exactly the same as the metric (5.10).

5.3 � Solutions with two polarizations V and W

In previous subsections, we found solutions with a single 
polarization, which are given by (5.4) and (5.27), which cor-
respond to V polarization solutions with W = 0 and W polari-
zation solutions with V = 0 , respectively. In this subsection, 
we will find solutions that contain two polarizations simul-
taneously. For this purpose, we will study the equations of 
the W excitations propagating on the background spacetime 
determined by V polarization, which are given by Eq. (5.4)

where a0 , b0 , and n are arbitrary constants. We will consider 
the following 3 cases separately.

(i) n = a0 = 0

In this case, the solution (5.36) becomes

and Eq. (3.11) is trivially satisfied, and the equation (3.12) 
becomes

A particular solution of this equation given by

(5.32)−2h = c0�
(n2−1)∕2e{a0

2�2∕4+ a0n(�+R)},

(5.33)

ds2 =c0�
(n2−1)∕2e{a

2

0
�2∕4+a0n(�+R)}(2dRd� + dR2)

+
b0

2
�n+1ea0(�+R)(dX + dY)2

+
1

2b0
�−n+1e−a0(�+R)(dX − dY)2,

(5.34)X̃ =
X − Y
√

2

, Ỹ =
X + Y
√

2

,

(5.35)
ds2 =c0𝜏

(n2−1)∕2e{a
2

0
𝜏2∕4+ a0n(𝜏+R)}(2dRd𝜏 + dR2)

+ b−1
0
𝜏−n+1e−a0(𝜏+R)dX̃2 + b0𝜏

n+1ea0(𝜏+R)dỸ2,

(5.36)V = − ln b0 − n ln � − a0(� + R),

(5.37)V = − ln b0 = constant,

(5.38)(�� − �R)
2W − �2

R
W +

1

�
(��W − �RW) = 0.

(5.39)W = ln b̃0 + ñ ln 𝜏 + ã0(𝜏 + R),
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where ã0, b̃0 , and ñ are constants. This solution is identical 
to the solution (5.27) that we found in Sect. 5.2, which was 
shown to reproduce a class of spacetimes interpreted as a 
deformation of the general Kasner solution after the pre-
scribed coordinate transformations.

(ii) a0 = b0 = 0

In this case, the solution (5.36) becomes

and Eqs. (3.11) and (3.12) become

respectively. Equation (5.41) states that W is a function of 
� + R only, and Eq. (5.42) becomes

where W = W(� + R) . Unfortunately, we were not able to 
find any solution of this equation, except the trivial one 
W = 0.

(iii) n = b0 = 0

In this case, the solution (5.36) becomes

and Eqs. (3.11) and (3.12) become

respectively. By Eq. (5.45), W is a function of � only, so that 
Eq. (5.46) becomes

This is an ordinary differential equation of � only, which 
admits a trivial solution W = 0 . However, we were not be 
able to find any non-trivial solution to this equation.

6 � Discussion

In this paper, we presented the Einstein’s equations obtained 
by Hamiltonian reduction in the privileged coordinates, and 
then, derived the Ernst-like equation assuming two Killing 

(5.40)V = −n ln � (n = constant),

(5.41)��W − �RW = 0,

(5.42)
(�� − �R)

2W − �2
R
W +

1

�
(��W − �RW)

−
n2

�2
coshW sinhW = 0,

(5.43)�2
R
W +

n2

�2
coshW sinhW = 0,

(5.44)V = −a0(� + R) (a0 = constant),

(5.45)�RW = 0,

(5.46)
(�� − �R)

2W − �2
R
W +

1

�
(��W − �RW)

− a2
0
coshW sinhW = 0,

(5.47)�2
�
W +

1

�
��W − a2

0
coshW sinhW = 0.

symmetries. By solving the Ernst-like equation, we were 
able to find a four parameter family of exact solutions when a 
single polarization is present, which we interpret as a defor-
mation of the general Kasner spacetime. We believe that it 
is a new solution, but detailed studies of the deformation 
solution of the general Kasner spacetime are necessary and 
would be interesting in its own right.

We also studied more general case where two gravita-
tional polarizations co-exist and interact with each other. 
Although we were not able to find explicit solutions in this 
case, we were able to write down the non-linear differential 
Eqs. (5.43) and (5.47) for W polarization interacting with the 
pre-determined V polarization that defines the “background” 
solution spacetimes. Problems of finding non-trivial solu-
tions to Eqs. (5.43) and (5.47) and interpreting them physi-
cally are left for a future project.

It would be interesting to find cosmological solutions 
whose spatial topologies are, for example, S1 × S2 or S3 . 
Finding solutions with spatial S1 × S2 topology is a doable 
work with the present zero-twisting condition, but to find 
solution with S3 topology, one needs to drop this condition, 
which is beyond the scope of the present paper. The authors 
thank the referee for suggesting this problem, which is left 
for a future work.
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