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Abstract
We consider Jackiw–Teitelboim gravity with a massless matter field and turn on bulk excitations leading to a nontrivial vev 
of the corresponding dual boundary operator. To leading order, we realize the corresponding deformation of thermofield 
double state by explicitly identifying their Hilbert space. The deformed state can be prepared with an operator insertion at 
the mid-point of the Euclidean time evolution in the context of Hartle–Hawking construction. We show that the inserted 
operators form an SL(2,R) representation. We construct a specific orthonormal basis that is directly related to the operator 
basis of the vev deformations. If we include the higher order corrections, the bulk geometry is no longer left-right symmetric. 
We argue that, classically, the mode coefficients in the bulk deformation cannot be fully recovered from the data collected 
along the boundary cutoff trajectories. Then the bulk seems to contain more information than the cutoff boundary, and this 
might be responsible for nontrivial behind-horizon degrees of freedom.

Keywords  AdS/CFT correspondence · Jackiw–Teitelboim gravity · SL(2, R) representation

1  Introduction

In recent years, there have been remarkable developments in 
the context of the Nearly AdS2/Nearly CFT1 (NAdS2/NCFT1 ) 
correspondence. NAdS2 arises from an appropriate dimen-
sional reduction of a near extremal black hole geometry 
while NCFT1 may appear as a low energy approximation 
of a one-dimensional quantum system like the SYK model. 
(See [1] for a review and also references therein.) The 
Jackiw–Teitelboim (JT) model (coupled with a matter field) 
[2–4] is a specific 2d dilaton gravity for the NAdS2 geom-
etry, which may be reduced to the Schwarzian dynamics 

along the boundary cutoff trajectories [5]. Combined with 
various information-theoretic techniques, this model pro-
vides a computable test bed for various ideas about the 
resolution of the black hole information loss problem [6].

A two-sided AdS black hole geometry is well known to be 
dual to the so-called thermofield double state in the boundary 
side [7]. The (undeformed) thermofield initial state may be 
prepared by the Euclidean time evolution in the context of 
Hartle–Hawking construction [7]. In this note, we are mainly 
interested in rather general deformations of the two-sided black 
hole geometry by turning on a bulk matter field that is dual to 
the corresponding boundary operator. In the so-called standard 
quantization,1 the normalizable modes of the bulk matter field 
correspond to the vev’s of the boundary operator while the 
non-normalizable modes are dual to the source deformations 
of the boundary theory by the same boundary operator.

Thus any excitation of a black hole geometry by the nor-
malizable modes will lead to the corresponding deforma-
tions of the thermofield double state. In this note, specialized 
to the case of the massless scalar field, we would like to 
clarify the structure of deformations in the 2d bulk as well as 
in the dual boundary theory side. Especially, we shall show 
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1  In a certain range of mass parameter of a bulk field, there could be 
an alternative quantization which is not our concern in this note [8, 
9].

http://crossmark.crossref.org/dialog/?doi=10.1007/s40042-023-00944-1&domain=pdf


899Structure of deformations in Jackiw–Teitelboim black holes with matter﻿	

Vol.:(0123456789)1 3

that the initial state, to the leading order of vev deformations, 
may be prepared with an operator insertion at the mid-point 
of the Euclidean time evolution [10, 11].

In general, deformations would affect the dynamics of the 
cutoff trajectories. One may then try to obtain the information 
of the deformations by probing the cutoff trajectories at the 
boundary. This would, in principle, be possible if the trajecto-
ries contain all the information of the bulk deformations. There 
are, however, nontrivial behind-horizon degrees of freedom in 
the bulk such as Python’s degrees of freedom [12–14]. It is not 
clear at all whether this hidden information can be fully recov-
ered by collecting boundary data. In fact, by explicitly solving 
the equations of motion, we will see that the cutoff trajectories 
do not have enough information for the full recovery.

Since AdS2 is rigid even under the bulk matter deforma-
tion, the SL(2,R) symmetries of the background geometry 
provide useful information for understanding the relevant 
dynamics [16]. In this paper, we explore the SL(2,R) symme-
try realization of the inserted operators corresponding to the 
vev deformations of the thermofield double state. To simplify 
the discussion, we consider these vev deformations only up 
to their leading order. We show that these inserted operators 
form a specific SL(2,R) representation. See [15–17] for some 
related discussions.

This paper is organized as follows. In the next section, 
we review the Jackiw–Teitelboim model focusing on the 2d 
two-sided black hole geometries and the induced Schwarzian 
dynamics along their cutoff trajectories. In Sect. 3, we inves-
tigate the structure of generic bulk deformations by turning 
on a massless scalar field. We argue that the bulk information 
may not be fully recovered from the boundary data collected 
along the cutoff trajectories. Sections 4 and 5 are devoted to 
the realization of SL(2,R) symmetries of the inserted opera-
tors. To the leading order, we explicitly identify the operators 
inserted at the mid-point which reproduce the most general 
vev deformations and show that they form a unitary SL(2,R) 
representation. In the final section, we summarize our results 
and comment on some future directions.

2 � Two‑dimensional dilaton gravity

The JT model of our interest is a 2d dilaton gravity with a mat-
ter field described by action

where � is a dilaton field, � a matter field and

(1)
I =Itop +

1

16�G ∫M

d2x
√
−g�

�
R +

2

�2

�

+ Isurf + IM(g,�),

In this action, � is the AdS radius, and �ij and K denote the 
induced metric and the extrinsic curvature on the boundary 
�M , respectively.

The variation of the dilaton field � leads to

which sets the metric to be AdS2 . The other equations of 
motion are obtained from the variation of the metric g and 
the scalar field �,

where Tab is the stress tensor of the matter field,

In the global coordinates, the metric of the AdS2 space is 
written as
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2
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2
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the dilaton equation of motion (4) with Tab = 0 is given by

By the coordinate transformation
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with 𝜙 = 𝜙̄ r . Utilizing the SL(2, R) isometry of AdS2 , we 
can set b = 1 and �B = 0 [18]. This metric describes the Rin-
dler wedge of two-sided AdS black holes with the radius of 
black hole horizon L. The location of singularity is defined 
by the curve Φ2 ≡ �0 + � = 0 in the above dilaton field, and 
Φ2 might be viewed as characterizing the size of “transverse 
space" [4]. In this left/right symmetric two-sided black hole 
case, one can see that the Gibbons-Hawking temperature, 
the entropy and energy are given by

where S0 is the ground state entropy given by S0 =
�0

4G
 and 

C =
𝜋𝜙̄�2

2G
 . In general, these physical quantities could be dif-

ferent for left/right Rindler wedges in the two-sided black 
hole case. In the next sections we consider some deforma-
tion of black hole configuration through the dilaton field and 
show that these quantities are indeed different for the left/
right Rindler wedges.

The boundary time u may be introduced in � → 0 limit 
through the prescription

We will adopt the convention that the right boundary time tr 
runs upwards whereas the left boundary time tl runs down-
ward. In other words, we identify

See Sect. 4 for the details.
The boundary dynamics is equivalently described by a 

Schwarzian theory [19–21],

where �l = �r can be identified with 𝜙̄ in the bulk and �l∕r(u) 
corresponds to the left/right global time coordinate, respec-
tively, at each cutoff trajectory. If the matter is turned on, the 
Schwarzian action would get corrections which, in general, 
can be asymmetric at the left and the right boundaries. To 
the leading order in the deformation, however, the correction 
vanishes, as seen in the next section.

We depict the Penrose diagram of a deformed space in 
Fig. 1. In the figure, the curves near the boundaries rep-
resent typical cutoff trajectories of the boundary dynam-
ics. Given dilaton configurations that are deformed away 
from (8), one can obtain the cutoff trajectories by using 
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the prescription (12) or from the boundary action with 
deformed terms.

Now we briefly review the general deformation by the 
matter field. As a simple left-right asymmetric case, let 
us recall the eternal Janus deformation [18] which makes 
the Hamiltonians of left-right boundaries differ from each 
other by turning on exact marginal operators. It is given by

In this case, though the matter field � is asymmetric, the 
dilaton field � and the black hole temperature are left-right 
symmetric under the exchange of � ↔ −�.

Since the metric is fixed to be AdS2 , the matter field equa-
tion (5) can be solved. In the global coordinates, the general 
solution is given by [22]

where

and CD
n
(x) denotes the Gegenbauer polynomial. Here, the 

parameter D is defined in terms of the mass of the scalar 
field � as

According to the AdS/CFT correspondence, the bulk mat-
ter � is dual to a scalar primary operator OΔ(t) of a certain 
dimension Δ . If m2 ≥ 0 , it is identified as Δ+ , i.e.,
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Fig. 1   The left and the right cutoff trajectories are illustrated as 
curves near the boundaries in the Penrose diagram of a typical 
deformed space
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In this case, the deformation by the matter � with D = Δ+ in 
(16) corresponds to a vev deformation of the dual field theory, 
while the other deformation with identifying D = Δ− describes 
a source deformation. In AdS2 , there is another possibility that 
m2 is negative as long as the Breitenlohner-Freedman bound 
[8] holds, namely −1∕4 ≤ m2 < 0 in our case. Then, we have 
two possible values as the operator dimension Δ,

3 � Structure of bulk deformations

From this section, we shall consider turning on a massless 
scalar field dual to a scalar operator of dimension Δ = 1 . In 
this case, the bulk scalar equation (4) can be solved explic-
itly by [14]

where

and

This describes a fully general set of classical solutions to 
the scalar equation in the ambient AdS2 space where �v∕s 
satisfies the Dirichlet/Neumann boundary condition at 
� = ±�∕2 . In our JT model, the metric remains always to 
be AdS2 and won’t be corrected by any matter perturbations. 
For the dilaton field, we shall start from the vacuum solution

without loss of any generality. As was mentioned previously, 
this background describes a two-sided black hole with tem-
perature T =

1

2�

L

�2
 . With the scalar deformation (21), the 

dilaton solution becomes
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)
,

where the full detailed functional forms of �v,s,c
m,n

 are given 
explicitly in [14].

We now turn to the standard AdS/CFT interpretation of 
the above bulk deformation. To this end, note that the scalar 
solution in any asymptotic region of Lorentzian AdS2 space-
time may be expanded as2 (see [23] for instance)

where the radial coordinate r is defined by 𝜙∕𝜙̄ and ⋯ 
denotes higher order contributions of each power series 
expansion in 

(
�
2∕r

)2 . In this note, we are dealing with 
deformations of the two-sided black hole which involves 
two (left and right) asymptotic regions in general. In the 
left/right asymptotic region, the presence of nonvanishing 
sl∕r(�l∕r(u)) represents a source deformation of the left/right 
boundary theory by

where �l∕r(u) describes the reparameterization along the left/
right cutoff trajectory respectively. Below for the simplicity 
of our presentation, we shall write �l∕r(u) simply as � once it 
is not confusing. With our normalization in (1), the vev of 
operator with s = 0 may be identified as [23]

In our case of Δ = 1 , we shall also introduce normalized vev 
functions wl,r(u) by

From the above solution in (21), the source term for our 
Δ = 1 case may be identified as

Here and below, the upper/lower sign is for the left/right 
system respectively. Similarly the vev function can also be 
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where Q
�∕r is defined by

Without the source deformation, the Ql,r functions may be 
computed as [14]
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2  In this expansion, we have ignored any logarithmic terms which are 
not relevant in our discussion below.
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where

whose precise functional forms are also given in [14]. Once 
this function Ql∕r is given, the left/right reparameterization 
dynamics may be solved explicitly by [14]

with the temperature

One is then led to

Thus from these overall factors in the vevs, one may see that 
the vevs decay exponentially in the boundary time u, whose 
decay rate is precisely the expected one with our dimension 
one operator. With these vev deformations, the boundary 
Schwarzian dynamics are basically those of asymptotically 
black hole spacetimes.

By turning on source deformations only, the boundary 
reparameterization dynamics may be solved in a similar 
manner. The resulting 2d spacetime describes again left-
right asymmetric black holes in general. If one turns on both 
the source and the vev deformations at the same time, the 
left and right black holes are further excited, which will be 
reflected in the boundary Schwarzian dynamics by the exci-
tation of the corresponding reparameterization modes. In 
any of the deformations mentioned in the above, one may 
show that �l∕r(u = ∞) − �r∕l(u = −∞) ≤ � , which implies 
that one cannot send a signal from one side to the other [14]. 
Namely the two boundaries are causally disconnected from 
each other. From the view point of boundary systems, the 
left and right systems are completely decoupled from each 
other without any direct interactions to permit any informa-
tion transfer between them. Note further that in general the 
left and right black holes become different from each other 
as a result of deformation. Especially their temperatures 
become different from each other in general.

(33)Ql∕r(�) =
√
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l∕r
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l∕r

(
cos(� − �B

l∕r
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)
,
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√
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(
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)
.

(37)Ql∕r =

√
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l∕r

cosh
2�u

�l∕r
+ ql∕r

�

�l∕r
.

From now on, let us focus on the above deformations only 
to the leading order, ignoring any higher order corrections. 
In this limit, the left-right black holes remain unperturbed 
with Tl = Tr = T  . On the left/right cutoff trajectory, �l∕r(u) 
is ranged over (−�∕2,�∕2) and the reparameterization is 
solved by sin �l∕r = tanh

2�

�
u , respectively. The left and right 

source terms sl,r take the same forms as (30) and the vev 
functions wl,r become

Let us first show the independence of the left and right per-
turbations. By defining

one then finds

which describes a general 2�-periodic real function defined 
over the range (−�∕2, 3�∕2) . This implies that the source 
functions sl,r defined over the range (−�∕2,�∕2) become 
totally independent from each other. This of course agrees 
with the fact that the source terms in the left and right 
boundary actions can be turned on independently from each 
other. By a similar argument, one may show that the vev 
functions wl,r may also be turned on independently from 
each other.

One straightforward consequence of the above considera-
tion is that one may in principle recover the full set of source 
mode-coefficients {bne−in�

s
n} from the left and right boundary 

data specified by sl,r(�) with � ∈ (−�∕2,�∕2) . (Of course 
a similar statement can also be made for the vev deforma-
tions.) Therefore, in the small deformation limit (i.e. work-
ing in the leading order of the above deformations), probing 
the left and right boundary perturbations all together, one 
may recover the corresponding mode-coefficients com-
pletely. However, including the higher order correction in 
bulk geometries, the situation changes completely. Due to 
the shifts in �l∕r(±∞) , the total interval size Δ�l + Δ�r of 
the left right cutoff trajectories in � space becomes in gen-
eral less than 2� where Δ�l∕r denotes �l∕r(∞) − �l∕r(−∞) , 
respectively. This implies that the mode-coefficients cannot 
be fully recovered from the left and right boundary data 
collected along the full trajectories. On the other hand, one 
may try to investigate the corresponding bulk profiles of 
the scalar field. For instance consider the two-independent 

(38)wl∕r = cos �

∞∑
n=1

(±1)n+1n an cos n(� − �v
n
).

(39)s(𝜏) =

[
sr(𝜏) for −

𝜋

2
< 𝜏 <

𝜋

2

sl(𝜏 − 𝜋) for
𝜋

2
< 𝜏 <

3𝜋

2

(40)s(�) = b0 +

∞∑
n=1

(−1)nbn cos n(� − �s
n
)
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bulk functions �s∕v(�, �1) and �s∕v(�, �2) with an appropri-
ate choice of �1 and �2 ( �1 ≠ �2 ), for which the Neumann/
Dirichlet boundary condition is imposed at � = ±�∕2 for the 
source/vev deformation, respectively. From these two inde-
pendent functions, one may verify that the mode-coefficients 
can be recovered completely.3 Thus it seems that the bulk in 
this case contains more information than the ones that may 
be probed from the boundaries. One may speculate that this 
hidden information in the bulk is responsible for those non-
trivial behind-horizon degrees of freedom such as Python’s 
lunch degrees of freedom discussed in [14].

In the next section, we shall identify the deformed boundary 
states from which the above leading-order bulk gravity results 
follow precisely.

4 � Deformation of thermofield double state

In this section, we shall introduce the thermofield double state 
[24] in the boundary theory and its deformations that repro-
duce the above mentioned bulk results to the leading order. 
Especially, we would like to focus on the state deformations 
which lead to the vev functions in (29) and (38). Below we 
shall also discuss their relation to the bulk gravity descrip-
tion. In these vev deformations, we expect that the SL(2,R) 
symmetries of the boundary system will be realized with a 
certain Hilbert space representation [15, 16]. In the next sec-
tion we shall present a specific form of orthonormal basis that 
is directly related to the operator basis of the vev deformations.

We shall begin with the thermofield double initial state in 
the boundary theory defined by

where U is a Euclidean evolution operator that will be fur-
ther specified below and �m̄⟩ denotes the CTP conjugated 
state of a basis state �m⟩ . In our convention, any operators 
labeled by l/r will act on the left/right Hilbert space respec-
tively with an extra transpose operation in the case of left 
side operators. The Lorentz time evolution of this initial 
state �Ψ⟩ is given by

where the left/right time parameters denoted as tl,r may run 
independently in general but our boundary time u is related 
to them by tr = −tl = u . Here, Hl∕r(u) is the Hamiltonian 
obtained from (27) and Tl∕Tr represents the time ordering in 
the direction where −tl∕tr increases, respectively.

For the undeformed case, the Euclidean evolution opera-
tor is given by

(41)�Ψ⟩ = 1√
Z

�
m,n

⟨n�U �m⟩ �m̄⟩l�n⟩r, Z = trU†U,

(42)�Ψ(tl, tr)⟩ = Tl e
i ∫ tl

0
dtl H

T
l
(−tl) ⊗ Tr e

−i ∫ tr
0

dtr Hr(tr) �Ψ⟩,

and the thermofield double state becomes [7]

with an energy eigen-basis of H0 , from which usual thermal 
correlation functions may be obtained as their expectation 
values.

Now let us deal with the leading order of perturbation. In 
this case the Euclidean evolution U consists of the left, the 
right Euclidean evolution and a mid-point insertion of the 
operator for the vev deformation. Namely, it has a form of

The left and right evolution operators are basically obtained 
by an appropriate Euclidean continuation of the Lorentzian 
counterparts in (42). For the right side, we use the usual ana-
lytic continuation rule with tr = −itE ; The right Lorentzian 
time ranged over (−∞, 0)∕(0,∞) is mapped to the Euclid-
ean time tE ranged over (−�∕4, 0)∕(0, �∕4) , respectively. On 
the right side of Fig. 2, we depict the Euclidean version of 
the (undeformed) bulk geometry where the blue/red colored 
semicircle is for the left/right boundary, respectively. The 
red-colored (right-side) semicircle is covered by the Euclid-
ean time range tE ∈ (−�∕4, �∕4) where the full circle has a 
circumference � . The continuation of the left side is more 
subtle; We use an analytic continuation rule tl → itl

E
 but with 

a further shift by ± �

2
i leading to tl = itE = i(tl

E
± �∕2) . Then 

the Lorentzian time tl ranged over (−∞, 0)∕(0,∞) is first 
mapped to tl

E
 ranged, respectively, over (−�∕4, 0)∕(0, �∕4) 

but, including the shift, to the Euclidean time tE ranged over 
( �∕4, �∕2)∕(−�∕2,−�∕4) , respectively. This range of the 
Euclidean time is depicted by the blue-colored semicircle 
on the right panel of Fig. 2. Combining the left and right 
semicircles, the full boundary circle is covered by the range 
(−�∕2, �∕2) . With this preparation, it is proposed in [25] 
that the left and right Euclidean evolutions are given, respec-
tively, by

This proposal with V = 0 is tested for the two-sided Janus 
black holes [25, 26] and shown to reproduce the expected 
vev function to the leading order precisely [25]; indeed, one 
can also show that the vev for the 2d two-sided Janus black 
hole in (15) is reproduced by a similar computation, whose 
details will be omitted in this note. We shall not test this part 

(43)U0 = e
−

�

2
H0 ,

(44)�Ψ⟩0 = 1√
Z0

�
n

e
−

𝛽

2
En �n̄⟩l�n⟩r, Z0 =

�
n

e−𝛽En ,

(45)U = Ur e
V Ul.

(46)
Ul = TE e

− ∫ −
�
4

−
�
2

dtE Hl(−itE)

, Ur = TE e
− ∫ 0

−
�
4

dtE Hr(−itE)
.

3  This does not imply an existence of a bulk observer who may col-
lect all the required information for the recovery while traveling in the 
bulk.
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of the proposal any further and, instead, focus on the vev 
deformation in the following.

On the left side of Fig. 2, we depict the lower half of 
Euclidean geometry combined with the subsequent Lor-
entzian evolution where the former is used to generate the 
deformed thermofield initial state. To prepare a thermofield 
initial state by the Hartle-Hawking construction, we need 
to patch the Euclidean part to the Lorentzian one along an 
appropriate hypersurface. To the leading order of deforma-
tion, the bulk geometry will not be deformed and one may 
patch the geometries along the time-reversal symmetric slice 
at � = 0.

Let us now include the vev deformation and construct the 
corresponding mid-point inserted operator given by

with

where a differential operator Pn−1 (n = 1, 2,…) will be fur-
ther specified below. The operator eV may also be realized 
as a Euclidean evolution operator

with

where we take the � → 0 limit in the end. In Fig. 2, these 
insertions are represented by the black dots in the lower or 
the upper half of the Euclidean evolution.

(47)V =
�

2

∞∑
n=1

an e
in�v

n On

(
�

4
i

)

(48)On(−itE) = Pn−1 O(−itE),

(49)
eV = TE e

+ ∫ �−
�
4

−�−
�
4

dtEg(tE)O(−itE)

(50)g(tE) =
�

2
�

(
tE +

�

4

) ∞∑
n=1

ane
in�v

n Pn−1,

One may also introduce a Hamiltonian along the lower 
half of the Euclidean evolution by

Then U will be given by

including the contribution from the mid-point insertion. In 
the Euclidean space, the counterpart of the Lorentzian uni-
tarity requires the reflection positivity

by which one may also introduce the Euclidean Hamiltonian 
H(−itE) for the upper half of the full thermal circle ranged 
over (0, �∕2) . Based on this, it is straightforward to show that

and the Euclidean evolution along the full-circle is then 
given by U†U.

We shall now come to the purely vev deformation without 
any source terms introduced. The Euclidean evolution opera-
tor U in this case reads

from which we would like to reproduce (29) with (38). 
Below we shall focus on ⟨Or(t)⟩ ; Of course ⟨Ol(t)⟩ may be 
treated in the same way, but we shall not repeat the latter 
computation in this note. Let us first note that4

(51)H(−itE) =

⎡⎢⎢⎢⎣

Hl(−itE), −
𝛽

2
< tE <−𝜖−

𝛽

4

−g(tE)O(−itE), − 𝜖−
𝛽

4
< tE < 𝜖−

𝛽

4

Hr(−itE), 𝜖−
𝛽

4
< tE < 0

.

(52)U = TE e
− ∫ 0

−
�
2

dtEH(−itE)

(53)H†(−itE) = H(itE),

(54)U† = TE e
− ∫ �

2

0
dtEH(−itE)

(55)U = e
−

�

4
H0 eVe

−
�

4
H0 ,

Fig. 2   On the left, we depict 
the lower half of the Euclidean 
geometry combined with the 
subsequent Lorentzian evolu-
tion. The former is used to gen-
erate the deformed thermofield 
initial state. The right figure 
illustrates the full Euclidean 
evolution which may be used to 
compute the normalization fac-
tor Z or the thermal expectation 
value (vev) of operators with an 
appropriate insertion of operator 
O(t)

4  Similarly ⟨O
l
(t)⟩ is given by ⟨Ψ�O(t)T ⊗ 1�Ψ⟩.
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which may be evaluated perturbatively. With the fact that 
the undeformed vev of O vanishes, it is straightforward to 
show that

where

For the boundary CFT, the thermal two-point correlation is 
well known as

where its normalization is worked out in [27] (see also [11]). 
In order to reproduce (38) from the above perturbative com-
putation with only a1 turned on, we need to take g(tE) in (58) 
as

where we have introduced a notation g(tE) =
∑∞

n=1
angn(tE) 

and used the identity (Recall that cosh 2�

�
t = 1∕ cos �)

From this, we conclude that P0 = 1 . One may also check 
that no choice other than the above insertion point works in 
reproducing (38).

For gn with n > 1 , one could adopt the following recursive 
strategy. The integration in (58) together with the expression 
in (59) can be used to find the differential operator Pn acting 
on a function of tE as

where x denotes the differential operator − �

2�

d

dtE
 . By a change 

of variables cosh 2�

�
t = 1∕ cos � , the above expression 

becomes

(56)⟨Or(t)⟩ = ⟨Ψ�1⊗ O(t)�Ψ⟩

(57)⟨Or(t)⟩ = A−(t) +A+(t) +O(a2
n
),

(58)

A±(t) = lim
�→0∫

�±
�

4

−�±
�

4

dtE g(tE)
1

Z0
tr

[
e−�H0 O(t)O(−itE)

]
.

(59)
1

Z0
tr

[
e−�H0 O(t)O(−itE)

]
=

2�∕�2

1 − cosh
2�

�
(t + itE)

,

(60)g1(tE) =
�

2

[
ei�

v
1 �(tE + �∕4) + e−i�

v
1 �(tE − �∕4)

]
,

(61)
1

1 − cosh
2�

�

(
t −

�

4
i
) = e−i� cos �.

(62)
Pn(x)

1

1 − cosh
2�

�
(t + itE)

||||tE=−�∕4
= (−1)n(n + 1) e−i(n+1)� cos �,

(63)Pn(x)e
−i� cos � = (−1)n(n + 1) e−i(n+1)� cos �.

with x = −i cos �
d

d�
 . Acting with the differential operator 

−i cos �
d

d�
 on this defining equation once more, one may 

obtain the following recursion relation

with initial conditions

One may notice that the solutions to this recursion relation 
are given by a special type of the Meixner-Pollaczek poly-
nomials [28] ,

which can be defined through a hypergeometric function as

This completes the identification of the inserted operator V 
that reproduces the vev in (38). In the above construction of 
the thermofield double state, we have not included higher 
order corrections as we mentioned repeatedly. For instance, 
consider the left-right asymmetric black hole spacetime, 
which arises in quadratic order of the above deformations 
generically. In this case, the above mid-point insertion 
will not be working anymore and, then, one needs another 
prescription which, unfortunately, we do not know how to 
arrange. We leave this issue to the future study.

5 � SL(2,R) representation in the operator 
space

In the previous section, we have constructed the mid-point 
inserted operator V which is realized as a linear combina-
tion of the operators {O1,O2,…} . By each of this insertion, 
one may obtain the corresponding initial state ��⟩V . This 
amounts to a variation of operator-state maps in general 
CFTs. This realization of states is highly nonlinear in terms 
of the coefficients {a1ei�

v
1 , a2e

2i�v
2 ,…} especially including 

the gravity correction via the deformation of the dilaton field 
which is quadratic in an as shown in (25).

Since our AdS2 dynamics involves SL(2,R) symmetries in 
general, it is expected that the inserted operators also trans-
form under the symmetries. In this section, we would like 
to clarify how these operators On form a representation of 
the SL(2,R) algebra

(64)2xPn(x) = (n + 1)Pn+1(x) + (n − 1)Pn−1(x)

(65)P0(x) = 1, P1(x) = 2x.

(66)Pn(x) = P
�=1
n

(x;� =
�

2
),

(67)P
�

n
(x;�) =

(2�)n

n!
ein�F(−n, � + ix; 2� | 1 − e−2i�).
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where B, P and E denote the three SL(2,R) generators. 
For later purpose, let us also introduce a Casimir operator 
C = B2 + P2 − E2 = K+K− − E(E − 1) where the raising and 
lowering operators K± are defined by K± = B ∓ iP . We note 
that this realization of the symmetries is already explored 
in Section 4.2 of Ref. [16], where the generators of SL(2,R) 
are identified as5

Below, we shall show how these generators are acting upon 
the space of Pn explicitly.

First, using the orthogonality property of Meixner-Pol-
laczek polynomials given by [28]

with w(x ;�,�) = |Γ(�+ix)|2e(2�−�)x , one may introduce a 
new set of orthonormal polynomials em(x) defined by

These normalized polynomials em(x) satisfy then the follow-
ing recursion relation

This also implies that

where the actions of P and E are computed using (63) fol-
lowed by the �-space operations given by (69). Thus these 
latter two computations require an auxiliary function 
e−i� cos � on which em is acting upon.

(68)[B,E] = iP, [E,P] = iB, [B,P] = iE,

(69)
B = − i cos ��� , P = −i

(
sin ��� +

1

cos �

)
,

E =i

(
�� + tan �

)
.

∫
∞

−∞

dx P𝜆
n
(x)P𝜆

m
(x)w(x ;𝜆,𝜙)

=
2𝜋 Γ(n + 2𝜆)

n! (2 sin𝜙)2𝜆
𝛿nm , 𝜆 > 0 , 0 < 𝜙 < 𝜋 ,

(70)em(x) ≡
√

2

m�
Pm−1(x), m = 1, 2,…

(71)x em(x) =

√
m(m+1)

2
em+1(x) +

√
m(m−1)

2
em−1(x).

(72)

B ⋅ em ⋅ e−i� cos �

=
�√

m(m+1)

2
em+1 +

√
m(m−1)

2
em−1

�
⋅ e−i� cos � ,

P ⋅ em ⋅ e−i� cos �

= i

�√
m(m+1)

2
em+1 −

√
m(m−1)

2
em−1

�
⋅ e−i� cos � ,

E ⋅ em ⋅ e−i� cos � = mem ⋅ e−i� cos � ,

In fact, one may construct the SL(2,R) generators that are 
acting on em(x) directly. This may be achieved by addition-
ally including a finite translation operation given by (see [29, 
30] for mathematical precedents)

Then the three generators may be realized as

which act on an arbitrary square-integrable complex func-
tion f(x). To verify these expressions, we first note that 
{e1(x), e2(x),…} forms an orthonormal basis for any square-
integrable function f(x). The identification of B = x is 
already introduced in the above construction. The expression 
for E can be found as follows; One starts from the generating 
function of Pn(x) given by

By integration of the both sides with respect to t followed by 
a multiplication of x, one obtains

and, by a further action of sin( d

dx
) on both sides, is led to

Thus, with E = sin(
d

dx
)x , E em(x) = mem(x) which is the 

desired result reproducing the third line of (72). This dem-
onstrates our expression for E in (74). Finally, the expression 
for P in (74) can be found from −i[B,E] , which is acting on 
em by

It is also straightforward to check the generators constructed 
in this way satisfy the SL(2,R) algebra in (68) with C = 0 . 
Among unitary representations of SL(2,R), there is the so 
called discrete representation D+

j
 (See for example [31]), 

which is realized in the Hilbert space

(73)e
±i

d

dx f (x) = f (x ± i).

(74)B = x, P = i cos

(
d

dx

)
x, E = sin

(
d

dx

)
x,

(75)G(t, x) ≡
∞∑
n=0

tnPn(x) =
1

1 + t2
e2x arctan t.

(76)
∞∑
m=1

1

m
tm xPm−1(x) =

1

2

(
e2x arctan t − 1

)

(77)

∞∑
m=1

1

m
tm sin

(
d

dx

)[
xPm−1(x)

]
=

1

2
e2x arctan t sin 2 arctan t

=
t

1 + t2
e2x arctan t =

∞∑
m=1

tmPm−1(x).

(78)P em = i
�√

m(m+1)

2
em+1 −

√
m(m−1)

2
em−1

�
.

5  These generators are related to the ones in Ref. [16] by an automor-
phism � → � + �.
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with j real and positive, K−�jj⟩ = 0 , and C = −j(j − 1) . Now 
one may straightforwardly confirm that the above representa-
tion belongs to D+

j=1
 with C = 0.

It is natural to anticipate that the dimension Δ operator 
dual to the massive scalar field is represented by D+

j=Δ
 with 

C = −Δ(Δ − 1) = −m2 . It may be interesting to construct all 
the representations of operators dual to the massive scalar 
fields by our method. For a more group-theoretic approach 
to this topic, one may refer to the reference [15].

6 � Conclusions

In this work, we have considered the most general normaliz-
able and nonnormalizable bulk deformations in Jackiw–Tei-
telboim gravity with a massless field which corresponds 
to either vev deformations or source deformations of the 
thermofield double state in the dual boundary theory. Such 
deformations are, in general, left-right asymmetric, result-
ing in different black hole temperatures. Moreover, we have 
argued that, classically, the bulk profiles may not be fully 
recovered from the data collected along the boundary cutoff 
trajectories. Then the bulk seems to contain more informa-
tion than the cutoff boundaries and this might be responsible 
for the behind-horizon degrees of freedom such as those of 
Python’s lunches.

The deformed state can be prepared by inserting operators 
on the boundary of Euclidean AdS2 in the context of Har-
tle–Hawking construction. In the limit of small vev deforma-
tions, we have explicitly identified the operators for the bulk 
deformations which are all inserted at the mid-point during 
the Euclidean time evolution along the lower half of the 
boundary of the thermal disk. We have found that inserted 
operators form a discrete SL(2,R) representation D+

j=1
 with 

vanishing Casimir. Since the boundary system has SL(2,R) 
symmetries, it is natural to anticipate such a realization in 
the operator space. If the matter is massive with mass m 
instead of massless, the corresponding SL(2,R) representa-
tion would be D+

j=Δ
 with C = −m2 . See [15] for this conclu-

sion from a slightly different perspective.
In constructing the operators corresponding to vev 

functions, we have ignored higher order corrections. The 
approximation allows us to work in left-right symmetric 
undeformed geometries, since the asymmetry arises start-
ing from the second order in deformations. Inclusion of 
higher order terms would involve asymmetric black hole 
spacetime, and the mid-point insertion of operators would 
no longer be a valid prescription. We leave this issue to the 
future study. Finally, it would be interesting to generalize 
the results of this paper by turning on both the vev and the 

(79)D
+
j
= {�jm⟩;m = j, j + 1, j + 2,…} source deformations at the same time, for which black holes 

are further excited as discussed in [14].
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