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Abstract
Time-varying characteristics of an ion source are induced by environmental change or aging of parts inevitably, making 
a data-driven prediction model inaccurate. We consider non-invasively measured beam profiles as important features to 
represent initial beam from ion sources in real time. Beam-induced fluorescence monitor was tested to confirm change of 
beam properties by ion source operating conditions during a beam commissioning phase. Machine learning-based regression 
models were built with beam dynamics simulation datasets over a range of input parameters in the RFQ-based accelerator. 
Best prediction for the low-energy beam tuning was obtained by deep neural networks model. The methodology presented 
in the study can help develop advanced beam tuning models with non-invasive beam diagnostics in time-varying systems.

Keywords  RFQ-based accelerator · Beam-induced fluorescence monitor · Machine learning-based regression · Deep neural 
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1  Introduction

A radio-frequency quadrupole (RFQ)-based accelerator has 
been developed to be used as test stand facility for the 100-
MeV proton linear accelerator at the Korea Multi-purpose 
Accelerator Complex (KOMAC) since the linac started 
user service [1, 2]. Low-energy beam transport (LEBT) is 
generally considered as major bottleneck to achieve higher 
beam current in the high-intensity linac due to strong space 
charge effects, which require mitigation schemes, such as 
octupole magnetic field [3] and beam spinning effect [4–6]. 
Experimental studies were conducted to measure and opti-
mize Twiss parameters, including beam emittance, depend-
ing on various operating conditions of ion sources or LEBT 
[7–11]. The design and measurement results of basic beam 
diagnostics are presented for low-energy beams [12]. An 

electric-sweep scanner, such as an Allison-type scanner [13] 
and pepperpot-pot method [14], are advanced techniques 
to measure beam emittance in phase space. Solenoid scan 
method [15, 16] is another technique with lens approxima-
tion by measuring beam sizes with varying strengths of the 
solenoid magnet located upstream. In the study using Allison 
scanner, the space charge neutralization effect was observed 
over time within a beam pulse depending on the input flow 
rate of a neutralizing gas [7]. However, these measurement 
methods take a lot of time in the scan process, and because 
they are invasive methods that block the beam, they have 
the disadvantage of being difficult to apply simultaneously 
with the beam matching process. Non-invasive beam diag-
nostics methods measure ionization products caused by the 
interaction between residual gas and beam. The ionization 
profile monitor (IPM) measures the beam profile by collect-
ing ionization products with a position sensitive detector by 
applying an electric field to the gas–beam interaction region. 
A beam-induced fluorescence monitor (BIFM) captures fluo-
rescence photons with a light collection device such as a 
photodiode or CCD camera [17, 18].

Machine learning is promising and suited to diagnostic 
analysis and optimization in modern accelerator physics, 
compared to traditional optimization methods which require 
specific rules or threshold values [19, 20]. As previous 

Online ISSN 1976-8524
Print ISSN 0374-4884

 *	 Dong‑Hwan Kim 
	 one@kaeri.re.kr

1	 Accelerator Development and Research Division, Korea 
Atomic Energy Research Institute, Gyeoung‑ju, South Korea

2	 Applied Artificial Intelligence Application and Strategy 
Team, Korea Atomic Energy Research Institute, Daejeon, 
South Korea

3	 Korea Institute of Energy Technology, Na‑ju, South Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s40042-023-00848-0&domain=pdf


648	 D.-H. Kim et al.

Vol.:(0123456789)1 3

studies, a deep learning model predicts beam current meas-
urements in a faraday cup depending on ion source operating 
variables [21]. Another study built machine learning models 
to predict RFQ transmission by LEBT control values and 
gas pressure measurements set as input variables [22, 23]. 
However, as device characteristics change over time, the 
reproducibility of pre-trained models is gradually to be inac-
curate, and the models may periodically need to be updated 
with recent data to obtain optimal performance. Adaptive 
machine learning was developed to control time-varying 
systems of particle accelerators and beams by comparing 
model’s prediction of beam sizes to measurement [24].

The presented study suggests non-invasively measured 
beam profiles as important features to effectively represent 
time-varying property of ion source and LEBT using a 
beam-induced fluorescence monitor as the key low-energy 
beam diagnostics. If a beam profile measurement is used in 
the input layer, rather than using only device control vari-
ables, relatively accurate feedforward predictions can be 
made without the need for a complex model to predict or 
feedback control the time-varying system. For these mod-
els to be valid in large parameter spaces, non-invasive and 
real-time measurement techniques are important, and pre-
liminary experimental results are presented in section II. 
Before establishing a robust machine learning model in a 
time-varying system based on long-term experimental beam 
data, this study develops and validates a machine learning 
model based on randomly varying initial beam properties 
in beam dynamics simulation tool—TraceWin. In section 
III, several machine learning regressors, such as tree-based 
ensemble, boosting algorithm, and deep neural networks, 
are compared in terms of error to predict beam transmission 
ratio through the RFQ accelerator at the KOMAC. Among 
the different machine learning algorithms, the results of 
comparing the LEBT tuning map predicted by deep neural 
networks with the tuning map obtained by parameter scan 
are presented in section IV.

2 � Non‑invasive beam profile monitor

In the RFQ accelerator at the KOMAC test stand, three 
types of beam diagnostics devices—a beam current moni-
tor, a scintillator-based beam profile monitor, and a beam-
induced fluorescence monitor—have been operated to ana-
lyze low-energy beam transport since the helium beam was 
first commissioned. Pulsed beam currents are measured 
by Bergoz’s in-flange AC current transformer, ACCT-
CF8″-96.0-40-UHV model. The scintillator-based beam 
profile monitor is an invasive diagnostics that images the 
transverse beam profile with a quartz plate installed at an 
angle of 45° to the beam axis, and is connected to a linear 
stepper motor that can move vertically.

Beam-induced f luorescence monitor (BIFM) was 
installed with a view port, lens, and camera sequentially 
attached to the nearest flange about 265 mm away from 
the beam extraction aperture as illustrated in Fig. 1, to 
measure the characteristics of beam formation. A gas is 
injected into the 2.45 GHz microwave ion source for a con-
tinuous plasma discharge, and neutral gas–beam interac-
tion occurs by the residual gas flowing toward the vacuum 
pump located in the low-energy beam transport section. 
Transverse spatial beam profiles can be estimated by imag-
ing the fluorescence photon induced by the interaction. 
Unlike the invasive method, it has the great advantage of 
being able to measure the beam profile in real time without 
blocking the beam.

In recent beam commissioning phase, the non-invasive 
measurement has been successfully performed without 
residual gas injection such as gas jet or image intensi-
fier due to a moderate level of base pressure—like 0.1 
mTorr—to observe fluorescence light at the BIFM near 
the ion beam extraction system, and degradation of beam 
quality is not expected with no additional gas injection. 
Helium beam size measurement data are shown in Fig. 2, 

Fig. 1   Layout of low-energy 
beam diagnostics for ion beam 
injector in the radio-frequency 
quadrupole-based accelerator 
test stand at KOMAC
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depending on forward RF magnetron power and solenoid 
current fed into 2.45 GHz microwave ion source. These 
two variables are important control variables for plasma 
properties, plasma meniscus, and beam extraction since 
solenoid current determines the static magnetic field, and 
RF magnetron power forms the electromagnetic field, 
which affects electron cyclotron resonance heating. When 
the solenoid strength of ion source is fixed at the optimal 
value—73.0 A to achieve high current and small beam 
size, the forward RF power has little effect on the beam 
size within about 0.2 mm of measurement error and slight 
effect on the beam current. On the other hand, at the con-
stant forward RF power of 200 W, solenoid strength affects 
both beam size and beam current above measurement 
errors. These results imply that the beam diagnostics well 
represents features of the initial beam over several operat-
ing conditions of the ion source. Nevertheless, due to the 
presence of unknown or unmeasurable variables that affect 
ion beam extraction, the aging of device elements, includ-
ing the ion source, causes the output beam characteristics 
to drift with time, even when the values of the ion source’s 
control variables are fixed. When creating a data-driven 
machine learning model for the tuning of LEBT, therefore, 
beam profile data, not ion source control variables, should 
be included in input layer to well predict the best beam 
matching condition with RFQ accelerator even in time-
varying initial beam condition.

To develop and validate a machine learning-based low-
energy beam transport tuning model, this study uses beam 
data generated by TraceWin, a beam dynamics simulation 
tool, by simulating the beam operating conditions of the 
RFQ-based accelerator at KOMAC. Transverse momentum 
of a high-intensity beam nonlinearly increases even in drift 
space with no external field due to nonlinear self-generated 
fields. Beam envelope calculation solves the beam matrix by 

assuming a linear space charge force, while beam as multi-
particle is normally to be solved by particle-in-cell method 
with consideration of non-linear space charge field. Figure 3 
presents calculated helium ion beam current passing through 
the extraction aperture, and the beam sizes at the location 
of the non-invasive beam profile monitor and the first sole-
noid magnet in multi-particle beam dynamics simulation. 
This reveals the non-linear relationship between the beam 
parameters measured in the beam diagnostics and the beam 
parameters input of the first solenoid magnet which affects 
RFQ matching.

3 � Searching for machine learning 
algorithms

A robust machine learning model is needed to predict the 
beam matching condition with the RFQ accelerator even 
though the initial beam properties vary. The input layer 

Fig. 2   Helium beam size measurement data a at the fixed solenoid strength of 73.0 A, and b at the fixed forward RF power of 200 A fed into 
microwave ion source

Fig. 3   Multi-particle beam dynamics simulation data—helium ion 
beam current passing through electrode aperture and beam size at the 
non-invasive beam profile monitor and the first solenoid magnet
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consists of input beam twiss parameters, input beam cur-
rent, and LEBT solenoid strength, and the output layer is 
beam transmission ratio through RFQ entrance for machine 
learning models. Datasets were prepared by grid search over 
a range of the input beam parameters and LEBT control 
parameters in beam dynamics simulation code—TraceWin 
[25]. The beam transmission ratio is the ratio of the number 
of particles surviving a subsequent radio-frequency quadru-
pole (RFQ). The goal of LEBT tuning or beam matching is 
to achieve 100% beam transmission ratio from LEBT to RFQ 
or 0% beam loss ratio by adjusting ion source or LEBT con-
trol parameters. Machine learning-based regression models 
were created to predict transmission ratio as a target feature 
ranging from a minimum of 0 to a maximum of 1. For the 

regression problem with 4 numerical input features, sev-
eral predictive models were built and their performances 
were compared in machine learning platforms—scikit-learn, 
PyCaret, and Tensorflow-Keras.

Figure 4 and Table 1 summarize results of exploring 
machine learning-based regression algorithms with ten-
fold cross-validation using PyCaret. The beam dynamics 
datasets were normalized and split into 70% train datasets 
and 30% test datasets. It was set to obtain average values for 
metrics, such as MAE, MSE, RMSE, and R2-score, after 
training with 10 iterations and ten-fold cross-validation with 
mean squared error as the loss function. Average inference 
times are less than 0.3 s in all the models. The extra-trees 
model shows the best performance with root mean square 

Fig. 4   Learning curves, residuals and test prediction of three machine learning-based regression models trained for beam dynamics simulation 
datasets with ten-fold cross-validation in PyCaret—a Extra trees, b LightGBM, c deep neural networks (DNN)
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error (RMSE) of 1.5e-2 for the train datasets. Unlike ran-
dom forest, the extra-trees model optimally divides nodes 
after selecting characteristics through random sampling 
without replacement [26]. However, both extra trees and 
random forest produced poor results in the test datasets due 
to over-fitting. Among the boosting-based methods, light 
gradient boosting machine (LightGBM) showed the better 
performance in terms of RMSE of 2.7e-2 than stochastic 
gradient boosting regressor (RMSE = 9.3e-2) and Adaboost 
regressor (RMSE = 1.5e-1) because LightGBM efficiently 
discards instances with small gradient [27]. Deep neural net-
works (DNN) model was trained by four normalized inputs 
and the three dense layer with 100/100/50 nodes at a fixed 
learning rate with ReLU activation function and Adam opti-
mizer, resulting in RMSE of 2.8e-2. DNN model seems to 
be less prone to overfitting since its difference in R2 scores 
on between train and test datasets is smaller than those of 
tree-based ensemble methods.

4 � Prediction for low‑energy beam tuning 
using deep neural network model

Deep neural networks are generally expected to have better 
generalization performance than tree-based algorithms for 
regression problems with continuous variables as target fea-
tures. This is because DNNs do not learn with a deterministic 
structure that classifies data based on the attributes of each 
node, but with a probabilistic structure using activation func-
tions such as ReLU or tanh. In this context, to create a DNN 
model with better performance than PyCaret and scikit-learn 
library, we adopt the Keras platform, which is a high-level 
API of tensorflow, and additionally use AutoKeras, which 
automatically tunes hyper-parameters. Each case was calcu-
lated for 50 epochs with 100 hyper-parameter combinations 
including use of batch normalization, dropout rate, number 
of layers, number of nodes, optimizer functions, and learn-
ing rate to minimize mean square error (MSE) function. The 
best model found in AutoKeras is illustrated as Fig. 5 with 
its learning curve and prediction results. Adam optimizer is 
adopted and learning rate is converged up to minimum of 
1.0e-5 preset in ReduceLROnPlateau function as a learning 
rate scheduler. In the 448th epoch, the training was termi-
nated early by the callback function to prevent the model 

Table 1   Comparison of several 
machine learning-based 
regression models trained for 
beam dynamics simulation 
datasets using PyCaret with ten-
fold cross-validation

Evaluation metrics/regression model 
(PyCaret, sklearn)

Train datasets Test Inference
Time [sec]

MAE MSE RMSE R2 (%) R2 (%)

Tree-based ensemble Extra trees 6.6e-3 2.3e-4 1.5e-2 100 99.7 0.25
Random forest 8.9e-2 3.4e-4 1.9e-2 99.9 99.5 0.30
LightGBM 1.5e-2 7.1e-4 2.7e-2 99.3 99.0 0.25
Gradient Boosting 6.5e-2 8.7e-3 9.3e-2 88.1 88.1 0.13
Adaboost 1.2e-1 2.3e-2 1.5e-1 68.2 68.1 0.14
Deep neural network 1.7e-2 8.0e-4 2.8e-2 99.0 98.9 0.19

Fig. 5   Deep neural networks (DNN) model tuned by AutoKeras and training results—a model layout, b training history, c test prediction
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from overfitting. The tuned deep neural networks (DNN) 
model shows better accuracy and less over-fitted than tree 
ensemble-based methods. The DNN model results in 2.5e-3 
of RMSE, which is 6 times lower than the extra-trees model.

Figure 6 is the LEBT tuning data in forms of 2-D den-
sity plots, showing that the beam transmission ratio from 
the LEBT to the RFQ changes with the current strength of 
the two solenoid magnets that make up the LEBT. These 
figures compare real test data obtained by parametric scan 
that changes the strength of the LEBT solenoid magnets to 
prediction data inferred by the tuned DNN model. There 
is a high transmission case in which the initial beam cur-
rent from the ion source is 10 mA and the root mean square 
(RMS) beam size at the BIFM position is 4.25 mm, and a 
low transmission case in which the beam current is 20 mA 
and the RMS beam size is 6.73 mm. It is seen that beam 
tuning maps are successfully reconstructed in both opposite 
cases. In particular, parametric scan is a time-consuming 
data generation process in actual beam experiments, but the 
data-driven DNN model is expected to have the advantage 

of inferring data immediately with finer intervals and a bet-
ter precision.

5 � Conclusion

Machine learning techniques were deployed to tune low-
energy beam under various operating conditions. Deep neu-
ral network model has the best performance in low-energy 
beam tuning among several machine learning algorithms. 
Total inference time is normally spent less than half a sec-
ond—corresponding to the operation period of 2 Hz pulse 
repetition—to obtain beam tuning maps and optimal set 
points of magnets, given data-driven deep neural network 
models. The methodology presented in this study can facili-
tate real-time optimization with high accuracy in accelerator 
system sensitive to variability. Further experiments will be 
performed with helium beam and deuterium beam in the 
RFQ-based accelerator test stand at the KOMAC.

Acknowledgements  This work was supported through “KOMAC 
operation fund” of KAERI by the National Research Foundation of 
Korea (NRF) grant funded by the Korea government (MSIT) (KAERI-
524320-23) (Contribution: 70%). It was also supported through “estab-
lishment of an intelligent platform for HANARO and research facility” 
of KAERI by the National Research Foundation of Korea (NRF) grant 
funded by the Korea government (MSIT) (KAERI-524450-23) (Con-
tribution: 30%).

References

	 1.	 Han-Sung Kim et al., 31st International Linear Accelerator Con-
ference (LINAC2022), Liverpool, UK (2022).

	 2.	 H.-J. Kwon, J. Korean Phys. Soc. 69, 967 (2016)
	 3.	 Motoki Chimura, Hiroyuki Harada, and Michikazu Kinsho, Prog. 

Theor. Exp. Phys. 063G01 (2022)
	 4.	 Y.L. Cheon, S.H. Moon, M. Chung, D. Jeon, Phys. Plasmas 27, 

063105 (2020)
	 5.	 Y.-L. Cheon, S.-H. Moon, M. Chung, D.-O. Jeon, Nucl. Inst. 

Meth. Phys. Res. A 1013, 165647 (2021)
	 6.	 Y.-L. Cheon, S.-H. Moon, M. Chung, D.-O. Jeon, Phys. Rev. Acc. 

Beams 25, 064002 (2022)
	 7.	 H.-J. Kwon et al., J. Korean Phys. Soc. 56, 1998 (2010)
	 8.	 D. Noll et al., 31st International Linear Accelerator Conference 

(LINAC2022), Liverpool, UK (2022).
	 9.	 R. Miyamoto et al., Jour. of Inst. 15, P07027 (2020)
	10.	 A.Shemyakin et al., AIP Conf. Proc. 1869, 050003 (2017).
	11.	 L. Bellman et al., Jour. of Phys.: Conf. Series 2244, 012078 

(2022).
	12.	 J. Harasimowicz and C. P. Welschn, Phys. Rev. Spec. Topics – 

Accel. and Beams 15, 122801 (2012).
	13.	 P.W. Allison et al., IEEE Trans. on Nucl. Sci. 30, 2204 (1983)
	14.	 Z. Yao et al., Rev. of Sci. Inst. 79, 073304 (2008)
	15.	 Max Hachmann, Diploma thesis, Hamburg University (2012).
	16.	 B.-H. Hong et al., J. Korean Phys. Soc. 77, 1159 (2020)
	17.	 B.Hochadel et al., Nucl. Inst. Meth. Phys. Res. A 343, 401 (1994).
	18.	 F. Becker, Proceedings of DIPAC2011, Hamburg, Germany 

(2011).

Fig. 6   Comparison of low-energy beam tuning maps as a test data 
and b prediction data by tuned DNN model in a high transmission 
case and a low transmission case



653Deep neural network‑based prediction for low‑energy beam transport tuning﻿	

Vol.:(0123456789)1 3

	19.	 E. Fol et al., 7th Intl. Beam Inst. Conf. (IBIC2018), Shanghai, 
China (2018).

	20.	 A.L. Edelen et al., IEEE Trans. on Nucl. Sci. 63, 878 (2016)
	21.	 Young Bae Kong et al., Nucl. Inst. Meth. Phys. Res. A 806, 55 

(2016).
	22.	 M. Debongnie et al., IPAC2019, Melbourne, Australia (2019).
	23.	 Mathieu Debongnie, Ph.D. thesis, University of Grenoble Alpes, 

Grenoble, France (2021).
	24.	 A. Scheinker, Information 12, 161 (2021)
	25.	 D. Uriot, N. Pichoff et al., 6th International Particle Accelerator 

Conference (IPAC-2015), Richmond, VA, USA (2015).
	26.	 P. Geurts et al., Mach. Learn. 36, 3 (2006)

	27.	 Guolin Ke et al., 31st Conference on Neural Information Process-
ing System (NIPS 2017), Long Beach, CA, USA (2017).

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Deep neural network-based prediction for low-energy beam transport tuning
	Abstract
	1 Introduction
	2 Non-invasive beam profile monitor
	3 Searching for machine learning algorithms
	4 Prediction for low-energy beam tuning using deep neural network model
	5 Conclusion
	Acknowledgements 
	References




