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Abstract
From the low-energy effective theory of dilatons, consistent with the scale anomaly, we calculate the 2 → 2 scattering ampli-
tudes of dilatons. We find that the one-loop amplitude violates the unitarity bound as the scattering energy approaches the 
cutoff of the effective theory, 

√

s =
√

4�fD . We then show that the inclusion of the next-to-lightest state, namely the spin-2 
state, of mass around the cutoff improves the unitarity. The unitarity argument suggests that the mass ratio of the dilaton and 
the spin-2 state is proportional to the square of the Miransky-BKT scaling of the near conformal dynamics.
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1 Introduction

In the physics of elementary particles we observe a wide 
separation of scales so that at each scale a finite set of opera-
tors effectively describes their physical processes, but often 
the microscopic origin of the scale separation remains unan-
swered. A well-known example is the electroweak theory 
that describes the electroweak process extremely well with 
no sign of its deviation at colliders. The origin of the elec-
troweak scale or the vacuum expectation value of the Higgs 
field, vew = 246 GeV , is however yet to be uncovered.

One of the attractive ideas to explain the vast hierarchy 
of scales in quantum field theory is to generate it dynami-
cally. A prominent example is quantum chromodynamics 
(QCD). Classically, QCD is scale-invariant, but the quantum 
effects create dynamically the scale, ΛQCD , by the so-called 
dimensional transmutation of the running coupling, which 
is determined experimentally to be about 220MeV . Further-
more, in the infrared (IR) the gauge coupling becomes so 
strong that QCD undergoes a confinement phase transition, 
generating the vacuum energy, Evac ∼ −Λ4

QCD
 [1]. The salient 

feature of the spontaneous generation of vacuum energy in 
the (quasi) scale-invariant theory is the appearance of a light 
dilaton in the low-energy spectrum [2–4], namely the 
Nambu-Goldstone (NG) boson associated with the 

spontaneous breaking of scale symmetry. Recently a model 
of near conformal dynamics that generates a large separation 
of scales is proposed to explain naturally the light Higgs and 
at the same time the dark matter with very light dilaton [5].

If the near conformal dynamics is responsible for light 
Higgs, there will be other light states in addition to the dila-
ton, which might exhibit interesting signatures at colliders 
[6, 7]. Recent lattice study shows that the ground-state glue-
ball behaves like a dilaton, exhibiting a universal scaling 
law in the confining gauge theories [8]. It further shows 
that the next light state in pure Yang-Mills (YM) theories is 
the spin-2 glueball, 2++ , whose mass may be related to the 
spin-0 ground-state glueball or the dilaton in a universal 
way for all gauge groups [9]. In this paper, we calculate the 
one loop scattering amplitudes of dilatons and show how 
the violation of the perturbative unitarity of the scattering 
amplitude is improved with additional spin-2 massive parti-
cles till the energy approaches the mass of the spin-2 states. 
We find that the unitarity argument for the new heavier state 
requires the mass of the spin-2 state should be at the order 
of the dilaton decay constant, which is consistent with the 
universal behavior of mass predicted in [9]. The mass ratio 
between two lowest-lying states hence measures the degree 
of the conformality of their microscopic theory.

2  Dilaton scattering amplitudes

When the scale symmetry is spontaneously broken, as in the 
confining phase of YM theories, the dilatation current creates 
the dilaton, � , out of vacuum by the Goldstone theorem:
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where fD is the dilaton decay constant and D
�
 is the dilata-

tion current. Because of the scale anomaly, the dilatation 
current is not conserved,

leading to mass or potential energy to the dilaton. The low 
energy effective Lagrangian for the dilaton, that is consist-
ent with the (anomalous) scale symmetry, can be written as, 
keeping only the lowest number of derivatives,

where � = fDe
�∕fD describes the small fluctuations of the 

order parameter of the scale symmetry, namely the trace of 
the energy-momentum tensor, around the vacuum defined 
in Eq. (2),

Being a NG boson, the dilaton transforms nonlinearly under 
the scale transformation, x → x� = e�x,

the dilaton potential, not invariant under the scale transfor-
mation, is generated by the scale anomaly and also by other 
possible explicit symmetry-breaking terms in the original 
theory among which we ignore the latter for the current 
discussions.

Matching the scale anomaly, Eq. (2), one finds the dilaton 
potential to be [10]

Expanding the effective Lagrangian, Eq. (3), in powers of 
�∕fD , one gets therefore

(1)⟨0�D
�
��(p)⟩ = −ifDp�e

−ip⋅x ,

(2)�
�
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�

⟩
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1
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�
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)4[

4 ln
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�
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)
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]

.

where the ellipsis denotes the higher order terms and the 
dilaton mass m2

D
= 16|

|

Evac
|

|

∕f 2
D
 , given by the partially con-

served dilatation current (PCDC) relation [11].
By the construction the effective Lagrangian works well 

at low energy, consistently with the current algebra of the 
microscopic theory [12, 13]. As the energy increases, how-
ever, it will approach a cutoff above which the effective 
theory is no longer valid. Beyond the cutoff it exhibits 
unphysical behaviors such as the violation of the unitarity 
in the scattering amplitudes, signaling the existence of 
a new state. To see this, let’s consider the 2 → 2 dilaton 
scattering amplitude

At the tree level, shown in Fig. 1, the amplitude becomes

where the Mandelstam var iables s = (p1 + p2)
2 , 

t = (p3 − p1)
2 , and u = (p4 − p1)

2  . For high energy, 

s, t, u ≫ m2
D
 , the tree amplitude is found to be well behaved, 

since s + t + u = 4m2
D
;

Because of the symmetry under the exchange of the 
external dilatons, the leading non-trivial amplitude comes 
from the one-loop, which is also consistent with the scale 

(7)

eff =
1
2
����

�� − 1
2
m2

D�
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���
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(9)

A
tree
�

= −
1

f 2
D
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D
)2

s − m2
D
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−
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D
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Fig. 1  Tree level diagrams for 
2 → 2 scattering amplitude of 
dilatons, denoted as broken 
lines: a s-channel, b t-channel, 
c u-channel and d the contact 
term
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anomaly argument in [14]. The one-loop box diagram from 
Fig. 2 (a), adding together with its counter-parts in t and 
u channels, grows quadratically at high energy, which we 
have found in the minimal subtraction scheme as

while the fish diagram in Fig. 2 (b), summing together with 
the other two channels, turns out to be finite,

3  The spin‑2 glueballs

In pure YM theory, the lightest state is known to be the 
spin-0 glueball, 0++ , small fluctuations of the trace of the 
energy-momentum tensor of YM theory. Since the (anoma-
lous) scale symmetry is spontaneously broken in the con-
fined phase, the lightest 0++ state may be identified as the 
dilaton of pure YM theory [8]. The lattice study further 
shows that the next-to-lightest state is the spin-2 state 2++ 
with a possible universal ratio of its mass with that of the 
lightest glueball [9]. Therefore, as energy increases, the 
dilaton-dilaton scattering process will produce the spin-2 
state, which may improve the ultraviolet divergence of the 
scattering amplitudes.

(11)

A
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�
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1

32�2f 4
D

(
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2 + ln
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,

(12)A
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f 4
D
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⋅ ln

(

4�2
�
2

m2
D

)

.

Since the coupling of the spin-2 glueball with dilatons 
should preserve for consistency the diffeomorphism invari-
ance, the spin-2 states couple to the energy-momentum ten-
sor. The interaction Lagrangian density is given therefore in 
the leading order in the perturbation as

where � is the universal coupling of the spin-2 and T��

D
 

denotes the dilaton energy-momentum tensor. The propa-
gator of the massive spin-2 field with mass mG is given as

w h e r e  2P
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− p
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p
𝜈
∕m2

G
 and �

��
 is the Minkowski metric. The 

decay width of the massive spin-2 state is given approxi-
mately in the leading order in � as [7]

The decay width is quite narrow and negligible even for a 
rather strong coupling � mG ∼ 1.

Having the massive spin-2 glueball in the intermediate 
states, the dilaton scattering amplitude will be modified. 
The tree-level amplitude will have extra contributions 
mediated by the spin-2 glueball (Fig. 3), which we find, 
neglecting the decay width,

Combining all the diagrams, the tree, the one-loop and the 
spin-2 mediated, the dilaton scattering amplitude becomes 
for s2 ≫ t2, u2 , taking mD ≈ 0 and ΓG ≈ 0,

where we have absorbed into fD the logarithmic correction 
in Eq. (11). We plot the amplitude in Fig. 4. We see that the 
perturbative unitarity is violated at s = 4�f 2

D
 in the 2 → 2 
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Fig. 2  s-channel one-loop amplitude; a box diagram, b fish dia-
gram. t-channel and u-channel amplitudes are obtained by swapping 
p
3
↔ p

2
 and p

3
↔ p

4
 for each diagram

Fig. 3  Tree level diagrams for 
2 → 2 scattering, mediated by 
the spin-2 glueball, denoted as 
spring-like lines: a s-channel, b 
t-channel, c u-channel
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dilaton scattering, if the spin-2 state is not included. Its 
inclusion however ameliorates the divergence 1. Since the 
microscopic theory is unitary, there should appear the next-
light states near the cutoff of the effective theory to restore 
the unitarity. As shown in Fig. 4, we find that the unitarity 
is improved beyond the cutoff, when the intermediate spin-2 
state of mass around 

√

4�fD is included in the scattering 
process.

4  Universal mass ratio

We find that the spin-2 state of mass around the cutoff scale, 
mG ∼

√

4�fD , should appear to improve the unitarity viola-
tion in the dilaton effective theory. The unitarity argument 
then suggests the mass ratio to be

The vacuum energy density, Evac , measures how big the 
breaking of the scale symmetry is, defining the infrared (IR) 
scale of the theory, ΛIR , while fD defines the scale, ΛSB , at 
which the scale symmetry is spontaneously broken  [19].2 
In pure YM theory they are expected to be close to each 
other because it admits only a single scale, uniquely given by 
the renormalization group equation. Indeed the lattice study 

(18)R ≡ mG

mD

∼
f 2
D

|

|

Evac
|

|

1∕2
.

shows that R ≃ 1.4 for pure YM theory in 3 + 1 dimensions 
while the models of its gravity dual give 

√

2 ≲ R ≲ 1.74 [9]. 
In general, however, these two scales do not have to be of 
the same order. In theories of near conformal dynamics, they 
are predicted to be widely separated to follow the Miransky 
scaling or the Berezinskii-Kosterlitz-Thouless (BKT) scaling

where c is a O(1) constant and �c is the parameter of the 
theory with �∗ being the critical point of the phase transi-
tion. In the case of the Banks-Zaks theory [16] �∗ is the 
would-be IR fixed-point of the � function, �c is the criti-
cal coupling for the chiral symmetry breaking, the constant 
c = � , and the IR scale, |

|

Evac
|

|

1∕4 , is given by the dynamically 
generated fermion mass due to the chiral symmetry break-
ing, ΛIR ≃ mdyn [11, 17, 18] . By the suitable choice of the 
number of fermions and colors [20, 21], or by turning on 
extra gauge interactions [5], one could make �c very close 
to the critical point so that the separation of the scales can 
be as wide as possible.

As anticipated in [22], we find that the unitarity argument 
shows that the mass ratio between the lowest spin-2 state 
and the dilaton measures the scale separation of the near 
conformal dynamics,

If, therefore, one discovers both the new massive spin-2 state 
and the dilaton, one may be able to discern the correct con-
formal dynamics responsible for them.

5  Results and discussion

In this paper, we have calculated in perturbation the 2 → 2 
dilaton scattering amplitudes from the dilaton effective the-
ory to find that the one-loop amplitude violates the unitary 
bound at energy, E ∼

√

4�fD . Such violation should be inter-
preted as a signal for an additional state, the next-lightest 
resonance, in the effective theory. We show that the spin-2 
state, 2++ , of mass around 

√

4�fD improves the unitarity vio-
lation of the dilaton scattering amplitude near the cutoff of 
the effective theory.

The mass ratio between the dilaton and the spin-2 state, 
obtained from the unitarity argument, captures the degree 
of the conformality of the microscopic theory, Eq. (20). The 
heavier the ground-state spin-2 is, compared to the dilaton, 
the more conformal the microscopic theory becomes. For 
instance, in pure YM theory, the lattice study shows the ratio 

(19)ΛIR = ΛSB exp

�

−
c

√

�∗∕�c − 1

�

,

(20)R ≡ mG

mD

∼ exp

�

2c
√

�∗∕�c − 1

�

.

Fig. 4  The unitarity bound, |
|

A
�

|

|

≤ 1 , for the 2 → 2 scattering ampli-
tude of dilatons as a function of s for s2 ≫ t2, u2 : Each plot cor-
responds to the inclusion of an intermediate spin-2 state of mass 
m2

G
= 4��f 2

D
 for � = 1.6, 2, 2.5,∞ with the coupling �2 = 0.5∕m2

G
 as 

an example. � → ∞ corresponds to the decoupling limit

2 The PCDC relation, f 2
D
m2

D
= −16 Evac associates the dilaton mass 

with the vacuum energy, the explicit scale-symmetry breaking term. 
When the explicit-breaking term becomes vanishingly small, the 
ground state is almost degenerate along the scale transformation and 
the dilaton becomes almost massless. Therefore, the dilaton decay 
constant should remain finite in that limit, which shows that they are 
two independent quantities.

1 In the case of � � scattering. the inclusion of the spin-1 state, 
namely � meson, improves the unitarity [15]
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is about 1.4 [9], showing that the scale symmetry is badly 
broken in pure YM theory. This is expected, because in pure 
YM theory without fermions that screen the color charges, 
the � function decreases from zero rapidly. However, in theo-
ries like Banks-Zaks, where the � function is almost zero 
for a wide range of scales near IR, the ratio R could be quite 
large, if the chiral symmetry breaking occurs near the quasi 
IR fixed point, 𝛼∗ − 𝛼c ≪ 𝛼∗.
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