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Abstract
In the last several years, considerable progress has been made in reducing or eliminating noise in ellipsometric spectra, 
including the development of algorithms for eliminating endpoint-discontinuity artifacts, a reciprocal-space expression for 
quantifying the effectiveness of linear filters, and the corrected maximum-entropy (CME) approach for eliminating apodiza-
tion and its associated errors. These lead to new capabilities, together with additional opportunities for extracting information 
from spectra. These results enhance the utility of ellipsometry for analyzing surfaces, interfaces, materials, and structures. 
Examples are provided.

Keywords  Noise reduction · Gauss-Hermite kernels · Maximum-entropy · Ellipsometric spectra · Endpoint-discontinuity 
artifacts

1  Introduction

The nondistortional removal of noise from spectra has been 
an ongoing challenge in all forms of spectroscopy, ellipso-
metric and otherwise. The classic approach to noise reduc-
tion is direct- (spectral-) space (DS) convolution, as exem-
plified by the extensive tables of Savitzky and Golay (SG), 
published in 1964 [1]. Results are historically assessed by 
inspection, although concerns have been raised. In 1997 Kai-
ser and Reed [2] noted that noise-reduction methods tend 
to be applied blindly, with results simply inspected to see 
if they “look good.” In 1995 Barak [3] pointed out that too 
many approaches were “hit and miss.” While noise reduction 

is a worthwhile goal for cosmetic reasons, additional advan-
tages include minimizing uncertainties in parameters deter-
mined by lineshape analysis and in interpolation, whether 
simply to change the scale or more generally to convert 
spectra obtained linear in wavelength to spectra linear in 
energy [4].

The challenge is not simply to remove noise but to do it in 
ways that leave the underlying spectrum—the information—
unchanged. Commonly known as filtering, noise reduction is 
typically done by linear methods, either by DS convolution, 
as mentioned above [1], or by reciprocal- (Fourier-) space 
(RS) processing [4–7]. Both take advantage of the separation 
of information and noise into low- and high-index Fourier 
coefficients, respectively, because structure follows from 
point-to-point correlations whereas noise is due to point-to-
point fluctuations. This separation opens the path to optimiz-
ing filtering either directly in RS, through attenuation or 
replacement of unwanted coefficients, or indirectly in DS, 
by convolving the data with a set of coefficients. Filtering in 
RS can be assessed qualitatively by comparing the Fourier 
transform of the data with the transfer function of the filter 
[7]. In DS similar assessments require first calculating the 
Fourier coefficients of the data and convolving function, then 
comparing them in RS.

In principle, the ideal filter is that which leaves the infor-
mation-containing coefficients unchanged while suppress-
ing the noise-dominated coefficients completely. However, 
results obtained by applying this “brick-wall” (BW) filter 
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are generally unacceptable because its abrupt cutoff gener-
ates Gibbs oscillations (ringing) in reconstructed spectra [8]. 
Because all linear filters incorporate apodization (cutoff), 
all require a compromise to be made among distortion of 
information, ringing, and leakage of noise.

In the absence of a quantitative RS measure to assess 
performance, a wide variety of transfer functions have been 
developed, largely empirically. However, Le et al. recently 
capitalized on Parseval’s Theorem to develop an nforma-
tive way of calculating mean-square deviations in RS. This 
expression allows the major sources of filtering errors to be 
recognized directly and assessed quantitatively. This led to 
the demonstration that the Gauss-Hermite (GH) is the best 
previous linear filter, and the development of an improved 
version, the cosine-terminated brick-wall (CT) [7].

The need for apodization—along with its associated 
errors—was recently eliminated with the development of the 
corrected maximum-entropy (CME) approach [9]. Based on 
calculations of Burg [10], this method projects, in a model-
independent way, trends established by low-order coeffi-
cients into the white-noise region. By replacing high-order 
coefficients with values obtained analytically, this makes 
possible operations like constructing essentially noise-free 
second-derivative spectra, as seen in Fig. 1. Here, the second 
derivatives of �2 data obtained by spectroscopic ellipsometry 
(SE) on a monolayer WS2 sample at 41 K [11] are calculated 
by multiplying the data or filtered RS coefficients Cn by n2 , 
except that the 5-point second-derivative SG DS convolution 
was used directly. While the SG result is already a signifi-
cant improvement relative to differentiating the data directly, 
the GH result is better. The best result is obtained with the 
CME filter. Further details are provided below. The figure is 
presented here to introduce capabilities.

2 � Theory

2.1 � Fourier analysis

CME is based on the coefficients of complex-exponential 
expansions rather than those of cosines and sines [9]. As 
these are less common, we provide basic equations here. 
We assume that a spectrum consists of (2N + 1) real, posi-
tive-definite data {fj} where −N ≤ j ≤ N . Although Fourier 
analysis does not require the number of data to be odd, CME 
does. This restriction also simplifies mathematics.

Define the Fourier coefficients Rn according to

where

Because the fj are real, the Rn satisfy the reality condition 
R∗

j
= R−j . From Eq. (1b) it follows that j = (−N − 1∕2) at 

� = −� at and  j = (N + 1∕2) at � = � , so all fj , j = −N to 
N, are interior points, an advantage. The inverse transforma-
tion is

We assign the normalization factor (2N + 1)−1 to Eq. (2) 
rather than Eq. (1a) for reasons described below. The Rn are 
related to the more familiar cosine and sine coefficients An 
and Bn as

Basing all calculations on a common range ( −� ≤ � ≤ � ) 
is also an advantage, but data are never obtained as a func-
tion of � . Hence projection is necessary. Using energy as an 
example, let Ei correspond to the first point j = −N and Ef  
to the last point j = +N . Then

The inverse transformation is

(1a)fj =

N∑
n=−N

Rne
in�j ,

(1b)�j =
2�

2N + 1
j.

(2)Rn =
1

2N + 1

N∑
j=−N

fje
−in�j .

(3a)A0 = R0 = C0;

(3b)An − iBn = 2Rn, n ≥ 1. Cn =

√
A2
n
+ B2

n
= 2||Rn

||

(4a)� =
4�
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2
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)
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)
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Fig. 1   Second derivatives of �2 of WS2 at 41 K obtained by multiply-
ing the original, GH-filtered, and CME-filtered Fourier coefficients 
C
n
 by n2 as described below. The SG result is obtained by using the 

5-point second-derivative DS convolution coefficients directly
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2.2 � Linear filtering

Linear filtering is defined most conveniently as a convolu-
tion in DS:

where the {f j} are the filtered data and {b�} are the filter 
coefficients. In Eq. (5), values of (j − �) that lie outside the 
(−N,N) range are wrapped mod (2N + 1) . Following the nor-
malization convention of Eqs. (1a, 1b) and (2), the Fourier 
coefficients associated with the b� are

The reason for this normalization is now clear: because 
the {b�} form a unitary set, then B0 = 1 , as appropriate for 
a low-pass filter. The classic examples are the sets of coef-
ficients published in 1964 by Savitzky and Golay [1]. Typi-
cally only a few b� are nonzero; for values that are not speci-
fied, the corresponding b� in Eqs. (5) and (6) are set equal 
to zero. For example, for the 3-point running-average filter, 
b� = 1∕3 for � = −1, 0, 1 and zero otherwise.

As noted in the Introduction, the effect of convolution in 
DS is represented in RS by the convolution theorem

where Fn , Fn , and Bn are the Fourier coefficients of f j , fj , 
and b� , respectively. The above equation shows explicitly 
that the operation of the linear filter defined by the b� is 
independent of the data being processed. Capitalizing on 
Parseval’s Theorem, Le et al. [7] recently showed that the 
mean-square deviation �2

MSE
 between {fj} and {f j} is given 

in RS by

With B0 = 1 for a low-pass filter, Eq. (8b) provides clear 
justification for the Butterworth criterion of eliminating as 
many derivatives as possible in a Taylor-series expansion 
of B(n) about n = 0 , treating the Bn as a continuous func-
tion B(n).

Of the various linear filters that have been proposed, 
Eq. (8b) reduces the list to 2: the Gauss-Hermite filter 
mentioned previously [4, 12], and more recent develop-
ment, the cosine-terminated brick-wall filter [7]. The 

(5)f j =

N∑
�=−N

fj−�b� ,

(6)Bn =
1

2N + 1

N∑
�=−N

b�e
in�� .

(7)Fn = FnBn,

(8a)�2
MSE

=

N∑
n=−N

|f j − fj|2;

(8b)=

N∑
n=−N

|Fn|2|1 − Bn|2.

Gauss-Hermite filter can be written either as a sum of Her-
mite polynomials of increasing even order multiplying a 
Gaussian e−n2∕Δn2 , as originally done by Hoffman et al., 
or as the product of the Gaussian and an Mth partial sum 
of e+n2∕Δn2 , which more directly illustrates the removal of 
low-order derivatives in the Taylor-series expansion.. In 
the latter case

where

It is straightforward to show that the first nonvanishing 
term in a full Taylor-series expansion of Eq. (9a) is pro-
portional to �M+1 , illustrating that the GH filter satisfies 
the Butterworth criterion explicitly.

The cosine-terminated brick-wall filter is defined by

where a, n1 , and n2 are parameters. In applications to 
discrete data, the variable n in Eqs. (9a, 9b) and (10a, 10b, 
10c) is an integer.

GH filters are shown in Fig. 2 for a range of M and com-
pared to the CT filter for high M in Fig. 3. Figure 2 shows 
apodizations for a range of orders from zero (Gaussian 
line) to M = 100. As can be appreciated from the figure, 
GH filters are most effective at relatively high orders, for 

(9a)B(n) =
(
1 + � +

1

2
�2 + ... +

1

M!
�M

)
e−� ,

(9b)� =
n2

Δn2
.

(10a)B(n) = 1; for 0 ≤ n ≤ n1;

(10b)= a cos
(
(n − n1)∕Δn

)
for n1 ≤ n ≤ n2;

(10c)= 0 for n > n2,

Fig. 2   Transfer functions of the GH filter for M = 0, 1, 5, 20, 50, and 
100
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example M ∼ 50 and above. This makes them particularly 
computationally intensive.

Figure 3 compares the M = 100 GH filter to several CT 
filters for a = 5 to illustrate its apodizations. As can be 
seen, the main difference between the GH filter and the 
CT filter for Δn = 0.5 occurs at the upper cutoff. The dis-
tortions caused by the abrupt cutoff of the CT filter at the 
high end is more than compensated by its lack of distortion 
at low indices.

2.3 � Nonlinear filters

The history of the corrected maximum-entropy filter is com-
plicated, involving investigations of phase noise by Walker 
and Yule [13, 14], extraction of harmonics buried in noise 
in stationary-time-sequence data by many workers, and 
the forward-prediction theory of Kolmogorov and Wiener 
[15, 16]. Burg used a maximum-entropy approach [10] to 
develop a deconvolution (sharpening or “whitening”) proce-
dure to better define the frequencies of weak signals buried 
in noise. The CME filter was identified by Le et al. [9] as 
an alternative solution in the analysis. We summarize the 
CME filter below.

Let P(�) be a continuous function with the Fourier 
representation

where the Fourier coefficients Rn are available from 
−N ≤ n ≤ N . However, because of noise only the coefficients 

(11)P(�) =

∞∑
n=−∞

Rne
in� ,

for −M ≤ n ≤ M are useful. Obviously, M is less, possibly 
much less, than N. However, we can recover the most-prob-
able missing Rn by maximizing the entropy rate

with respect to the Rn that are unavailable. After numerous 
steps the result is found to be given by

where the coefficients an are given by

Several points can be mentioned. First, because P(�) 
appears as the argument of a logarithmic function, it must 
be positive definite. Second, the infinite series Eq. (11) has 
been replaced by the reciprocal of a finite series, Eq. (13). 
Third, it is easily shown that the features generated by 
Eq. (13) are pseudo-Lorentzians, being periodic in � rather 
than decreasing monotonically to zero, as true Lorentzians. 
Consequently, being a modified spectral representation, 
the CME filter is particularly appropriate for Lorentzian 
lines generated by first-order decay processes. Finally, Eqs. 
(12) and (13) show that the CME procedure, or maximum-
entropy more generally, intrinsically performs an inverse 
Fourier transformation.

(12)S =

∞∑
−∞

ln (P(�)) =

∞∑
−∞

ln

(
∞∑

n=−∞

Rne
in�

)

(13)P(�) =
1

�∑M

n=0
a
n
ein��2 ,

(14)

⎛⎜⎜⎜⎝

R0 R1 ... RM

R∗
1

R0 ... RM−1

... ... ... ...

R∗
M

R∗
M−1

... R0

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

a∗
0

a∗
1

...

a∗
M

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

1∕a0
0

...

0

⎞⎟⎟⎟⎠
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Fig. 3   Transfer functions of the CT filter for x0 = 1 , a = 5 , and 
Δn = 0.2, 0.5 , and 1. The transfer functions of the BW and GH, 
M = 100 filters are shown for comparison

Fig. 4   Real (�1) and imaginary (�2) parts of the dielectric function 
of monolayer WS2 at 41 K [11]. The dashed curve shows the ERED 
extension in the excitonic region, as described in the text
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3 � Application

As an example, Fig.  4 presents the WS2 data used to 
generate Fig. 1. The sample temperature was 41 K. Data 
were obtained on a JAWoollam RC2 spectroscopic ellip-
someter. The data, obtained linear in wavelength, were 
converted to linear in energy by linear interpolation 
between points. We are interested in the structure of the 
fundamental absorption edge giving rise to the features at 
approximately 2.1 and 2.5 eV. At issue is whether these 
are simple or composite features including one or more 
singularities. As indicated by the dashed line in the fig-
ure, the data of interest were augmented by the extended 
removal of endpoint discontinuity (ERED) process [17] 
to eliminate endpoint-discontinuity artifacts and, as a 
byproduct, double the number of Fourier coefficients 
available for analysis.

The Fourier coefficients of the segment of interest in 
Fig. 4 were obtained to double precision using MATLAB. 
These are displayed in Fig. 5 as ln(Cn) before the second-
derivative processing. The data exhibit interference, indi-
cating the presence of multiple features with amplitudes 
decreasing approximately linearly on a log scale. The 
white-noise onset occurs near n ∼ 60 . To assess filtering 
the red and blue traces exhibit the results of GH and CME 
processing before multiplying by n2 . For SG processing 
the order was set at 5 because higher orders noticeably 
attenuate the structure. For the GH calculation filtering 
was done with M = 4 and nc = 63 to best match the white-
noise onset. Because the SG DS convolution already mul-
tiplies the RS data by n2 , its filtering equivalent is obtained 
by dividing the resulting Cn by n2 . Consistent with Fig. 1, 

Fig. 5 shows that the SG filter is ineffective at suppress-
ing noise except near its node at n = 150 . The GH filter is 
significantly better but still allows a substantial amount of 
noise to leak through.

More striking is the CME replacement of the coeffi-
cients Cn in the white-noise region. Its extrapolation of 
the trend established in the low-index range is obviously 
appropriate. With 47 coefficients retained for the calcula-
tion, the extrapolation is solidly based. Because it is also 
based on analytic functions, the calculation of the second 
derivative generates no noise beyond the noise cutoff. 
Thus noise in the CME reconstruction is essentially non-
existent. It can be noted that the CME shows unambigu-
ously that the higher-energy peak is a doublet. As a sec-
ond example, we consider archival room-temperature �2 
data for GaAs obtained by rotating-analyzer ellipsometry 
as 250 data points equally spaced in energy from 1.5 to 
6.0 eV [18]. Integration time per point was 1 s. The data 
are shown in Fig. 6. The question here is whether the four 
E′
0
 and E2  features reported by Lautenschlager et al. [19] 

at a sample temperature of 22 K can be resolved at room 
temperature, given that these appear to collapse into two 
at 80 K. The second derivatives with respect to energy in 
the E�

0
− E2 spectral region, along with the second deriva-

tives calculated after GH and CME processing, are shown 
in Fig. 7. The SG computation exhibits noticeable noise, 
but in this case there is little difference between the GH 
and CME results. Both the GH and CME calculations 
show the presence of the E′

0
 , E�

0
+ Δ�

0
 , E2(X) , and E2(Γ) 

critical points in the room-temperature data. The E2(X) 
structure in the SG result is marginal. Thus progress has 
been made since the data were obtained.

Fig. 5   (Black) Values of ln(Cn) of the highlighted data in Fig.  4. 
(Blue) same data after passing through a GH filter of order M = 4 set 
with a cutoff index n

c
= 63 . (Red) same data after passing through 

a CME filter of order 47. (Green) same data after passing through 
the SG 5-point second-derivative convolution converted to a filter by 
multiplying the C

n
 by n2

Fig. 6   Room-temperature data for GaAs was obtained spectroscopi-
cally as 250 points equally spaced in energy from 1.5 to 6.0 eV [18]. 
Our interest is in the E�

0
− E2 spectral range indicated by the arrows
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4 � Discussion

While linear filtering is well known, the CME is relatively 
new, and hence comments on its use are in order. The 
requirement that the original spectrum be positive definite 
follows from Eq. (12). The procedure is based on maxi-
mizing the entropy rate, which is expressed initially as a 
logarithm. For spectra that have negative excursions, for 
example, the real part of the dielectric function, this requires 
the use of an additive constant. It can be shown that in the 
lowest order the effect of modifying R00 is to change the 
rate of decrease of the projection of ln(Cn) (the log of the 
broadening parameter) into the white-noise region, which 
for cosmetic purposes has little effect.

It can also be shown that Eq. (13) is a form of spectral 
representation, and hence the CME is most efficient when 
used with Lorentzian lineshapes. The characteristic of the 
spectral representation is its linear decrease of ln(Cn) with 
n. This is inconsistent with Gaussian lineshapes, where the 
decrease of ln(Cn) with n is quadratic. Nevertheless, model 
calculations show that when used for its intended purpose, 
neither the positive-definite nor linear-decrease characteris-
tic appears to be significant.

5 � Conclusion

In this work, we discuss different methods of minimizing 
noise in ellipsometric and other spectra by linear and non-
linear methods. The field has advanced rapidly in the last 

several years, and our objective is to provide an overview 
of current best practices, along with some examples of their 
use.
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Fig. 7   Second energy derivatives of the �2 spectrum of Fig. 7 in the 
E
′
0
, E2 spectral range for the data (black), after SG DS 5-point convo-

lution (green), after GH filtering (blue), and after CME filtering (red). 
The locations of critical points giving rise to features in these spectra 
are indicated by arrows
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