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Abstract
Lensless imaging is an imaging modality that allows high-resolution and large field-of-view (FOV) imaging with cost-effec-
tive and portable devices. In lensless imaging, the objects’ complex amplitude information is computationally reconstructed 
from the diffracted intensity measured on a sensor plane. This holographic reconstruction has been traditionally implemented 
by iterative phase retrieval algorithms. However, due to the limited capability of the traditional algorithms, such as exces-
sive processing time and high chance of failure in confluent specimens, lensless imaging has not been practically used in 
the relevant application areas. Here, we review the recent applications of deep learning (DL) algorithms in holographic 
image reconstruction that are proposed to achieve robust and fast holographic reconstruction in lensless imaging. These DL 
approaches include the supervised learning approach with paired training datasets and the unsupervised learning approach 
with unpaired training datasets or without any ground truth data. We also highlight some unique capabilities of the DL 
approaches, including lensless imaging with an extended depth-of-field (DOF) or virtual staining. Finally, we discuss new 
opportunities for exploiting domain adaptation techniques and physics-integrated approaches in lensless imaging.
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1  Introduction

Optical microscopy is an indispensable tool in modern bio-
logical research as it allows visualizing biological samples 
at the micro and nano-scale. However, conventional optical 
microscopes are composed of bulky and expensive lenses 
that require precise alignment with micron-scale precision. 
In the 2010s, an entirely new imaging modality, called lens-
less microscopy, has been developed to address these issues. 
As its name implies, lensless microscopy enables micro-
scopic imaging without any lens. Instead, computational 
algorithms take over the role of lenses to retrieve an optical 
image. Therefore, lensless microscopy requires only a pair of 
illuminator and camera, providing a cost-effective and port-
able solution for point-of-care biomedical applications [1].

As shown in Fig. 1a, conventional optical microscopy 
directly records an objects' image at the sensor plane where 
the object is optically conjugated by lenses (Fig. 1a). In 

lensless microscopy, unlike conventional microscopy, there 
is sufficient distance for diffraction in between the sample 
and the sensor plane, so that the camera captures the dif-
fracted light intensity from the sample without any lenses 
(Fig. 1b). The most distinctive feature of lensless micros-
copy is that the optical field information of the sample is 
computationally reconstructed from the diffraction pattern 
called hologram [2]. This computational process, called 
holographic reconstruction, is traditionally implemented by 
phase recovery and digital light propagation. As an opto-
electronic camera can only record light intensity because 
of high-frequency oscillation of an optical field, the phase 
recovery—the process to recover the missing phase informa-
tion from the hologram intensity—is the most challenging 
and critical process in lensless imaging. Therefore, many 
iterative phase recovery algorithms [3–6] have been pro-
posed to recover the lost phase information.

With the developments of the algorithms, researchers 
have demonstrated numerous important advantages of lens-
less microscopes over conventional microscopes, aside from 
the benefits of small form factor and cost-effectiveness. First 
of all, the space-bandwidth-product (SBP) of the imaging 
system is significantly improved in lensless microscopy. 
The SBP of conventional microscopes is typically limited 
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to ~ 20 M pixels by objective lenses that impose the trade-
off limit between field-of-view (FOV) and resolution due to 
manufacturing difficulties. On the other hand, the resolution 
of lensless microscopy is generally determined as sensor 
pixel size [7], and FOV is equal to the entire active area of 
the camera sensor. Thanks to the tremendous advances in 
sensor technology, SBP of lensless imaging has exceeded 
100 M pixels, capable of simultaneously achieving the reso-
lution of ~ 700 nm and the FOV of ~ 100 mm2. Furthermore, 
as a single hologram can encode the 3D volumetric infor-
mation of the sample, 3D refocusing over the entire sample 
volume is available in lensless microscopy. Because of those 
advantages, lensless imaging is actively applied in blood 
smear inspection for malaria diagnosis [8], 3D motion track-
ing of biological specimens [9, 10], and air quality monitor-
ing [11].

Over the past decade, with a significant enhancement 
in computing power, deep learning has been applied to 
the broad range of applications and outperforms the exist-
ing computational methods. In recent days, deep learning 
(DL) approaches have become the mainstream methods to 
solve various inverse problems in imaging, such as super-
resolution imaging [12–14], 3D tomographic imaging [15, 
16], Fourier ptychographic microscopy [17], and imaging 
through scattering [18, 19]. Among those, lensless imaging 
is one of the first areas that DL approaches have been applied 
and made a tremendous success [20, 21].

In this review, we aim to highlight some important 
advances in DL approaches for holographic reconstruction in 
lensless imaging. First, we introduce the hardware configu-
ration and working principles of lensless imaging, includ-
ing traditional iterative phase recovery algorithms. Then, 
we will categorize and discuss two different DL approaches 
in lensless imaging: supervised and unsupervised learning 

approaches. Finally, we will discuss the potential of DL 
approaches in lensless imaging.

2 � Lensless imaging

2.1 � Imaging principle

The lensless imaging hardware is simply composed of an 
illumination source and a camera sensor. The illumination 
source can be either a coherent laser or a partially coherent 
light-emitting diode (LED). In a typical lensless imaging 
setup, LEDs are used in conjunction with a spectral filter and 
a spatial filter (e.g., pinhole or multimode fiber) to enhance 
the temporal/spatial coherence of the source. The camera 
sensor is usually Complementary Metal Oxide Semiconduc-
tor (CMOS) or Charge-Coupled Device (CCD) image sen-
sor. A sample is placed in between the illumination source 
and the camera sensor (Fig. 1b). The source-to-sample dis-
tance (z1) and sample-to-sensor distance (z2) are typically 
set to be z1 > 3 cm and z2 < 1 mm [7].

The resolution of such lensless imaging system can be 
described in two perspectives: the degree of optical coher-
ence and the discretization in digital sensing. Firstly, as the 
lensless imaging system records a diffracted hologram inten-
sity, the high-frequency features of the sample should be 
encoded in the hologram to achieve high resolution. Because 
the hologram is formed by interference between an incident 
plane wave and the scattered wave from the sample, the tem-
poral and spatial coherence are the important parameters. 
Temporal coherence determines whether the wave scattered 
at a large angle can interfere with the unscattered plane 
wave or not. The effect of the temporal coherence can be 
controlled by the spectral width (Δλ) of the light source 

Fig. 1   Comparison between conventional bright-field microscopy and 
lensless microscopy. a In conventional bright-field microscopy, the 
sample plane is optically conjugated to the sensor plane using lenses. 
Additional lenses are required for an even illumination of the sam-
ple. b In lensless microscopy, the diffracted light from the sample is 

recorded at the sensor plane. General lensless microscopy setup is 
composed of an illumination light  source and a camera. z1: Source-
to-sample distance, z2: Sample-to-sensor distance, Δs: Diameter of a 
light source
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or z2 (which affects the path length difference between the 
scattered and the unscattered waves). The spatial coherence 
affects the sharpness and contrast of the holographic inten-
sity pattern, because it determines whether the incident wave 
originated from the illumination source can be considered 
as a single plane wave or the superposition of multiple plane 
waves. The effect of spatial coherence of illumination source 
can be controlled by the diameter of the light-emitting area 
(Δs) and the ratio between z1 and z2 (which affects the trans-
lation of the interference pattern on the sensor plane for an 
oblique incident wave originated from an off-axis point 
within the illumination source). Second, due to the Nyquist-
Shannon sampling theorem, the frequency components in 
the hologram that can be measured with the digital sensor 
are limited by the sensor’s pixel size. It is important to note 
that the fundamental resolution limit imposed by the coher-
ence state of optical wave can be smaller than the pixel size, 
typically, set to several microns in modern digital cameras. 
To overcome the technical resolution limit imposed by the 
pixel size, the pixel super-resolution (SR) algorithm that 
converts a stack of low-resolution shifted images to a single 
high-resolution image has been widely used to achieve sub-
micron resolution [22].

The computational process required for lensless imaging 
is the holographic reconstruction process that reconstructs 
an original information of the sample from the measured 
hologram intensity. In principle, the hardware of lensless 
imaging is an in-line holography setup recording the inter-
ference between the scattered light (Us) by the sample and a 
uniform reference wave (Ur). At the sensor plane, hologram 
intensity can be written as

where z2 is the spacing between the sample plane ( z = 0 ) 
and sensor plane ( z = z2 ). The complex amplitude of the 
scattered field (Us) at the sensor plane is encoded as the 
intensity pattern, U∗
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)
 . Therefore, the complex 

amplitude Us(x, y;0) at the sample plane can be recovered by 
digitally propagating the measured hologram from the sen-
sor plane to the sample plane, which is typically performed 
using the angular spectrum method [23]. Finally, the ampli-
tude and phase information of the sample, that provides the 
optical absorbance and the phase delay of the sample, can be 
retrieved from the reconstructed complex amplitude at z = 0.
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last terms do not affect the holographic reconstruction 
process as the first term is spatially uniform and the last 
term is negligible in many applications where the sample 
is weakly scattering. Due to the conjugate operation on 
U∗
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)
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)
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of the reconstructed image Us(x, y;0) from the second term. 
The noise from this additional term is called a twin-image 
artifact. The twin-image artifact significantly compromises 
the reconstructed sample image in lensless imaging. Many 
computational approaches have been proposed to address 
this problem based on traditional iterative phase retrieval 
algorithms and deep learning methods.

2.2 � Traditional iterative holographic reconstruction 
algorithms

Holographic reconstruction process in lensless imaging can 
be considered as the process to find the missing phase infor-
mation of the optical field U

(
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)
 from the measured 

intensity information |||U
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)|||

2

 . Intensity measurement 
is the process where the complex field information consist-
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 , through the measure-
ment operator H ∶ R2N

→ RN where N is the pixel number 
of the sensor. Therefore, the phase recovery is an ill-posed 
problem of finding an inverse operator Hinv ∶ RN

→ R2N 
which does not possess a unique solution. Therefore, addi-
tional information such as object support [24] or multiple 
measurements at different sample-to-sensor distances [25, 
26] is required to solve this underdetermined problem.

One of the fundamental phase recovery algorithms is the 
Gerchberg–Saxton (GS) algorithm [3, 5, 24]. In this algo-
rithm, optical fields are digitally propagated back and forth 
between two planes, while imposing physical constraints 
or prior information at each plane (Fig. 2a). At the sensor 
plane, the physical constraint is the recorded intensity of the 
optical field, and at the sample plane, the prior information 
is the approximative object boundaries called object support. 
After several iterations, phase information converges to a 
solution that satisfies physical constraints and prior informa-
tion. It has been shown that the GS algorithm with object 
support can recover relatively small isolated objects with 
clear boundaries in lensless imaging [27].

However, the GS algorithm frequently failed to recover 
the phase of dense or connected samples with no clear 
boundary. To address this limit, the multi-height phase 
recovery algorithm has been proposed to use the multiple 
intensity maps measured at different sample-to-sensor dis-
tances as more restrictive physical constraints, even without 
object support [25, 26]. In this scheme, the optical field is 
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sequentially propagated into multiple measurement planes, 
while enforcing the measured intensities at each plane. 
More specifically, the amplitude of the propagated optical 
field is replaced by the square root of the measured inten-
sity, while the phase is directly taken (i.e., updated) from 
the propagated optical field (Fig. 2b). After several itera-
tions, the phase values at each plane converge in such a way 
that the propagated fields satisfy the physical constraints 
of measured intensity at every plane. Typically, the multi-
height phase recovery algorithm requires 6–8 measurements 
to achieve high-quality reconstruction results [7].

Although the traditional multi-height phase recovery 
algorithm achieves high-quality holographic reconstruction 
of the dense sample, this algorithm requires many images 
for only one reconstruction process. The multiple meas-
urements are often limited by the speed of image acquisi-
tion and mechanical translation in between the sample and 
sensor when it comes to measuring the rapid dynamics of 
the biological system. Also, the iterative algorithm takes a 
long time for convergence. In that regards, DL approaches 
have recently been introduced to achieve rapid and robust 
holographic reconstruction using only a single intensity 
measurement.

Fig. 2   Traditional iterative phase recovery algorithms. a A schematic 
diagram of Gerchberg–Saxton (GS) algorithm. The optical fields are 
propagated back and forth between a sample domain and a sensor 
domain. Physical constraints are imposed at each domain. u_0: ampli-
tude of the optical fields at the sample domain, U_0: amplitude of 
the optical fields at the sensor domain, � : phase of the optical fields 
at the sample domain, and � : phase of the optical fields at the sen-
sor domain. b A schematic diagram of multi-height phase recovery 
algorithm. The multiple hologram intensities were measured at dif-
ferent sample-to-sensor distances. The measured amplitude replaces 

the amplitude of the propagated optical field at each position, while 
the phase of propagated optical field remains updated. The itera-
tive process—propagation of optical fields and application of physi-
cal constraints—converges to a single phase solution at each plane. 
Finally, the image is reconstructed by back-propagating the complex 
field with the phase solution to the sample plane. c Lensless imaging 
results of USAF target based on multi-height phase recovery algo-
rithm. (Left) the reconstructed intensity image of the USAF target on 
a full field-of-view. (Right) the measured hologram intensity maps 
and the reconstructed intensity maps at different sub-field of views
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3 � Supervised learning approach in lensless 
imaging

Deep learning [28] is one of the machine learning methods 
that uses deep neural networks (DNN) to learn the represen-
tations of data. The success of DL in the computer vision 
area naturally led to its active use in computational imaging. 
Specifically, DL shows superior performance to traditional 
algorithms, especially in solving various ill-posed inverse 
problems. This is mainly achieved by the complicated archi-
tecture of DNN and non-linear activation function, which 
makes it possible for DNN to learn very complex non-linear 
input–output relationships. One of the most general DNN 
architectures in computational imaging is convolutional 
neural networks (CNN) [28], inspired by the structure of 
the human visual cortex. CNN typically consists of convo-
lutional kernels, pooling layers, and non-linear activation 
functions.

Recently, DL approaches have made significant advances 
in overcoming various challenges of the conventional recon-
struction algorithms for lensless imaging. The most com-
mon DL approach in lensless imaging is supervised learning. 
In supervised learning, DNN finds the complex mapping 
functions between input data (i.e., the dataset of diffraction 
intensity maps from various samples) and desired data (i.e., 
the dataset of the ground truth images of the corresponding 

samples). This approach requires the large paired datasets 
of input data and their corresponding ground truth data. 
During the training process, DNN tries to adjust its weights 
W_1, W_2 (Fig. 3a) to minimize the loss function, which 
measures the statistical distance between the network output 
and the desired ground truth. The learning algorithm called 
error back-propagation (Fig. 3a) computes the gradients 
of the loss function with respect to each weight efficiently. 
Therefore, the weights of each layer can be modified toward 
the negative direction of this gradient to reduce the loss 
(Fig. 3a). After training, the trained network can perform 
the desired task with a single forward propagation of the 
DNN (i.e., convolution operations and application of non-
linear activation functions), which generally takes less than 
a second using a modern graphics processing unit (GPU). 
This single inference process of the trained network is one 
of the significant advantages of the DL approach compared 
to previous iterative algorithms that require many iterations 
for only one inference.

3.1 � Supervised learning in holographic 
reconstruction

As discussed in Sect. 2.1, the twin-image artifact due to 
missing phase information is one of the most critical chal-
lenges in lensless imaging. Recently, it has been shown that 

Fig. 3   a A schematic diagram 
of supervised learning approach 
in holographic reconstruction. 
During training, DNN learns 
the mapping function between 
the input measured hologram 
intensity and the output phase 
image based on loss function 
and error back-propagation. 
b Holographic reconstruction 
results using a supervised learn-
ing approach. DNN successfully 
recovers the original phase 
image (V) from the measured 
hologram intensity (III). DNN 
was trained on Faces-LFW 
datasets and ImageNet datasets, 
respectively. Adapted from ref 
[20], Open Access Publishing 
Agreement
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DL can reconstruct artifact-free phase information from a 
single hologram [20, 21]. Based on the supervised approach, 
Sinha et al. [20] demonstrate that CNN can recover phase 
images generated by a spatial light modulator (SLM) from 
its hologram intensity (Fig. 3b). Through the training pro-
cess, DNN learns the mapping function from hologram 
intensity to its corresponding phase image. Once the network 
is trained, the network can transform a hologram intensity 
into the desired phase image with high accuracy (Fig. 3b).

Interestingly, it has been shown that, if the input hologram 
is preprocessed with simple operation, DNN recovers the 
complex amplitude information even more effectively [21]. 
Instead of directly using the hologram intensity as a network 
input, a hologram intensity was digitally propagated back 
to the sample plane. This preprocessing process, which is 
identical to the half of the first iteration cycle of the GS algo-
rithm, reduces the burden of DNN as the complex amplitude 
in the sample plane (i.e., the preprocessed image with twin-
image artifacts) is the statistically closer to the final solution 
(i.e., ground truth) than the raw hologram intensity. In ref 
[21], DNN was shown to achieve robust holographic recon-
struction of complex biological samples, which has been 
considered challenging task for even DL approaches due to 
the complicated geometric features. Furthermore, DNN with 
preprocessing was shown to be very effective in recovering 
the phase information under low-photon conditions [29].

3.2 � Autofocusing and depth‑of‑field extension

In addition to the basic capability of holographic reconstruc-
tion, a recent work [30] further demonstrates that CNN can 
be used to perform autofocusing, which is the process where 
the sample-to-sensor distance is retrieved from the hologram 
or defocused image. In the traditional phase retrieval algo-
rithms, the precise sample-to-sensor distance is the key prior 
information in that the optical fields need to be digitally 
propagated back and forth to the correct measurement and 
sample planes. In the DL-based autofocusing method, the 
network was trained using the pairs of the measured holo-
gram and the corresponding propagation distance, which 
was directly extracted from linear actuators used in experi-
ments. This approach demonstrated significantly reduced 
error and computation time compared to traditional autofo-
cusing algorithms.

DL has also been used to perform both autofocusing and 
phase recovery [31], resulting in the significant extension 
in depth-of-field (DOF). In those DL approaches, called 
holographic imaging using deep learning for extended 
focus (HIDEF), DNN was trained using the pairs of ran-
domly propagated (i.e., defocused) holograms and the cor-
responding in-focus images. After training, DNN could 
recover the in-focus image of a three-dimensional sample 
from a single hologram in real time (Fig. 4a). Especially, 

HIDEF can be useful for lensless imaging of axially dis-
tributed samples (e.g., imaging of the red blood cells dis-
persed in a volumetric blood sample) in the sense that 
refocusing and recovering the missing phase of the entire 
sample volume can be simultaneously performed [32].

3.3 � Cross‑modality image transformation

The DL-based holographic reconstruction scheme has 
also been shown to be very efficient in performing the 
cross-modality image transformation. In typical lensless 
imaging, the amplitude and phase information of a sample 
is retrieved. However, often, such intrinsic optical infor-
mation does not directly render a sufficient contrast to 
identify the specific structures of interest. In that regards, 
the cross-modality image transformation can be used to 
convert an image acquired from lensless imaging scheme 
into the image of different modalities, such as bright-field 
and dark-field microscope that provides a high-contrast 
image for specific structural features. For instance, in the 
“bright-field holography” framework [33], DNN has been 
used to learn the mapping function from the digitally back-
propagated field of a single hologram to the corresponding 
bright-field microscopy image (Fig. 4b). Such transforma-
tion is especially useful for a 3D volumetric sample where 
defocused objects create the strong artifacts of concentric 
ring patterns. In addition, DNN also eliminates the speckle 
and background interference artifacts that are often caused 
from the illumination source with a long coherence length. 
In other words, the “bright-field holography” approach 
simultaneously achieved both the 3D imaging capability 
of lensless imaging and the high image-contrast of bright-
field microscopy.

One of the significant benefits of lensless imaging is the 
label-free feature where one may visualize important struc-
tures within an intrinsic biological specimen without any 
preprocessing, based on the optical phase delay from the 
specimen. However, many traditional diagnostic methods 
and sample analysis procedures have been developed based 
on bright-field microscopic imaging with sample labeling/
staining. In this regard, a virtual histology staining frame-
work using DL has been suggested to close the gap between 
the traditional labeling-based imaging modalities and the 
holographic lensless imaging [34]. In this framework, DNN 
is trained using the pairs of reconstructed holographic 
images and corresponding bright-field microscopy images, 
which are acquired after staining. As a result, DNN learns 
to convert a label-free image to a bright-field microscope 
image with staining (Fig. 4c). Especially, considering that 
lensless imaging provides a larger FOV in comparison to a 
conventional bench-top microscope, this virtual histology 
staining framework can significantly reduce costs and time 
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for histological staining and associated applications includ-
ing diagnostic tissue pathology.

4 � Unsupervised learning approach 
in lensless imaging

The supervised learning approaches have demonstrated 
superior image quality and short computation time in holo-
graphic reconstruction for lensless imaging. However, the 
success of the supervised approach highly relies on the 
datasets of paired images in two different domains—ground 
truth domain and hologram domain—as it solely depends 
on the statistical mapping between two domains. The reli-
ance on large datasets significantly limits the practicality 

of supervised approach for lensless imaging, because it is 
unlikely to be possible to acquire large paired datasets in 
an actual lensless imaging situation. Typically, the acqui-
sition of holograms and ground truth images requires two 
independent experimental setups, so that it is practically 
impossible to acquire the paired dataset for dynamic objects 
such as fluctuating cell membranes. The use of unsupervised 
learning approaches has been explored in the field of lensless 
imaging to address this critical challenge of the supervised 
approach.

4.1 � Cycle‑consistent GAN approach

Cycle-consistent GAN (CycleGAN) is the representative 
unsupervised framework that performs image-to-image 

Fig. 4   Some unique capa-
bilities of the DL approaches. 
a DL approach significantly 
extends the DOF and increases 
the reconstruction speed of a 
3D volumetric sample. After 
training, DNN reconstructs an 
in-focus image of a 3D sample 
over an extended DOF from 
a single hologram intensity. 
Modified from ref [31], Open 
Access Publishing Agreement. 
b In “bright-field holography” 
method, DNN transforms holo-
graphic images of a volumetric 
sample into bright-field micros-
copy images at desired planes. 
BP: back-propagation. Modified 
from ref [33], CC-BY-4.0. c In 
virtual phase staining method, 
DNN transforms a recon-
structed holographic image into 
an equivalent bright-field micro-
scope image with histological 
staining. Modified from ref 
[34], CC-BY-4.0
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transformation in the absence of paired training datasets 
[35]. Recently, the CycleGAN approach has been applied 
to holographic reconstruction [36]. In this approach, Cycle-
GAN is trained using unpaired datasets composed of phase 
images in SLM and its hologram intensity. There are two 
neural networks for image transformations: the inverse 
mapping from hologram intensity to phase image and the 
forward mapping from phase image to hologram intensity. 
Generally, unsupervised learning approaches lead to an 
inferior accuracy of image reconstruction compared to the 
supervised approaches. In a recent work [37], the near-field 
Fresnel propagator [38] was combined with the CycleGAN 
framework to reduce the computational burden of neural 
networks. Here, the forward mapping from phase image 

to hologram intensity image was analytically described by 
near-field Fresnel propagator H (Fig. 5a). In this manner, the 
neural network GD (Fig. 5a) in the forward mapping process 
does not need to learn the well-known physical process H 
(Fig. 5a); instead, it only needs to learn experimental arti-
facts in the measurements. This unsupervised framework 
termed phaseGAN has outperformed the CycleGAN frame-
work and has yielded comparable results to the supervised 
approach in holographic reconstruction even in the absence 
of paired datasets. The phaseGAN has demonstrated the 
capability of phase reconstruction in time-resolved X-ray 
imaging experiments where the paired ground truth images 
cannot be acquired due to the dynamic nature of experimen-
tal scheme.

Fig. 5   Unsupervised learning approaches in holographic reconstruc-
tion. a Learning process diagram of phaseGAN. Propagator H was 
integrated into the original CycleGAN DNN structure. GO: DNN, 
which transforms the measured hologram intensity into a phase 
image, H: near-field Fresnel propagator, GD: DNN, which refines the 
generated hologram intensity, DO: DNN that classifies an input phase 
image as “real” or “fake”, and DD: DNN, that classifies an input holo-
gram intensity as “real” or “fake”. The image-transformation net-
works GO and GD were trained in a way that they reduce the error 
between the measured hologram/phase image and the generated hol-
ogram/phase image through GO and GD based on the fact that they 
should be identical if the correct phase image/hologram is generated. 

DO and DD also improve the performance of the entire network as it 
helps improving the statistical resemblances between the measured 
images and the generated images in two separate domains. Adapted 
from ref [36], Open Access Publishing Agreement. b A schematic 
diagram of PhysenNet. DNN generates a phase image from a meas-
ured hologram. DNN was repeatedly  optimized to reduce the error 
between the  measured hologram intensity and the  generated holo-
gram intensity, which is created by numerically propagating the out-
put from the neural network. The  generated hologram intensity and 
phase image converge to a solution via the iterative process of adjust-
ing the network weights. Adapted from ref [39], CC-BY-4.0
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4.2 � Deep image prior approach

Recent works further demonstrated the ability of a DNN to 
recover phase information even without any ground truth 
image [39]. This framework is inspired by deep image prior 
(DIP) [40], the approach that neural network architecture can 
be used as a handcrafted prior for solving various inverse 
problems. This approach is significantly different with the 
conventional compressive sensing algorithms that use the 
sparsity priors in a known basis, such as wavelet basis. In the 
DIP-based framework, an untrained neural network, called 
a physics-enhanced deep neural network (PhysenNet), was 
combined with a well-known physical model, near-field 
Fresnel propagator. The PhysenNet network parameters 
are iteratively optimized through the interplay between 
the physical model and the neural network. As shown in 
Fig. 5b, the networks' output is numerically propagated to 
the sensor plane to simulate the diffraction pattern. Then, 
the error between the simulated and measured diffraction 
patterns was used to adjust the network parameters (Fig. 5b). 
After many iterative cycles, PhysenNet can generate a phase 
image whose simulated diffraction pattern satisfies the given 
physical constraints of measured hologram. Compared 
with the previous supervised approaches, deep image prior 
approaches require much longer time to reconstruct one 
image as the iteration cycles are required. It should be noted 
that such DIP-based frameworks can be applied to various 
imaging modalities where the image formation model can 
be precisely described.

5 � Conclusion

Lensless imaging has enabled high-resolution and large FOV 
imaging of specimens with a much more cost-effective and 
portable manner compared to conventional microscopes. 
These advantages make lensless imaging particularly well 
suited for point-of-care diagnostic applications. However, 
one of the critical bottlenecks for its practical use on sites 
has been the limited capability of holographic reconstruc-
tion. The traditional reconstruction algorithms are time-
consuming and need multiple measurements to reliably deal 
with complex structures. In contrast to these conventional 
algorithms, the DL approaches have recently been shown 
to robustly perform holographic reconstruction using a 
single measured hologram. In addition, once networks are 
trained, images can be reconstructed nearly in real-time. 
In this review, we highlighted various DL approaches and 
their unique capabilities that cannot be demonstrated using 
the traditional algorithms. First, the supervised learning 

approaches have presented superior image reconstruction 
results and additional practical capabilities such as autofo-
cusing, virtual staining, and bright-field holography. None-
theless, the supervised approaches require large paired 
datasets, which are not readily available in many practical 
situations. In that regards, many recent efforts have been 
made to implement an unsupervised learning approach that 
can learn to transform without paired datasets.

One of the major drawbacks of conventional DL 
approaches is that they yield poor reconstruction accuracy 
when test data differ significantly from training data. One 
may often encounter this situation, because training datasets 
cannot cover all possible variations in the measurements. 
To address this problem, domain adaptation techniques [41] 
have been actively studied. This approach is to increase 
the ability of machine learning algorithms trained in one 
domain called ‘source’ domain to work well in a different 
domain called ‘target’ domain. It implies that a neural net-
work trained in a certain lensless imaging configuration can 
be used in another. We expect that the domain adaptation 
approach will significantly enhance the practicality of lens-
less imaging.

Although conventional DL approaches that only look for 
statistical patterns emerging from the images in different 
domains have achieved significant advances in the field of 
lensless imaging, we expect that the full potential of DL 
approaches will be realized when the physical insights are 
seamlessly integrated into the neural networks. Already, a 
few physics-integrated DL approaches have shown more 
robust reconstruction results in practical conditions where 
the hologram acquisition is photon-starved or the datasets 
are imperfect [29, 37]. In our view, current DL approaches 
and table-top demonstrations based on DL are still at the 
infancy stage, exploring various capabilities of DL in lens-
less imaging while not rigorously considering the reliability 
of DL approaches. We speculate that the developments in 
DL approaches will be progressively focused on achieving 
reliable neural networks to enable practical use of DL in the 
real world, and the physics-integrated approach will play an 
important role in this aspect.
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