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Abstract
We consider the normal mode problem of a vibrating string loaded with n identical beads of equal spacing, which involves
an eigenvalue problem. Unlike the conventional approach to solving this problem by considering the difference equation for
the components of the eigenvector, we modify the eigenvalue equation by introducing matrix-valued Lagrange undetermined
multipliers, which regularize the secular equation and make the eigenvalue equation non-singular. Then, the eigenvector can
be obtained from the regularized eigenvalue equation by multiplying the indeterminate eigenvalue equation by the inverse
matrix. We find that the inverse matrix is nothing but the adjugate matrix of the original matrix in the secular determinant
up to the determinant of the regularized matrix in the limit that the constraint equation vanishes. The components of the
adjugate matrix can be represented in simple factorized forms. Finally, one can directly read off the eigenvector from the
adjugate matrix. We expect this new method to be applicable to other eigenvalue problems involving more general forms of
the tridiagonal matrices that appear in classical mechanics or quantum physics.

Keyword String vibration, Normal mode, Lagrange multiplier, Classical mechanics, Eigenvalue problem

1 Introduction

The vibration of a loaded string is one of the highest-level
problems appearing in classical mechanics curriculum that
involves an eigenvalue problem and requires various mathe-
matical techniques to attack. It is a gateway to understanding
quantum mechanics, because it has an analogous mathe-
matical structure of discrete eigenvalues like the quantum
mechanical infinite potential well problem. The problem is
also another gateway to approaching classical and quantum
field theories, because the continuum limit that takes d → 0
and n → ∞ with d(n+ 1) = L fixed leads to the concept of
fields. Here, n is the number of beads, d is the equal spacing,
and L is the length of the string.

In classes for classical mechanics, the string vibration is
introduced after the coupled harmonic oscillator [1]. While
the mathematical structures of the two problems are essen-
tially the same, the approaches to the two problems in
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ordinary textbooks are rather different: they solve the eigen-
value equation of the form (A − λ1) (λ) = 0 for a lower
dimensional problem like the coupled oscillator by employ-
ing the Gaussian elimination to find the relation among
the components of an eigenvector after having found an
eigenvalue which is a solution for the secular equation
Det[A − λ1] = 0. Here, A is an n × n square matrix
determined by the system, λ is an eigenvalue, and  (λ) is the
corresponding eigenvector. This approach is not adequate for
the problemof a vibrating string loadedwithn beads, because
the computation with an n × n matrix with a large or arbi-
trary integer n is too awkward to deal with. Thus, the method
of difference equation is employed. Actually, the difference
equation for the components of each eigenvector is the same
as that for the secular determinant Det[A − λ1] with dif-
ferent boundary conditions [2,3]. The approach employing
the three-term difference equation stems from the fact that
the matrix A is a tridiagonal square matrix, because only
the nearest neighbors on the left and right of a given bead
interact with the bead. Thus, the difference equation con-
sists of three consecutive sequenced terms and the equation
can be solved in a manner similar to that used to solve a
second-order ordinary linear differential equation [4]. This
conventional approach determines every component of the
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eigenvector with the boundary conditions that the end points
are fixed. These boundary conditions determine the eigen-
values simultaneously without solving the secular equation
Det[A− λ1] = 0. The eigenvalues for a lower dimensional
problem like the coupled harmonic oscillator are usually
found by solving the secular equation first.

In this paper, we focus on developing a single strategy to
solve these two essentially the same problems. By employ-
ing theLagrange-undetermined-multiplier approach recently
developed in Ref. [5], we modify the eigenvalue equation
into (A − λ1 + α1) (λ) = αc, where α is a free parameter
that regularizes the original matrix A − λ1 in the secular
determinant and the regularized one A − λ1 + α1 is no
longer singular. The identitymatrix1 and an arbitrary column
vectorcmultiplied byα arematrix-valuedLagrange undeter-
minedmultipliers. The substitution of the constraint equation
α = 0 is to be delayed until we solve the eigenvector  (λ)

for this modified equation. The regularized eigenvalue equa-
tion is then solvable by multiplying it by the inverse matrix
(A− λ1+ α1)−1. We shall find that the regularized secular
determinant Dn(λ, α) ≡ Det[A − λ1 + α1] approaches a
linear function of α in the limit α → 0 as long as the system
does not have degenerate eigenstates, which is true if the dis-
placement of every bead is along a single axis. As a result, the
eigenvector corresponding to the eigenvalue λ = λi can be
expressed as  (i) = limα→0 Dn(λi , α)(A − λi1 + α1)−1c.
We shall find that the matrix in front of c is indeed the adju-
gate adj(A − λi1) of the original matrix and this adjugate
is always well defined even when A − λi1 is singular. That
every column and row of the adjugate matrix adj(A − λi1)

are parallel to the eigenvectors  (i) and  (i)†, respectively, is
remarkable. To our best knowledge, this result is new.

This paper is organized as follows: in Sect. 2, we review
the conventional approach to find the normal modes of a
vibrating string. In Sect. 3,we present an alternative approach
employing matrix-valued Lagrange undetermined multipli-
ers to solve the problem given in Sect. 2. Conclusions are
given in Sect. 4 and a rigorous derivation of the inversematrix
appearing in the regularized eigenvalue problem is given in
appendices.

2 Conventional approach

In this section, we review the conventional approach to find
the normal modes of a loaded string that can be found in
textbooks such as Refs. [1–3] on classical mechanics. Con-
sider a vibrating string of length L = (n+ 1)d and tension τ

loaded with n identical beads of mass m with equal spacing
d. Here, we restrict ourselves to the simplest case in which
only the transverse motion along a single axis is allowed and
the deviation from the equilibrium position of the kth bead
at the longitudinal coordinate xk = kd is denoted by qk for
k = 1 through n, as shown in Fig. 1.

We require both endsq0 andqn+1 to befixed:q0 = qn+1 =
0. In the continuum limit qk → q(x), where q(x) and x
are the continuum counterparts of qk and the longitudinal
coordinate xk for the kth bead, respectively, the difference
equation collapses into a second-order ordinary differential
equation for q(x), and the above requirement becomes the
Dirichlet boundary condition q(0) = q(L) = 0.

The kinetic energy T of the system of particles is given
by

T = 1

2
m

n∑

k=1

q̇2k = 1

2
q̇TMq̇, (1)

where M = m1 is the mass matrix, 1 = (δi j ) is the n × n
identity matrix, and q = (q1 q2 . . . qn)T. Here, δi j is the
Kronecker delta. The potential energy of a string segment
between the kth and the (k+1)th beads is 1

2τ(qk+1−qk)2/d
neglecting the gravitational potential energy. This approxi-
mation is valid in the limit |qk+1 − qk | � d for all k from
k = 0 through n. Thus, the potential energy of the string is

U = τ

2d

n∑

k=0

(qk − qk+1)
2 = τ

2d
qTAq, (2)

where A = (Ai j ) and for i , j = 1, . . ., n the i j element of
the matrix is given by

Ai j = 2δi j − δi+1 j − δi j+1. (3)

A is apparently real and symmetric. This is a band matrix
with the main diagonal elements all equal to 2, and the ele-
ments of the first diagonals below and above are all equal to
−1. The explicit form ofA is

A =

⎛

⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎞

⎟⎟⎟⎟⎟⎠
. (4)

The Lagrangian of the system is L = T − U and the
corresponding Euler–Lagrange equations are given by

q̈ + τ

md
Aq = 0, (5)

where 0 = (0 . . . 0)T is the null column vector. The equation
ofmotion is a systemof linear difference equations. The stan-
dard approach to solving such a system of equations can be
found, for example, in Refs. [3,4]. Assuming the separation
of variables, one can introduce a trial solution in which the
space and the time components are completely factored. The
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Fig. 1 A vibrating string of length L = (n + 1)d fixed at both ends with tension τ and loaded with n identical beads of mass m with equal spacing
d. qk represents the transverse displacement from the equilibrium position of the kth bead at the longitudinal position xk = kd for k = 1 through n

normal mode with the normal frequencyω is then substituted
as a trial solution as

q = e−iωt , (6)

where the eigenvector  for the normal mode with frequency
ω is independent of time. Then,we endupwith the eigenvalue
equation

ω2 = τ

md
A . (7)

We rescale the equation into

(A − λ1) (λ) = 0 (8)

by introducing the dimensionless eigenvalue λ as

λ = md

τ
ω2. (9)

Note that we have introduced a superscript (λ) in  (λ) to
indicate that the eigenvector is for the normal mode corre-
sponding to the dimensionless eigenvalue λ. The eigenvalue
equation in Eq. (8) is an indeterminate linear equation,
because A − λ1 is singular: Det[A − λ1] = 0. If A − λ1
is not singular: Det[A − λ1] �= 0, then (A − λ1)−1 exists
and  (λ) ≡ 0 and this trivial solution is not an eigenvector.
The eigenvalue equation (8) reduces to the following dif-
ference equation for components of the eigenvector  (λ) =
(ψ

(λ)
1 ψ

(λ)
2 . . . ψ

(λ)
n )T:

ψ
(λ)
r+1 + (λ − 2)ψ(λ)

r + ψ
(λ)
r−1 = 0, ψ

(λ)
0 = ψ

(λ)
n+1 = 0, (10)

where r runs from 1 through n. Because q0 = qn+1 = 0 at
any time t , we have set ψ(λ)

0 = ψ
(λ)
n+1 = 0.

The standard method to solve the difference equation (10)
can be found, for example, in Ref. [4]: one can substitute the
trial solution ψ

(λ)
r = κr with κ �= 0 into Eq. (10) to find that

κ2 + (λ − 2)κ + 1 = 0. (11)

The solution for the parameter κ is

κ = κ± ≡ 1

2

[
2 − λ ± √

λ(λ − 4)

]
. (12)

Then, the solution can be expressed as a linear combination
ψ

(λ)
r = a1κr+ + a2κr−, where a1 and a2 are constants. As is

shown in Ref. [4], the difference equation has only the trivial
solution ψ

(λ)
r = 0 if κ is real: λ ≥ 4 or λ ≤ 0.

(i) If λ > 4 or λ < 0, then κ+ and κ− are real and distinct.
In addition, the boundary conditions ψ

(λ)
0 = ψ

(λ)
n+1 = 0

require that

(
1 1

κn+1+ κn+1−

) (
a1
a2

)
=

(
0
0

)
. (13)

The solution is trivial: ψ
(λ)
r = 0, because a1 = a2 = 0.

Thus, any λ in the region λ < 0 or λ > 4 is not an
eigenvalue.

(ii) If λ = 0 or 4, then κ+ = κ− and a1 = −a2. These condi-
tions require that ψ(λ)

r = 0 for any r . Because ψ
(λ)
r = 0

is a trivial solution, neither λ = 0 nor λ = 4 is an eigen-
value.

(iii) If 0 < λ < 4, then the roots of Eq. (12) are complex.
Substituting the trial solution

ψ(λ)
r = d1 e

+irθ + d2 e
−irθ , (14)

into the difference equation (10)

ψ(λ)
r = ψ

(λ)
r+1 + ψ

(λ)
r−1

2 − λ
, (15)

we find that

cos θ = 1 − λ

2
. (16)

By imposing the boundary conditions ψ
(λ)
0 = ψ

(λ)
n+1 = 0, we

can determine d1 and d2. The condition ψ
(λ)
0 = 0 requires

that d2 = −d1 :

ψ(λ)
r = 2id1 sin rθ. (17)

The condition ψ
(λ)
n+1 = 0 requires that
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sin(n + 1)θ = 0. (18)

Thus, the angle θ is determined as

θs = sπ

n + 1
, s = 1, 2, . . . , n. (19)

As a result, we find the n eigenvectors and the corresponding
eigenvalues as

 (s) =

⎛

⎜⎜⎝

ψ
(s)
1
...

ψ
(s)
n

⎞

⎟⎟⎠ , (20)

ψ(s)
r =

√
2

n + 1
sin

rsπ

n + 1
, (21)

λs = md

τ
ω2
s = 2(1 − cos θs) = 4 sin2

(
1

2
θs

)

= 4 sin2
sπ

2(n + 1)
, (22)

r , s = 1, 2, . . . , n. (23)

Here, the superscript (s) stands for (λs) and λs is a dis-
crete eigenvalue λ that depends on the integer s. From
Eq. (22), manifestly, no degeneracy occurs among any
of the n eigenstates. The dimensionless eigenvalue λs is
monotonically increasing as s increases from 1 to n. The
dimensionless eigenvalue λs has the minimum value λ1 =
4 sin2[ 12π/(n + 1)] at s = 1 and has the maximum value
λn = 4 sin2[ 12nπ/(n + 1)] at s = n. In the continuum limit,
they approach the limits λ1 → 0 and λn → 4.

The normalization of the eigenvector is set to be

 (r)† (s) = δrs, (24)

and one can check the orthonormality of the eigenvectors by
making use of the trigonometric identity [6]

n∑

k=0

sin
rkπ

n + 1
sin

skπ

n + 1
= n + 1

2
δrs . (25)

Hence, the solution for q can be expressed as a linear com-
bination of the eigenvectors

q(t) =
n∑

s=1

ηs(t) 
(s), (26)

where every eigenvector is independent of time and all of the
time dependences are contained only in the normal coordi-
nates ηs(t) satisfying the equation of motion

η̈s + ω2
s ηs = 0. (27)

The orthonormal relation in Eq. (24) can be used to project
out the normal coordinate

ηs(t) =  (s)†q(t). (28)

If the initial condition of the string is given by q(0) and its
time derivative q̇(0), then the corresponding initial condi-
tions for the normal coordinates are determined as ηs(0) =
 (s)†q(0) and η̇s(0) =  (s)†q̇(0).

3 Lagrange-multiplier approach

In this section, we adopt the Lagrange-undetermined-
multiplier approach developed in Ref. [5], instead of the
conventional one described in the previous section. By intro-
ducing a parameter α, that is actually vanishing, we modify
the indeterminate linear equation in Eq. (8) as

(A − λ1 + α1) (λ) = αc, (29)

where c is an arbitrary complex column vector

c = (
c1 · · · cn

)T
. (30)

The modification involves matrix-valued Lagrange undeter-
minedmultipliers 1 and cmultiplied by the parameter α, and
in this case, the constraint equation will be

α = 0. (31)

The role of thematrix-valuedmultipliers is basically the same
as the conventional one that is a number. This trick does not
alter the equation at all. However, themodification in Eq. (29)
allows one to solve the linear equation by multiplying both
sides of Eq. (29) by (A − λ1 + α1)−1 as long as we do not
impose the condition α = 0. While (A − λ1)−1 does not
exist, (A − λ1 + α1)−1 always exists, because Det[A −
λ1 + α1] �= 0 if α �= 0. Then, the eigenvector for a given
eigenvalue λ is simply determined as [5]

 (λ) = lim
α→0

α(A − λ1 + α1)−1c (32)

for an arbitrary vector c yielding a non-vanishing result.
In order to investigate the structure of Eq. (32), we define

the α-dependent determinant Dn(λ, α)

Dn(λ, α) = Det[A − λ1 + α1], (33)

where the subscript n of Dn(λ, α) indicates that the matrix
A−λ1+α1 is an n×n square matrix. ThatDn(λ, α = 0) =
Dn(λ) ≡ Det[A−λ1], which is vanishing for an eigenvalue
λ, is apparent. BothDn(λ) andDn(λ, α) can be derived from
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the recursion relation among the determinants of thematrices
of various dimensions. Details of the derivation are provided
in Appendix A. From Eq. (A14), the explicit form of the
α-dependent determinant is given by

Dn(λ, α) = sin[(n + 1)θ ′]
sin θ ′ , cos θ ′ ≡ 1 − λ − α

2
. (34)

The secular equation Dn(λ, 0) = 0 determines the eigen-
value λ. We shall find in Eq. (44) that no degenerate normal
frequency exists. Thus, the determinant at a given eigenvalue
λ = λi must be factorized as

Dn(λi , α) = α
∏

j �=i

(α + λ j − λi ). (35)

In the limit α → 0, the product
∏

j �=i (α + λ j − λi ) on
the right side collapses into a non-vanishing number inde-
pendent of α, because every eigenvalue is distinct. Thus,
limα→0 Dn(λi , α)/α = ∏

j �=i (λ j − λi ) �= 0. The gener-
alization of the method including degeneracies is presented
in Ref. [5].

Hence, the eigenvector  (i) corresponding to a given
eigenvalue λi can be factorized as the product of two ‘finite’
quantities

 (i) = lim
α→0

α

Dn(λi , α)
× lim

α→0
Dn(λi , α)(A−λi1+α1)−1c.

(36)

Because c is arbitrary, c can absorb the first factor by redef-
inition: [limα→0 α/Dn(λi , α)]c → c. Then, without loss of
generality, the eigenvector can be written in a compact form

 (i) = lim
α→0

Dn(λi , α)(A − λi1 + α1)−1c, (37)

which is essentially identical to Eq. (32).However, Eq. (37) is
more practical than Eq. (32), because the factor 1/Dn(λi , α)

coming from the inverse matrix (A − λi1 + α1)−1 cancels
the prefactor in Eq. (37).

The matrix multiplied by an arbitrary column vector c in
Eq. (36) is the projection operator that projects the arbitrary
vector onto the eigenvector for the eigenvalue λi , and it is
nothing but the adjugate of the matrix A − λ1

[
lim
α→0

Dn(λ, α)(A − λ1 + α1)−1
]

i j
= [

adj(A − λ1)
]
i j .

(38)

Note that this identity holds for any eigenvalue problemwith-
out degeneracy.

If we substitute the explicit matrix elements in Eq. (3) for
the loaded string system, then we find that every element of

the adjugate can be factorized into the product of two factors
of the form Dk ≡ Det[A[k×k] − λ1[k×k]]
[
adj(A − λ1)

]
i j = DMin[i, j]−1Dn−Max[i, j]. (39)

Here,A[k×k] and 1[k×k] are k × k square matrices for k ≤ n
that are analogous to A and 1 and Dn ≡ Dn(λ). A rigorous
proof of the identity in Eq. (39) is presented in Appendix B.

The matrix representation for adj(A − λ1) for a loaded
string system that we consider is explicitly given as

adj(A − λ1)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0Dn−1 D0Dn−2 D0Dn−3 · · · D0D2 D0D1 D2
0

D0Dn−2 D1Dn−2 D1Dn−3 · · · D1D2 D2
1 D1D0

D0Dn−3 D1Dn−3 D2Dn−3 · · · D2
2 D2D1 D2D0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

D0D2 D1D2 D2
2 · · · Dn−3D2 Dn−3D1 Dn−3D0

D0D1 D2
1 D2D1 · · · Dn−3D1 Dn−2D1 Dn−2D0

D2
0 D1D0 D2D0 · · · Dn−3D0 Dn−2D0 Dn−1D0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(40)

and the j th column of this matrix is

[
adj(A − λ1)

]
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0Dn− j
...

D j−1Dn− j

D j−1Dn− j−1
...

D j−1D0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

Here, the index of the front factor in each element increases
from 0 to j − 1 by a single unit as the row index increases
and the index reaches j − 1 at the j th row and is fixed after
that. The index of the next factor in each element remains
fixed as n − j until the row index reaches j , and after that,
it starts to decrease from the ( j + 1)th row and reaches 0 at
the bottom.

According to Eq. (A14), an explicit form of Dn is given
by

Dn = sin[(n + 1)θ ]
sin θ

, cos θ ≡ 1 − λ

2
, 0 < λ < 4. (42)

If λ is an eigenvalue, then Dn = 0. Thus, the angle θ for the
eigenvalue λs is determined as

θ = θs = sπ

n + 1
, s = 1, 2, . . . , n. (43)

Therefore, the eigenvalues are obtained as

λs = md

τ
ω2
s = 2(1 − cos θs) = 4 sin2

(
1

2
θs

)

= 4 sin2
sπ

2(n + 1)
s = 1, 2, . . . , n. (44)
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WhileDn
∣∣
λ=λs

is always vanishing,Dk
∣∣
λ=λs

is not vanishing
for any k < n

Dk
∣∣
λ=λs

= sin s(k+1)π
n+1

sin sπ
n+1

, k = 0, 1, . . . , n − 1. (45)

From here on, we adopt the convention Dk ≡ Dk
∣∣
λ=λs

.
Then, using the trigonometric relation

sin
s(k + 1)π

n + 1
= (−1)s+1 sin

(
sπ − s(k + 1)π

n + 1

)

= (−1)s+1 sin
s[(n − k − 1) + 1]π

n + 1
,

k = 0, 2, . . . , n − 1, (46)

we deduce a useful relation between Dk and Dn−k−1

Dk = (−1)s+1Dn−k−1. (47)

With the help of the identity in Eq. (47), the j th column of
the adjugate can be simplified as

[
adj(A − λ1)

]
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0Dn− j
...

D j−1Dn− j

D j−1Dn− j−1
...

D j−1D0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dn− jD0
...

Dn− jD j−1

D j−1Dn− j−1
...

D j−1D0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dn− jD0
...

Dn− jD j−1

(−1)s+1Dn− j (−1)s+1D j
...

(−1)s+1Dn− j (−1)s+1Dn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Dn− j

⎛

⎜⎜⎜⎝

D0

D1
...

Dn−1

⎞

⎟⎟⎟⎠ .

(48)

This indicates that every column of adj(A − λ1) is propor-
tional to a single vector (D0, . . . ,Dn−1)

T. Employing the
normalized column vector  (s) given in Eqs. (20) and (21)
that satisfies

 (r)† (s) = δrs, (49)

we find that the j th column of the adjugate can be written in
the form

[
adj(A − λ1)

]
j = Dn− j

sin sπ
n+1

√
n + 1

2
 (s)

= (−1)s+1D j−1

sin sπ
n+1

√
n + 1

2
 (s), (50)

where

 (s) =
√

2

n + 1
sin

sπ

n + 1

⎛

⎜⎜⎜⎝

D0

D1
...

Dn−1

⎞

⎟⎟⎟⎠

=
√

2

n + 1

⎛

⎜⎜⎜⎝

sin sπ
n+1

sin 2sπ
n+1
...

sin nsπ
n+1

⎞

⎟⎟⎟⎠ . (51)

As a result, every column of adj(A − λs1) is parallel to the
eigenvector  (s)

adj(A − λs1) = (−1)s+1

sin2 sπ
n+1

√
n + 1

2

×
(
sin

sπ

n + 1
 (s) sin

2sπ

n + 1
 (s) · · · sin

nsπ

n + 1
 (s)

)
. (52)

Note that for an arbitrary column vector c in Eq. (30), one
can easily check that  (s) is indeed the eigenvector for the
eigenvalue λs in Eq. (44)

adj(A − λ1) c = (−1)s+1

sin2 sπ
n+1

√
n + 1

2

(
n∑

r=1

cr sin
rsπ

n + 1

)
 (s)

= (−1)s+1

sin2 sπ
n+1

n + 1

2

(
 (s) ⊗  (s)†

)
c, (53)

where cr is the r th element of the column vector c and the
symbol⊗ represents the direct product. In conclusion,we can
read off the eigenvector directly from the column (or row) of
the adjugate, that is represented in a simple form in Eqs. (41)
and (50). As a result, we can construct the completeness
relation for any eigenvalue equation

1 =
n∑

s=1

 (s) ⊗  (s)† =
n∑

s=1

as adj(A − λs1). (54)

We can make an educated guess that the coefficient as of
adj(A − λs1) in the summation in Eq. (54) depends on A

and the explicit value as = 2 sin2 sπ
n+1/[(−1)s+1(n + 1)]

represents the nature of the loaded string system.

4 Conclusions

We have considered the normal mode problem of a vibrating
string loaded with n identical beads of equal spacing which
involves the eigenvalue problem (A − λ1) (λ) = 0 given
in Eq. (8). The conventional approach to solving this prob-
lem that can easily be found in most textbooks on classical
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mechanics is to solve the difference equation for the compo-
nents ψ

(λ)
r of the eigenvector  (λ), which is the same as that

for the secular determinant Dn ≡ Det[A − λ1] except that
the boundary conditions are different: ψ

(λ)
0 = ψ

(λ)
n+1 = 0,

while D0 = 1.
Unlike the conventional approach, we have modified the

eigenvalue equation as (A−λ1+α1) (λ) = αc in Eq. (29),
where α eventually vanishes at the end of problem solving
with the constraint equation α = 0. The identity matrix 1

and an arbitrary column vector c multiplied by α behave
as matrix-valued Lagrange undetermined multipliers. While
the matrix A − λ1 for the original eigenvalue equation is
singular, the regularized one A − λ1 + α1 is not. Thus, we
can solve the regularized linear equation for the eigenvector
 (λ) by multiplying the equation by the inverse matrix (A−
λ1 + α1)−1.

The string vibration with the displacement along only a
single axis is non-degenerate. Thus, the regularized secular
determinantDn(λ, α) is a polynomial function of α with the
leading contribution of degree 1 as α → 0. By making use
of this limiting behavior, we have shown that the eigenvector
can be expressed as  (i) = limα→0 Dn(λi , α)(A − λi1 +
α1)−1c in Eq. (37). The matrix in front of c is well defined
even when we take the limit α → 0, while A − λi1 + α1

becomes singular. We have indeed shown that the matrix
limα→0 Dn(λi , α)(A−λi1+α1)−1 is actually the adjugate
adj(A − λi1) of the original matrix in Eq. (38).

Furthermore, we have shown that every column and every
row of the adjugate matrix adj(A − λi1) are parallel to
the eigenvectors  (i) and  (i)†, respectively, which is appar-
ent in Eq. (53). As a result, the completeness relation 1 =∑n

s=1  
(s)⊗ (s)† can be expanded as a linear combination of

the adjugates adj(A−λs1) summed over the eigenvalues λs
as is shown in Eq. (54). Detailed mathematical proofs for the
essential identities used to derive the results listed above are
summarized in the appendices. Our derivation reveals that
the regularization technique for the eigenvalue equation by
employing the matrix-valued Lagrange undetermined multi-
pliers first introduced in Ref. [5] is quite useful in obtaining
every eigenvector of an eigenvalue problem. To our best
knowledge, the approach we have presented for reading off
the eigenvector of any eigenvalue problem from the adjugate
matrix and the remainder such as the factorization formula
in Eq. (39) and the completeness relation in Eq. (54) that
derives from the adjugate formula in Eq. (38) are all new.

While we have restricted ourselves to a special case ψ0 =
ψn+1 = 0 that is consistent with the Dirichlet boundary con-
dition ψ(0) = ψ(L) = 0 in the continuum limit, the method
developed in this paper can, in principle, be applied to any
boundary conditions. One can then consider, for example,
a more general Dirichlet boundary condition that ψ0 and/or
ψn+1 are non-vanishing constants, or even the case analo-
gous to the Neumann boundary condition in which ψ ′(0)

and ψ ′(L) are constants in the continuum limit. Slightly
more complicated situations, such as a loaded string with
a few concentrated masses [7,8], that with a viscous damp-
ing [9], or a hanging stringwith a tipmass [10,11] can also be
considered. Applying our method to more general cases and
comparing the solutions with those in the continuum limit
would be instructive. The application of other boundary con-
ditions requires a corresponding modification of the matrix
A, in particular, the first and the last rows and columns ofA.
Then, one canobtain the corresponding eigenvectors from the
adjugate of the matrixA− λ1 with the modified matrix, but
the complete form of the eigenvectors is expected to depend
on the boundary condition.

More generally, the method developed in this paper can
be applied to any eigenvalue problem involving a tridiago-
nal matrix. As an example, one can consider the eigenvalue
problem of the angular momentum matrix Jx , which is a
tridiagonal matrix, if we choose Jz to be diagonal as usual.
In this case, the first diagonal elements above and below the
main diagonal are not universal, but constant only in the sub-
matrix corresponding to the angular momentum J . We can
make an educated guess that the adjugate expression for the
eigenvectors inEq. (38)will be useful in this eigenvalue prob-
lem and that the complete form of the eigenvectors could be
determined from the adjugate form. We expect this method
to be applicable to other eigenvalue problems having a more
general form of the tridiagonal matrix.
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Appendix A: Evaluation ofDn

In this appendix,we derive the expression forDn ≡ Dn(λ) ≡
Det[A − λ1], where 1 is the n × n identity matrix and the
matrix elements of the n × n square matrixA are defined in
Eq. (3). The first three entries of the secular determinant are

D1 = 2 − λ, (A1)

D2 = Det

(
2 − λ −1
−1 2 − λ

)
= (2 − λ)2 − 1, (A2)

D3 = Det

⎛

⎝
2 − λ −1 0
−1 2 − λ −1
0 −1 2 − λ

⎞

⎠ = (2 − λ)[(2 − λ)2 − 2].

(A3)

We define

Dn = Det

⎛

⎜⎜⎜⎜⎜⎝

2 − λ −1
−1 2 − λ −1

. . .
. . .

. . .

−1 2 − λ −1
−1 2 − λ

⎞

⎟⎟⎟⎟⎟⎠
. (A4)

The secular determinant Dn is a polynomial function in λ of
degree n that is vanishing when λ is an eigenvalue satisfying
the eigenvalue equation in Eq. (8). Thus, the eigenvalue λ

satisfying Dn = 0 is distinguished from the eigenvalue of
Dn′ if n′ �= n. If we leave λ as a free variable instead of a
specific eigenvalue, then we can find the recurrence relation
for the secular determinant Dn = (2 − λ)Dn−1 − Dn−2 by
expanding the determinant in terms of the first row [2,3]. The
recurrence relation constructs a difference equation

Dn + (λ − 2)Dn−1 + Dn−2 = 0. (A5)

We observe that Eq. (A5) is equivalent to the difference equa-
tion [Eq. (10)] for ψ

(λ)
r except for the boundary conditions.

While ψ
(λ)
0 = 0, D0 = 1 which can be determined by sub-

stituting D1 in Eq. (A1) and D2 in Eq. (A2) into the linear
difference equation (A5) for n = 2.

Substituting the trial solution

Dn = d1 e
+inθ + d2 e

−inθ , (A6)

into the difference equation (A5) with the replacement n →
n + 1,

Dn = Dn+1 + Dn−1

2 − λ
, (A7)

we find that

cos θ ≡ 1 − λ

2
. (A8)

The first few entries of the secular determinant Dn can then
be expressed as

D0 = 1, (A9)

D1 = 2 cos θ, (A10)

D2 = 4 cos2 θ − 1, (A11)

D3 = 8 cos3 θ − 4 cos θ. (A12)

By imposing, for example, the first two constraints D0 = 1
and D1 = 2 cos θ , we can determine d1 and d2 as

d1 = e+iθ

2i sin θ
, d2 = − e−iθ

2i sin θ
. (A13)

Substituting these values into Eq. (A6), we find that

Dn = sin[(n + 1)θ ]
sin θ

, cos θ ≡ 1− λ

2
, 0 < λ < 4. (A14)

The result in Eq. (A14) agrees with the known value that
can be found, for example, in Eq. (24.33) of Ref. [2] and in
Eq. (14.57) of Ref. [3]. As was stated earlier in this section,
the secular determinant inEq. (A14) is a degree-n polynomial
ofλ andDn = 0 ifλ is an eigenvalue satisfying the eigenvalue
equation in Eq. (8). However, for k < n, Dk �= 0 if λ is an
eigenvalue for the n-bead loaded string satisfyingDn = 0.As
is shown in Eq. (A14), the eigenvalue λ must be in the range
0 < λ < 4 to have an eigenvector. The parametrization of the
secular determinant in Eq. (A14) states that the parameter θ

is in the range 0 < θ < π , because −1 < cos θ < 1. This is
consistent with the solution for θ given in Eq. (19).

Appendix B: Proof of the factorization for-
mula in Eq. (39)

In this appendix, we prove the factorization formula in
Eq. (39)

[
adj(A − λ1)

]
i j = DMin[i, j]−1Dn−Max[i, j], (B1)

where 1 is the n × n identity matrix, the matrix elements
of the n × n square matrix A are defined in Eq. (3), and
Dk ≡ Det[A[k×k] − λ1[k×k]]. Here, A[k×k] and 1[k×k] are
k×k squarematrices for k ≤ n that are analogous to the n×n
counterpartsA and 1, respectively. As is stated in Appendix
1, the secular determinant Dn is a degree-n polynomial of λ

and Dn = 0 if λ is an eigenvalue satisfying the eigenvalue
equation in Eq. (8). However, for k < n, Dk �= 0 if λ is an
eigenvalue for the n-bead loaded string satisfying Dn = 0.
Thus, the right side of Eq. (B1) does not vanish, whileDn =
0. The adjugate of an n × n square matrix A − λ1 is the
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transpose of the cofactor matrix C

adj[A−λ1]i j =[CT]i j =(−1)i+ j Det[M j i ]=(−1)i+ jM j i .

(B2)

Here, M j i is the (n − 1) × (n − 1) submatrix of A − λ1

that is identical toA−λ1 except that the j th row and the i th
column are removed. M j i ≡ Det[M j i ] is the ( j, i)-minor
of A − λ1.

When i ≥ j , the (n−1)× (n−1) submatrixM j i is given
by

M j i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d −1
−1 d −1

. . .
. . .

. . .

−1 d −1
−1 d −1

−1 d −1

−1 d
. . .

. . .
. . . −1
−1 d

−1 −1
d −1

−1 d −1
. . .

. . .
. . .

−1 d −1
−1 d

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(A − λ1)[( j−1)×( j−1)]
−1
−1 d −1

−1 d
. . .

. . .
. . . −1
−1 d

−1 −1

(A − λ1)[(n−i)×(n−i)]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

where d ≡ 2− λ and the omitted elements of the matrix are
all vanishing. Then, by applying the elementary row opera-
tions of the matrix that preserve the value of the determinant,
we can always transform the submatrix M j i into the upper
triangular form. In that case, the determinant of the matrix
is just the product of the diagonal elements. Hence, we con-
clude that

Det[M j i ] = Det[(A − λ1)[( j−1)×( j−1)]] (−1)i− j

×Det[(A − λ1)[(n−i)×(n−i)]]
= (−1)i− j D j−1Dn−i . (B4)
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When i ≤ j , we perform similar operations and find that

M j i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(A − λ1)[(i−1)×(i−1)]

−1 −1
d −1

−1
. . .

. . .

. . . d −1
−1 d −1

−1
(A − λ1)[(n− j)×(n− j)]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B5)

Then, by applying the elementary column operations of the
matrix, we can always transform the submatrixM j i into the
lower triangular form keeping its determinant unchanged.
Again, the determinant of the matrix is just the product of
the diagonal elements. Hence, we conclude that

Det[M j i ] = (−1) j−i Di−1Dn− j . (B6)

Combining these two results in Eqs. (B4) and (B6) and
imposing these conditions on Eq. (B2), we find that the i j
element of the adjugate is

adj[A − λ1]i j = (−1)i+ j M ji

= (−1)i+ j (−1)|i− j | DMin[i, j]−1Dn−Max[i, j]
= DMin[i, j]−1Dn−Max[i, j]. (B7)

This completes the proof of the factorization formula in
Eq. (39).
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