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Abstract
This paper addresses the dynamics of a position-dependent mass-driven Duffing-type oscillator (PDM oscillator) subjected 
to periodic excitation. The approximate equation of the PDM oscillator is considered to analyze the harmonic oscillations 
and the possible resonance states. The Amplitudes and frequencies of possible resonances are found by using the harmonic 
balance method and the multiple scales method. The harmonic resonance, primary resonance, order 3, 5 superharmonic 
resonances and order 3, 5 subharmonic resonances are obtained. The stability conditions for each of these resonances have 
also been obtained. Chaotic oscillations, multistability, hysteresis, and coexisting attractors have been found using the bifur-
cation diagram, the Lyapunov exponents, the phase portraits, and the basin of attraction. The effects of the PDM parameter 
� and of the external excitation have been analyzed. Results obtained by using the approximate equation of the system have 
been compared to the dynamics obtained with the exact equation of the PDM oscillator. The analytical investigations have 
been complemented and validated using the numerical simulations.

Keywords Position dependent mass oscillator · Resonances · Hysteresis · Coexistence of attractors · Basin of attraction

1 Introduction

In nature, many phenomena are based on nonlinearities. A 
good knowledge of the laws of nonlinear sciences makes 
understanding and master of these nonlinear phenomena 

possible. For this, several researchers have invested the 
fields such as mathematics, physics, chemistry, finance, 
epidemiology, aeronautics, engineering, etc. where these 
nonlinear sciences are applied. A position-dependent mass-
driven Duffing-type oscillator (PDM oscillator) is one of 
these nonlinear systems. For example, the PDM oscillator is 
used to understand the problems of compositionally graded 
crystals, quantum dots, quantum liquids, metal clusters, etc. 
[1–5]. Precisely, quantum-mechanics systems in which the 
mass (effective) depends on position have received much 
attention from researchers [6, 7]. The rapid development 
denote the research carried out on classic problems having 
a PDM oscillator strongly justifies the interest in PDM oscil-
lators [8–17]. As an example, several authors have worked 
on the simplest case of a classical PDM oscillator [14, 16, 
17]. Recently, Bagchi et al. [6] studied the PDM oscillator 
whose dynamics were governed by a Duffing oscillator. In 
their work, they showed that a PDM driven by a Duffing 
oscillator offered an interesting possibility to analyse the 
bifurcations, chaos, and regular behaviors of the dynamic 
system. More recently, in 2020, Roy-Layinde et al. [18] stud-
ied the vibrational resonance (VR) of the PDM oscillator 
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using a modulated amplitude force. Through an analytical 
study and numerical simulations, these authors determined 
the conditions for appearance of the VR in the PDM oscilla-
tor. In practice, during the movement following the addition 
or removal of particlei the mass changes as a function of 
time, position or speed or even as a function of the posi-
tion and the time at that time. In general, variable mass sys-
tems are frequently encountered in oceanography, captive 
satellite dynamics, civil engineering, meteorites, offshore 
and aerology. Also, they are present in condensed matter 
systems like heterogeneous semiconductor structures and 
the inverted potential structure of the ammonia molecule, 
in particle accretion systems like raindrops, as well as early 
solar system (the accretion of planets and asteroids) [18]. 
Thus, from the existing PDM oscillator, the model using 
Duffing’s equation is clearly much more relevant to the rich-
ness and complexity of the PDM oscillator's movement than 
the classical models that exist [6, 18].

From these various previous works, we note that the PDM 
oscillator modeled by using a Duffing oscillator is a very 
complex system and can be the seat of many phenomena. 
We can cite, for example, phenomena such as amplitude 
jump, hysteresis, nonlinear resonances, chaos, coexistence 
of attractors, multistability etc. [19–27]. The study of reso-
nance states is very important capital because the ampli-
tude of the vibrations is maximum at the resonance and the 
energy is proportional to the square of the amplitude of the 
vibrations [28, 29]. For example, in engineering, anti-res-
onance systems can be used to store energy with a sudden 
increase in amplitude at resonance causing a sudden increase 
in energy and damage the mechanical system. Therefore, 
clearly nonlinear resonances for the PDM oscillator are very 
interesting. Today, nonlinear vibration techniques are mostly 
based on the upper harmonics and the sideband modulation 
method while approaches to detect nonlinear damage based 
on nonlinear resonances require even more investigation. For 
this, knowledge of the relationship between the amplitude of 
the oscillations and the parameters of the PDM oscillator is 
essential for a good choice of the frequency and the ampli-
tude of the excitation force to cause a nonlinear resonance 
effect [30–32].

Finally, multistability is one of the complex phenomena 
encountered in nonlinear systems. Thus, the dynamics of 
systems exhibiting this phenomenon of multistability are 
difficult to analyze. Indeed, for the same value of a param-
eter of the system for which multistabilization appears, the 
system is in several states or at several vibration amplitudes, 
thus making the system difficult to control. On the other 
hand, bistability reflects the coexistence of two attractors, 
while megastability designates the coexistence of an infinite 
number of attractors for the same system [19–21, 33–41]. 
Several researchers have competed to predict and control 
multistability due to the complexity of multistable systems. 

This explains the many works published over the last decade 
on this rather interesting subject [19–21, 33–41]. For exam-
ple, in these different works, several techniques are used by 
the authors to research, analyze and control the coexistence 
of attractors and very conclusive results are obtained. As 
applications, these authors have shown that a great flexibility 
of the performances of the system is made feasible by the 
coexistence of different stable states without major changes 
of parameters.

Our aim in the present work is specifically the study of 
the harmonics, primary, superharmonic and subharmonic 
resonances, hysteresis and multistability for the dynamics 
of the PDM driven by a Duffing oscillator under a periodic 
excitation. Indeed, the objective of this paper is to deepen 
and complete the understanding the work [6] in which a the 
transition to chaos is studied, and the work [17] devoted to 
the modeling of the dynamics of systems by using the Duff-
ing equation. Thus, the classical PDM system considered 
here, can be quantified to better understand the individual 
contribution of each element at the atomic level, and at the 
quantum levels the energy is a very important parameter 
for controlling the state of the system. Also, the amplitudes 
of the vibration of the classical system need to be known 
because the energy of a system is closely related to the 
amplitude of vibration of a classical system. Therefore, in 
this sense, we have found the amplitudes of the harmonic 
and resonance oscillations of the PDM oscillator. Another 
very important point of this work is the study of multista-
bility. The study of this phenomenon will allow us to know 
whether for the same value of each of the parameters of the 
PDM oscillator, can be in several states at the same time, 
which will affect the dynamic performance of the PDM. To 
achieve our goal, we concentrate our studies on the reso-
nance, chaotic oscillations and coexistence of attractors in 
this PDM oscillator. Due to the high nonlinearity of the 
problem, we used the approximate PDM oscillator equation 
and the methods of harmonic balance and of multiple scales 
to study the possible resonances. Through these studies, we 
found the effects of the PDM oscillator's parameter and the 
external excitation force on the nonlinear dynamics of the 
PDM system.

The paper is structured as follows: Section 2 gives the 
mathematical modeling of a PDM oscillator while Sect. 3 
analyzes the harmonic vibrations. In Sect. 4, we determine 
the primary resonance while the possible superharmonic and 
subharmonic resonances obtained by using the method of 
multiple scales are studied in Sect. 5. Section 6 deals with 
bifurcation, route to chaos, bistability, coexisting attractors, 
and hysteresis. Finally, Sect. 7 is devoted to the conclusion.
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2  Mathematical model 
of a position‑dependent mass‑driven 
Duffing‑type oscillator

We consider in this work a position-dependent mass-driven 
Duffing-type oscillator whose equation is [6, 17]

where

with � being the linear parameter of viscous damping, � the 
nonlinear Duffing coefficient of stiffness, � the PDM oscil-
lator's parameter and f cos�t the external periodic force. 
When the expression for m in Eq. (1) is inserted, the equa-
tion of the PDM oscillator becomes

Equation (2) is the classical equation of a Duffing oscilla-
tor with forced damping when the mass is constant, i.e. for 
� = 0 . In order to facilitate the calculations in the search 
for the resonance states for system, we will consider the 
approximate equation of the PDM oscillator. Using Taylor’s 
formula and taking �2

0
= 1 , we can rewrite the dynamic 

equation of the system as

with � = � +
1

2
� , � =

��

2
 ; � =

1

2
�� ; � =

1

2
� and � = �2.

3  Harmonic oscillations analysis

In this section, we study the harmonic oscillations of the 
system. For this, when the fundamental component of the 
solution and the external excitation have the same frequency, 
the amplitude of harmonic oscillations can be found using 
the harmonic balance method. Thus, we express its solutions 
as [42, 43]

where A represents the amplitude of the oscillations and � 
is a constant, with |𝜓| ≪ |A| . Under this condition, inserting 
Eq. (4) in Eq. (3) and after some algebraic manipulations, we 
obtain the amplitudes of harmonic oscillations which obey 
the following equation

(1)m(x)ẍ + m�(x)ẋ2 + 𝛼ẋ + 𝜔2

0
x + 𝛽x3 = f cos𝜔t,

m(x) =
1

√
1 + �x2

, m�(x) =
dm(x)

dx
,

(2)
ẍ +

√
1 + 𝜉x2

�
𝜔2

0
x + 𝛽x3

�
+ 𝛼ẋ

√
1 + 𝜉x2

−
𝜉xẋ2

1 + 𝜉x2
= f

√
1 + 𝜉x2 cos𝜔t.

(3)
ẍ + x + 𝛼ẋ + 𝜇x2ẋ − 𝜉xẋ2 + 𝜅x3ẋ2 + 𝛾x3

+ 𝜆x5 = (1 + 𝜂x2)f cos𝜔t,

(4)x = A cos(�t + �) + � ,

with

We now analyze the behaviors of the amplitude A of the 
oscillations of the system as a function of the excitation fre-
quency � , the amplitude f of the external excitation, and the 
parameter � ensuring the dependence on the mass's position. 
The different results obtained are shown in Figs. 1, 2, 3. Fig-
ure 1 shows a comparison between the analytical and numer-
ical results where the black curve is the resonance curve 
obtained using Eqs. (5) and (6), the blue curve is obtained 
using the normal model (Eq. (2)) and the red denotes the 
numerical results obtained from the approximate model 
(Eq. (3)). The numerical solutions are obtained by solv-
ing Eq. (2) (for exact model) and Eq. (3) (for approximate 
model). To this end, we used the fourth-order Runge–Kutta 
integration algorithm. We notice through these three curves 
a good agreement between the three results thus validating 
the approximate model and the analytical result obtained. 
Moreover, the analysis of the resonance curve obtained 
reveals that the resonance is nonlinear and that the system 
exhibits stable and unstable oscillations amplitudes. Fig-
ure 2 represents the effects of the parameters f and � on the 
obtained resonance curve. We note that the resonance ampli-
tude and the resonance frequency increase with f and � and 
this leads to amplitude jump phenomenon. Finally, Fig. 3 
shows the evolution of the amplitude A of the oscillations as 
a function of � (Fig. 3a) and of the amplitude of the external 

(5)

(
1 − �2 −

1

4
�A2�2 +

1

8
��2A4 +

3

4
�A2 +

5

8
�A4

)2

A2

+

(
� +

1

4
�A2

)2

�2A2 = f 2
(
1 +

3

4
�A2

)2

,

(6)�2 =
�Af −

3

2
�A2 −

15

8
�A4 − 1

3

8
�A4 −

1

2
�A2

.

Fig. 1  Comparison between the analytical and the numerical fre-
quency-response curves A(�) with � = 0.07, � = 1, � = 0.5, and 
f = 0.07
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force (Fig. 3b). From the analysis of these figures, we note 
that the hysteresis and the amplitude jump phenomena are 
confirmed and can be controlled and if possible eliminated 
by the parameters f and � . The presence of the phenomenon 
of hysteresis in the behavior of the amplitude of the oscilla-
tions when � ≠ 0 , shows that the dependence of the mass as 
a function of position is a factor favoring the memory effect 
of the oscillator.

4  Primary resonance

In the case of primary resonant state, the amplitude f of the 
external excitation is small, that is f = �f0 . The closeness 
between both natural and external frequencies is given by 
� = 1 + �� , where � is the detuning parameter. To inves-
tigate the resonance states, we use the multiple time scale 
method [42, 43]. Generally, for analytical investigations, the 
multiple scales method is used because many types of oscil-
lations can be found in a forced system in addition to har-
monic oscillatory states. Such oscillations occur when the 

external frequency is too close or too far from the internal 
frequency, also depending on the external excitation force. 
Thus, the best tool to use for their investigation is the method 
of multiple timescales because these oscillations rise at dif-
ferent timescales. For this, we pertube Eq. (3) and we reunite 
its as:

where

The approximate solution is generally sought as follows:

The first and second times derivatives are defined as follow:

(7)
ẍ + x + 𝜖𝛼0ẋ + 𝜖𝜇0x

2ẋ − 𝜖𝜉0xẋ
2 + 𝜖𝜅0x

3ẋ2 + 𝜖𝛾0x
3

+ 𝜖𝜆0x
5 = (1 + 𝜖𝜂0x

2)𝜖f0 cos𝜔t,

� =��0,� = ��0, � = ��0, � = ��0,

� =��0, � = ��0, � = ��0.

(8)x(�, t) = x0(T0, T1) + �x1(T0, T1) +⋯

Fig. 2  Effect of the parameters of system on frequency-response 
curves A(�) with � = 0.07, � = 1 : a effect of f0 for � = 0.5 and b 
effect of � for f0 = 0.07

Fig. 3  Effects of the parameters of system on the amplitude-response 
curves with � = 0.07, � = 1,� = 1.25 : a A(�) for f0 = 0.07 and b 
A(f0) for � = 0.5
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where Dm
n
=

�m

�Tm
n

 and Tn = �nt.

Inserting Eqs. (8)—(10) into Eq. (7), we obtain the fol-
low primary resonance amplitude equation (see details in 
Appendix A)

The stable vibration amplitudes are obtained by applying 
the Routh–Hurwitz criterion [44, 45] to the following char-
acteristic equation

where � is the eigenvalue of the Jacobian matrix of the lin-
earized system; T = −

1

2
(J11 + J22) and D = J11J22 − J21J12 . 

For the equilibrium point (a0,�0) to be stable, the 
Routh–Hurwitz conditions [44, 45] are reduced to the 
inequalities T > 0 and D > 0 . From Eq. (11), the vibration 
amplitude of the system is studied as a function of the fre-
quency and the results obtained are plotted in Fig. 4. From 
this figure, we note the effects of f (Fig. 4a) and of � (Fig. 4b) 
on the primary resonance curve. From the analysis of these 
figures, it appears that increasing the amplitude f of the 
external force increases the amplitude of the resonance and 
decreases the resonance frequency while the opposite effects 
are obtained when the parameter � increases. We also notice 
the same effects of these parameters on the amplitude jump 
phenomenon and the domain of unstable vibration ampli-
tudes. In short, the parameter � disadvantages these differ-
ent phenomena while the amplitude of external excitation f 
favors them.

5  Secondary resonances

The objective of this part of the work is to search superhar-
monic and subharmonic resonances. Indeed, superharmonic 
and subharmonic resonances appear for a nonlinear oscilla-
tor when the natural frequency �0 of this oscillator is a mul-
tiple or a submultiple of the frequency � of the forcing exci-
tation respectively. In other words, there is superharmonic 
resonance if n� is close to the natural frequency of the oscil-
lator and conversely, there is subharmonic resonance if � is 

(9)
d

dt
=D0 + �D1 +⋯ ,

(10)d
2

dt2
=D2

0
+ 2�D1D0 +⋯ ,

(11)

� =
1

8

(
�0 − 3�0

)
a2 −

10

32
a4

±

√
f 2
0

4a2
−

(
1

2
�0 +

1

8
�0a

2 +
1

16
�0a

4

)2

.

(12)�2 + 2T� + D = 0,

close to n�0 with n a natural integer. In all the work, �0 = 1 . 
In this part, we consider that f is in the order of �0f  . Then,

By inserting Eqs. (8)–(10) in Eq. (13) we have at:
�0

and
�1

The solution of Eq. (14) is

(13)
ẍ + x + 𝜖𝛼0ẋ + 𝜖𝜇0x

2ẋ − 𝜖𝜉0xẋ
2 + 𝜖𝜅0x

3ẋ2

+ 𝜖𝛾0x
3 + 𝜖𝜆0x

5 = (1 + 𝜖𝜂0x
2)f cos𝜔t.

(14)D2

0
x0 + x0 = f cos�t,

(15)

D2

0
x1 + x1

= −2D1D0x0 − �0D0x0 − �0x
2

0
D0x0 + �0x0(D0x0)

2

− �0x
3

0
(D0x0)

2 − �2
0
x3
0
− �0x

5

0
+ �0fx

2

0
cos�t.

(16)x0 = AejT0 + Bej�T0 + cc,

Fig. 4  Effect of the parameters of system on frequency-response 
curves in primary resonance state with � = 0.07, � = 1 : a effect of f0 
for � = 0.5 and b effect of � for f0 = 0.07
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where B =
f

2(1−�2)
 , with � ≠ 1.

Equation (16) in Eq. (15) gives,

From the analysis of (17), it emerges that the oscillator has 
the possibility of entering into four secondary resonances 
including two superharmonics 3� = 1 + �� ; 5� = 1 + �� 
and two subharmonics � = 3 + �� ; � = 5 + ��.

5.1  5th order superharmonic resonance

The 5th order superharmonic resonance occurs in the sys-
tem, when 5� = 1 + �� . Under this condition, the vibration 
amplitudes for the 5th order superharmonic resonance verify 
(see Appendix B):

The stable vibration amplitudes are obtained by applying 
the Routh–Hurwitz criterion [44, 45] to the following char-
acteristic equation

with � is the eigenvalue of the Jacobian matrix of the linearized 
system; T1 = −

1

2
(M11 +M22) and D1 = M11M22 −M21M12 . 

By applying the Routh–Hurwitz criterion [44, 45], the ampli-
tudes are stable if and only if T1 > 0 and D1 > 0.

Figure 5 shows the effects of the amplitude of the external 
excitation (see Fig. 5a) and of the parameter � (see Fig. 5b) 

(17)

D2

0
x1 + x1 =

[
−2jA� − 𝛼0jA − 𝜇0(jA

2Ā + 2jAB2)+

+ 𝜁0

(
A2Ā + 2𝜔2AB2

)
− 𝜅0

(
2A3Ā2 + 6A2ĀB2

+6𝜔2A2ĀB2 + 6𝜔2AB4
)
− 𝛾0

(
3A2Ā + 6AB2

)

−𝜆0
(
10A3Ā2 + 50A2ĀB2 + 30AB4

)
+ 𝜂0fAB

]
ejT0

+

[
−j𝜔𝜇0B

3 − 𝜁0𝜔
2B3 − 𝛾0B

3 +
1

2
𝜂0fB

2 − 𝜅0

(
2AĀB3

−6𝜔2AĀB3 − 𝜔2B5
)
+ 𝜆0

(
20AĀB3 + 5B5

)]
e3j𝜔T0

+
[
+j𝜇0Ā

2B + 𝜁0

(
2𝜔Ā2B − Ā2B

)

− 𝜅0

(
4AĀ3B + 6𝜔Ā2B3 + 6AĀ3B + 3𝜔2Ā2B3

)

− 3𝛾0Ā
2B − 𝜆0

(
20AĀ3B + 30Ā2B3

)

+
1

2
𝜂0f Ā

2

]
ej(𝜔−2) + +

[
−𝜅0

(
2𝜔Ā4B − 3Ā4B

)

−5𝜆0Ā
4B

]
ej(𝜔−4) +

(
𝜅0𝜔

2 − 𝜆0

)
B5e5j𝜔T0

+ c.c. + NST.

(18)

� = − �0

(
1

8
a2 + �2B2

)
+ �0

(
3

8
a2 + 3B2

)

+ �0

(
1

16
a4 +

3

4
a2B2 +

3

4
�2a2B2 + 3�2B4

)

+ �0

(
5

16
a4 −

25

4
a2B2 + 15B4

)
−

1

2
�0fB

±

√
(
�0�

2 − �0

)2B10

a2
−

[
1

2
�0 + �0

(
1

8
a2 + B2

)]2
.

(19)�2 + 2T1� + D1 = 0,

on the superharmonic resonance of order 5 whose equation 
is (18). From Fig. 5a, b, we note that the resonance ampli-
tude and the resonance frequency increase with the param-
eters f and �.

5.2  3rd order superharmonic resonance

The PDM enters superharmonic resonance of order 3 if and 
only if 3� = 1 + �� . Under this condition the equation giv-
ing the behavior of the vibration amplitudes at this resonance 
is (see Appendix B):

(20)

� = − �0

(
1

8
a2 + �2B2

)

+ �0

(
1

16
a4 +

3

4
a2B2 + 3�2aB4

)
+ �0

(
3

8
a2 + 3aB2

)

+ �0

(
5

16
a4 −

25

4
a3B2 + 15aB4

)
−

1

2
�0fBa

+ ±
1

a

√
�2

0
�2B6 + Qs,

Fig. 5  Effect of the parameters of system on frequency-response 
curves in order 5 superharmonic resonance with � = 0.07, � = 1 : a 
effect of f for � = 0.5 and b effect of � for f = 1.5
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with

The characteristic equation giving the stable amplitudes is

with � is the eigenvalue of the Jacobian matrix of the line-
arized system; T2 = −

1

2
(N11 + N22) et N2 = N11N22 − N21N12 . 

By virtue of the Routh–Hurwitz criterion [44, 45], the 
amplitudes of the oscillations at the third-order superhar-
monic resonance are stable if and only if T2 > 0 and D2 > 0.

Equation (20) represents the relation which gives the 
amplitude of the vibrations of the system at order 3 super-
harmonic resonance in function of the frequency as well as 
all of the oscillator parameters. The evolution of this ampli-
tude as a function of the frequency, of f and of � is plotted 
in Fig. 6a, b respectively. Note that f and � also increase 
the amplitude and the resonance frequency as well as the 
domain of unstable amplitudes.

5.3  5th order subharmonic resonance

Here, � = 5 + �� . With this condition the evolution of the 
vibration amplitudes as a function of the parameters of the 
system is given by (see Appendix C):

The stable and unstable amplitudes are obtained from the 
following characteristic equation:

with � is the eigenvalue of the Jacobian matrix 
of the linearized system; T3 = −

1

2
(P11 + P22) and 

D3 = P11P22 − P12P21. The oscillations are stable if and only 
if T3 > 0 and D3 > 0.

Figure 7 shows the effects of the parameters f (Fig. 7a) 
and � (Fig.  7b) on order 5 subharmonic resonance. It 
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.

(21)�2 + 2T2� + D2 = 0,
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)
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3

4
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)

+ 5�0
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×
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1
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B2a6 −

[
1
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(
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)]2
.

(23)�2 + 2T3� + D3 = 0,

emerges from the analysis of this figure that order 5 sub-
harmonic resonance increases with the increase of f or of �.

5.4  3rd order subharmonic resonance

This resonance takes place when � = 3 + �� . Under this 
condition, when we cancel the secular terms, we obtain after 
simplification (see details in Appendix C):

where

(24)

� = − 3�0

(
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−
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�0fB + ±
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a

√
1

16
�2

0
a4B2 + Qr,

Fig. 6  Effect of the parameters of system on frequency-response 
curves in order 3 superharmonic resonance with � = 0.07, � = 1 : a 
effect of f for � = 0.5 and b effect of � for f = 0.4
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The stable vibration amplitudes are obtained by applying 
the Routh–Hurwitz criterion [44, 45] to the following char-
acteristic equation

with � is the eigenvalue of the Jacobian matrix 
of the linearized system; T4 = −

1

2
(Q11 + Q22) and 

D4 = (Q11Q22 − Q12Q21).

The amplitudes of oscillations for order 3 subharmonic 
resonance are stable if and only if T4 > 0 and D4 > 0.

Equation  (24) represents the relation which gives 
the amplitude of the vibrations of the system at order 3 

Qr =

[
�0

(
1

2
�a2B −

1

4
a2B

)

− �0

(
1

4
a4B +

3

2
�a2B3 +

3

8
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3

4
�2a2B3
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−�0

(
5

4
a4B +

15

2
a2B3

)
−

3

4
�0a

2B +
1

8
�0fa

2
]2

−

[
−
1

2
�0a − �0

(
1

8
a3 + aB2

)]2
.

(25)�2 + 2T4� + D4 = 0,

subharmonic resonance in function of the frequency as 
well as all of the oscillator parameters. The evolution of 
this amplitude as a function of the frequency, of f and of 
� is plotted in Fig. 8a, b respectively. We note that f and � 
also have the same effects as in the case of subharmonic 
resonance of order 5.

6  Dynamic analysis of a position dependent 
mass‑driven Duffing‑type oscillator

Coexisting attractors, hysteresis and chaos have been stud-
ied in different biological, physical and non-physical sys-
tems by using numerical methods [19–23]. Because of their 
complexity, a position dependent mass-driven Duffing-type 
oscillator is potential system that can exhibit these com-
plicated behaviors and that’s why this section is dedicated 
to bifurcation, route to chaos and coexistence of attractors. 
Indeed, using the fourth order Runge–Kutta integration algo-
rithm, we solve numerically Eq. (26) of a position dependent 

Fig. 7  Effect of the parameters of system on frequency-response 
curves in order 5 subharmonic resonance with � = 0.07, � = 1 : a 
effect of f for � = 0.5 and b effect of � for f = 10.5

Fig. 8  Effect of the parameters of system on frequency-response 
curves in order 3 subharmonic resonance with � = 0.07, � = 1 : a 
effect of f for � = 0.5 and b effect of � for f = 2
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mass oscillator and bifurcation diagrams, Lyapunov expo-
nents, phase portraits and basin of attraction are plotted with 
the initial condition (x = 3, ẋ = y = −1) . Equation (26) is

First, we looked for the dynamics of the oscillator stud-
ied at the primary resonance and at the other resonances 
by using the base values [6] of the parameters with the 
amplitude f of the external excitation as the parameter of 
bifurcation. Thus, for f ∈ [0, 30] , the dynamics of a posi-
tion dependent mass-driven Duffing-type oscillator is very 
rich and can be regular or chaotic (see Fig. 9). Indeed, 
for � = 0.2, � = 1, � = 0.5,�0 = 1 and � = 1 , the oscilla-
tor has a regular behavior of period 1T if 0 ≤ f < 5.34763 
then go to period 3T if 5.34763 ≤ f < 12.4482 ; then the 
behavior of the oscillator becomes of period 2T when 
12.4482 ≤ f < 13.2618 . Beyond f = 13.2618 , the oscillator 
has a dynamic of period 4T, multiperiodic then becomes cha-
otic when 17.5148 ≤ f < 19.142 crossing a very small area 
on which it is almost periodic. When 19.142 ≤ f < 21.0651 , 
the behavior of the oscillator is multi-periodic and then 
becomes chaotic if 21.0651 ≤ 21.5089 , quasi-periodic if 
21.5089 ≤ 21.6938 , chaotic when 21.6938 ≤ f < 22.3225 , 
multi-periodic for 22.3225 ≤ f < 22.6553 , chaotic if 
22.6553 ≤ f < 24.3565 and finally regular of period 5T 
when f ≥ 24.3565 . Finally, to characterize the coexistence 

(26)

dx

dt
=y,

dy

dt
=
√
1 + �x2(−�2

0
x − �x3 − �y) +

�xy2

1 + �x2

+ f
√
1 + �x2 cos�t.

of attractors in the system we use the method presented in 
[34–41]. Thus, we compare the two bifurcation diagrams 
and their corresponding Lyapunov exponents obtained by 
increasing f from 0 to 30 (curve in blue) with the bifurcation 
diagram and the Lyapunov exponent obtained by decreas-
ing f from 30 to 0 (red curve). We note through Fig. 9 we 
can see that for � = 0.2, � = 1, � = 0.5 a position dependent 
mass-driven Duffing-type oscillator does not suffer from the 
phenomenon of coexistence of attractors because the ampli-
tudes of the oscillations and the nature of the dynamics are 
the same in each of the fields of study. We note through our 
study that the oscillator has regular behaviors of period 1T 
and 4T in the case of the subharmonic resonance of order 
5 and has only periodic behavior of period 1T in the case 
of subharmonic resonance of order 3 which figures are not 
present here. We also notice that in these states of resonance 
and in the conditions of values of the parameters defined 
here the system does not undergo the phenomenon of the 
coexistence of attractors. It appears that the dynamics of a 
position dependent mass-driven Duffing-type oscillator is 
very rich in its state of primary resonance than in the cases 
of subharmonic resonances and superharmonic resonances 
whose diagrams are not shown here because of the similarity 
they have with the resonance diagrams subharmonic. Sec-
ondly, we studied the position dependent mass-driven Duff-
ing-type oscillator by fixing all other parameters and varying 
the PDM parameter � from 0 to 5. Thus, Fig. 10 obtained for 
� = 0.2, � = 1,�0 = 0.5,� = 1 and f = 8.5 represents the 
bifurcation diagram (Fig. 10a) and its Lyapunov exponents 
(Fig. 10b) when � increases from 0 to 5 (blue curve) and 
when � decreases of 5 to 0 (red curve). We notice that when 

Fig. 9  Bifurcation diagram 
and corresponding Lyapunov 
exponent vs the amplitude f 
in primary resonant state with 
� = 0.2, � = 1, � = 0.5,�0 = 1 
and � = 1 . Bifurcation diagrams 
and their corresponding Lya-
punov exponents are obtained 
by scanning the parameter f 
upwards (blue) and downwards 
(red)
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f = 8.5 (Fig. 10) or f = 12.6 (Fig. 11), the coexistence of 
attractors appear for the PDM oscillator. In fact, we observe 
through Figs. 10 and 11 only when the PDM parameter � 
varies from 0 to 5, and from then from 5 to 0 the oscilla-
tions of the PDM oscillator do not follow the same path on 
both sides because do not have by the same amplitudes and 
do not have the same natures. This remark justifies that the 
PDM oscillator undergoes a phenomenon of multistability. 
More precisely, there appear areas in which multi-period 
attractors coexist, domains in which chaotic attractors coex-
ist and domains for which multi-periodic attractors coexist. 

It appears that in these different domains where this complex 
phenomenon occur, it would be very difficult to say with 
certainty the nature of the behaviors and also the amplitude 
of vibration of this oscillator thus justifying the complexity 
of the PDM system and the great sensitivity to the initial 
conditions of the latter. To illustrate this sensitivity to the 
initial conditions and the coexistence of various attractors, 
we have drawn the basin of attraction (Fig. 12) and the phase 
portraits (Figs. 13 and 14). Figure 12 shows that all initial 
conditions (x0, y0) chosen in the blue domain give a chaotic 
dynamic while in the white part we get a regular behavior. 

Fig. 10  Bifurcation diagram 
and corresponding Lya-
punov exponent vs � with 
� = 0.2, � = 1,�0 = 0.5,� = 1 
and f = 8.5 . Bifurcation 
diagrams and their correspond-
ing Lyapunov exponents are 
obtained by scanning the 
parameter � upwards (blue) and 
downwards (red)

Fig. 11  Bifurcation diagram 
and corresponding Lyapunov 
exponent vs � with parameters 
of Fig. 10 and f = 12.6 . Bifur-
cation diagrams and their cor-
responding Lyapunov exponents 
are obtained by scanning the 
parameter � upwards (blue) and 
downwards (red)
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This is confirmed by the phase portraits of Fig. 13 where the 
phase portrait in blue color obtained for (x0 = 3, y0 = −1) is 
chaotic while the phase portrait in red color corresponding 
(x0 = 0.5, y0 = 0.5) is periodic. Finally, Fig. 14 shows the 
coexistence of the variousattractors predicted by the bifur-
cation diagram and the Lyapunov exponent of Fig. 11 with 
appropriate values of the PDM parameter �.

7  Conclusions

In this work, it was studied the complex nonlinear dynamics 
of a position dependent mass-driven Duffing-type oscillator 
(PDM oscillator). Initially, we considered the approximate 
equation of the PDM oscillator to find its harmonic oscil-
lations by the harmonic balance method then its states of 
primary, superharmonic and subharmonic resonances by 
the multiple scale method. It is obtained domains of sta-
ble and unstable amplitudes, amplitude jump and hysteresis 
phenomena which strongly depend on the PDM parameter 
� , the amplitude and the frequency of the external excitation 
force. A comparison of the analytical results resulting from 
the treatment of the approximate equation was made with the 
numerical results using the approximate and exact equations 
of the PDM oscillator. From this comparison, it emerges 
that these different results are in very good agreement thus 
validating the approximate model and the techniques used. 
Secondly, we used the bifurcation diagram, the Lyapunov 
exponents, the basin of attraction and the phase portraits 
to explore the different dynamics of the PDM oscillator. It 
emerges from these studies that the PDM oscillator has a 
very rich dynamic for �, � fixed and f , � variables in the 
case of primary resonance and has only regular behaviors 
in the case of secondary resonances. Thus in its primary 

resonance state, the PDM system can have periodic, multi-
periodic, quasi-periodic and chaotic behaviors. Moreover, 
the analysis of the coexistence of attractors reveals that when 
� is fixed and that f is the bifurcation parameter the PDM 
oscillator does not follow any of this complex phenomenon. 
On the other hand, for outside of its resonance states, when 
the PDM parameter is varied in precise domains, it occurs 
for well-fixed values of the amplitude of the excitation force, 
the phenomenon of coexistence of various attractors for the 
system studied. These different results prove that the most 
important parameters to predict and control the different 
dynamics and complex phenomena of the PDM oscillator 
are the external excitation force and the PDM parameter � . It 
results from it a complexity of the dynamics of the oscillator 
due to the internal influence between f and � . The essential 
distinction between the constant mass and the variable mass 
case rests in the fact that the presence of the parameter � not 
only enhances the rapidity of such transitions but also initi-
ates complicated nature of dynamics of the system. Finally, 

Fig. 12  Basin of attraction of a position dependent mass-driven Duff-
ing-type oscillator with � = 0.25 and other parameters of Fig. 10. The 
values of the initial conditions selected in blue regions lead to chaotic 
behavior while the white regions correspond, to periodic behavior

Fig. 13  Coexistence of chaotic attractor and periodic attractor of a 
position dependent mass-driven Duffing-type oscillator with parame-
ters of Fig. 10 and � = 0.25 : a Chaotic attractor (blue color) for initial 
condition (3,−1) and periodic attractor (red color) for initial condi-
tion, b (0.5, 0.5)
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the coexistence of attractors in the PDM can help reduce its 
performance. It is for this reason that we consider control-
ling this complex phenomenon in our future work on PDM. 
Also,the appearance of horseshoes chaos is major them in 

nonlinear sciences researches. It is thus important to analyse 
the horseshoes chaos and its control in PDM system and 
evaluate the effect of the PDM coefficient in appearance or 
disappearance of this chaos in our future work on PDM.

Appendix A : Primary resonance

Inserting Eqs. (8)–(10) into Eq. (7), and after some algebraic 
manipulations, we obtain at: �0

and
�1

The general solution of Eq. (27), is:

where “cc” designate the conjugate complex themes. Insert-
ing Eq. (29) into Eq. (28), we have:

where NST denotes the terms does not produce secular 
terms. Now, we introduce the amplitude A(T1) given by the 
following polar form:

and eliminate the secular themes of Eq. (30). Separating real 
and imaginary parts, we obtain the following modulation 
equations:

with � = �T1 − � . By looking for the equilibrium state solu-
tions, we obtain after some algebraic manipulations Eq. (11).

Now, we analyze the stability of the non-trivial fixed 
points of the modulation equations (32) and (33). For this 
end, we let:

(27)D2

0
x0 + x0 = 0
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0
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2
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(31)A(T1) =
1

2
a(T1)e

j�(T1),

(32)D1a = −
1

2
�0a −

1

8
�0a

3 −
1

16
�0a

5 +
f0

2
sin�,

(33)aD1� = −
1

8
�0a

3 +
3

8
�0a

3 +
10

32
�0a

5 −
f0

2
cos�,

Fig. 14  Various phase spaces of a position dependent mass-driven 
Duffing-type oscillator with parameters of Fig. 11 for: a � = 0.4 and 
initial conditions, blue color (3,−1) and red color (0,  0) showing 
coexisting of two 3T−periodic attractors; b � = 1.1 and initial condi-
tions, blue color (3,−1) and red color (4,  3) showing coexisting of 
two chaotic attractors; c � = 2.7 and initial conditions, blue color 
(3,−1) (chaotic attractor) and red color (4, 3) (multi-periodic attrac-
tor)



767Resonance, chaos and coexistence of attractors in a position dependent mass‑driven Duffing‑type…

Vol.:(0123456789)1 3

where a0 and �0 are the non-trivial solutions of stable equi-
librium states and a1 and �1 are infinitesimal perturbations. 
Substituting (34) into (32) and (33), and then canceling non-
linear terms enables us to obtain:

with

We obtain the following characteristic equation (12).

Appendix B: Superharmonic resonances

So by using the condition 5� = 1 + �� and by canceling 
the resonant terms in this case for (17), we find after some 
transformations

and

with � = �T1 − � . Taking the stable equilibrium solutions 
and after simplification, the equation verified by the reso-
nance amplitude of order 5 is given by Eq. (18). The phase 
� for the superharmonic resonance of order 5 is given by
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with

and

Let us now study the stability of the solutions. So, using 
the solution (34) and taking the linear form of (41) and (42) 
around (a0,�0) , we get:

with

The characteristic equation of Jacobian is given by Eq. (19)
The second part of this appendix is dedicated to details 

on the third-order superharmonic resonance. Thus, for the 
3rd order superharmonic resonance, 3� = 1 + �� By cance-
ling the secular terms in (17), after appropriate algebraic 
manipulations we have:
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and

with � = �T1 − � . By looking for the solutions of equilib-
rium states, we find the equation verified by the amplitudes 
of the oscillations at order 3 superharmonic resonance and 
we obtain Eq. (20).

The phase � in this case is given by

where

Now, let us go to the study of the stability of the amplitudes 
of the oscillations using the solution (34). Taking the linear 
form of (46) and (47) around (a0,�0) , we get:
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.

where

Finally, the characteristic equation of (49) is Eq. (21).

Appendix C: Subharmonic resonances

Under the condition of order 5 subharmonic resonance, by 
canceling the resonant terms and after transformation, we 
obtain:

and

(49)
D1a1 =N11a1 + N12�1

D1�1 =N21a1 + N22�1,

N11 = −
1

2
�0 − �0

(
3

8
a2 + B2

)

+
[
−�0

(
aB3 − 3�2aB3

)
− 10�0aB

3
]
sin�

N12 =�0�B
3 sin� +

[
−�0�

2B3 − �0B
3

− �0

(
1

2
a2B3 −

3

2
�2a2B3 − �2B5

)

+
1

2
�0fB

2 − �0

(
5a2B3 + 5B5

)]
cos�

N21 =
1

4
�0a − �0

(
1

4
a3 +

3

2
aB2

)

− �0

(
5

4
a3 −

25

2
aB2

)

−
3

4
�0a −

1

a2
�0�B

3 sin�

+
1

a

[
−�0

(
aB3 − 3�2aB3

)
− 10�0aB

3
]
cos�

−
1

a2

[
−�0�

2B3 − �0B
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1

2
�0fB

2

− �0

(
1

2
a2B3 −

3

2
�2a2B3 − �2B5
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−�0
(
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cos�
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3 cos�
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1
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3 +

1
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sin�.

(50)
D1a = −

1

2
�0a − �0

(
1
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a3 + aB2

)

−
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[
�0(2� − 3) + 5�0

]
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with � = �T1 − 5� . The amplitudes of oscillations for order 
5 subharmonic resonance verify Eq. (22).

The phase in this case is

where

Let us now study the stability of the amplitudes of oscilla-
tions. Indeed, using the solution (34) and taking the linear 
form of (50) and (51) around (a0,�0) , we obtain:

with

The characteristic equation of (53) and (54) is Eq. (23).
Finally, the second part of this appendix concerns the 

order 3 subharmonic resonance. Using the condition of this 
resonance and Eq. (17), We get

(51)
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(53)D1a1 =P11a1 + P12�1
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and

with � = �T1 − 3� . Hence the equation of order 3 subhar-
monic resonance is Eq. (24).

The phase � for this resonance is given by

where

(55)

D1a = −
1

2
�0a − �0

(
1

8
a3 + aB2

)

+
1

4
�0a

2B cos� + [�0

(
1

2
�a2B −

1

4
a2B

)

− �0

(
1

4
a4B +

3

2
�a2B3 +

3

8
a4B +

3

4
�2a2B3

)

−
3

4
�0a

2B − �0

(
5

4
a4B +

15

2
a2B3

)
+

1

2
�0fa

2] sin�

(56)
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Finally, let us study the stability of the amplitudes of oscil-
lations. Indeed, using the solution (34) and taking the linear 
form of (55) and (56) around (a0,�0) , we obtain:

with

The characteristic equation is Eq. (25).
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