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Abstract
We consider chimera states of coupled identical phase oscillators where some oscillators are phase synchronized (have 
the same phase) while others are desynchronized. Chimera states of non-locally coupled Kuramoto–Sakaguchi oscillators 
in arrays of finite size are known to be chaotic transients; after a transient time, all the oscillators are phase synchronized, 
with the transient time increasing exponentially with the number of oscillators. In this work, we consider a small array of 
six non-locally coupled Kuramoto–Sakaguchi oscillators and modify the range of the phase lag parameter to destabilize 
their complete phase synchronization. Under these circumstances, we observe a chimera state spontaneously formed by the 
partition of oscillators into two independently synchronizable clusters of both stable and unstable synchronous states. In the 
chimera state, the trajectory of the phase differences of the desynchronized oscillators relative to the synchronous cluster is 
a stable periodic orbit, and as a result, the chimera state is a stable but not long-lived transient. We observe the chimera state 
with random initial conditions in a restricted range of the phase lag parameter and clarify why the state is observable in the 
restricted range using Floquet theory for periodic orbit stability.

Keywords Chimera state · Cluster synchronization · Non-locally coupled Kuramoto–Sakaguchi oscillators

1 Introduction

The chimera state, a phenomenon where coupled identi-
cal oscillators are partitioned into coherent and incoherent 
subsets [1, 2], has been widely studied both theoretically  
[3–23] and experimentally  [24–35] using various defini-
tions of coherence and incoherence [36]. The first observa-
tion of a chimera state was in arrays of non-locally coupled 
Ginzburg–Landau oscillators [3]. In the state, oscillators in 
an array are partitioned into two domains: one composed 
of phase-locked (coherent) oscillators, and one composed 
of drifting (incoherent) oscillators. To understand the phe-
nomenon analytically, researches have used non-locally cou-
pled Kuramoto–Sakaguchi oscillators [37] in arrays with the 
phase lag parameter � ∈ (0,�∕2) with which a stable chi-
mera state has been shown to exist in the limit of an infinite 
number of oscillators N → ∞ [4, 5, 20]. However, later the 
chimera state was reported to become chaotic transient with 

finite N [7, 8, 18], because the complete phase synchroniza-
tion of all the oscillators is stable in the range 0 < 𝛼 < 𝜋∕2 
such that the chimera state collapses to complete phase syn-
chronization after a transient time. Here, the transient time 
increases exponentially with N [8, 21, 29], which is consist-
ent with the analytical result that the chimera state is stable 
in the limit N → ∞ [4, 5, 20].

In this paper, we consider an array of six non-locally 
coupled Kuramoto–Sakaguchi oscillators with the phase 
lag parameter � ∈ (�∕2,�) , where complete phase synchro-
nization is unstable and thus avoided. With this setup, we 
observe a chimera state in which two oscillators are phase 
synchronized (coherent), while the other four oscillators are 
desynchronized (incoherent). Here, phase synchronization of 
the two oscillators is guaranteed, because they receive the 
same input from the other four oscillators due to permutation 
symmetry  [17, 38–40]. Moreover, we show that all oscil-
lators behave periodically with a common period, and as a 
result, the four incoherent oscillators maintain their desyn-
chronization, thereby leading to the chimera state being a 
stable but not long-lived transient. We note that chimera 
states with � ∈ (0,�∕2) would collapse rapidly for such a 
small number of oscillators ( N = 6) [8, 21, 29].
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Several approaches using diverse systems have been used to 
find stable chimeras with finite N  [9–11, 13–17, 31], includ-
ing several claims that finite stable chimeras can be observed 
even in non-locally coupled Kuramoto–Sakaguchi oscillators 
with some values of � in the range 0 < 𝛼 < 𝜋∕2 [13, 16]. Our 
approach in this paper claims that the avoidance of complete 
phase synchronization is the key to observe a stable chimera 
state composed of a finite number of oscillators [17, 19, 22, 
32].

The rest of this paper is organized as follows. In Sect. 2, we 
describe the dynamical system where we observe a chimera 
state, identify the underlying mechanism of its formation, and 
demonstrate the state’s periodic behavior. In Sect. 3, we meas-
ure the basin stability [41] of the chimera state and other possi-
ble states in the system, and in Sect. 4, we discuss the chimera 
state from the perspective of frequency synchronization and 
show that it is a weak chimera state [9–12].

2  Observation of a stable finite‑sized 
chimera state

2.1  Kuramoto–Sakaguchi oscillators 
in a given network

We consider the Kuramoto–Sakaguchi model of phase oscil-
lators [37]. In this model, the time derivative of the phase of 
each oscillator in a network is given by

for global coupling strength K > 0 and phase lag parameter 
� ∈ (0,�) , where �i ∈ [0, 2�) ( i = 1,… ,N ) is the phase of 
the ith oscillator and Aij is each entry of the N × N adjacency 
matrix � of the network. We let all oscillators be identical 
such that they have the same natural frequency �i = � for 
∀i . If we use a rotating reference frame �i → �i + �t for ∀i 
and time scaling t → t∕K , Eq. (1) has the form

To observe a chimera state in a finite array of non-locally 
coupled identical oscillators, we use a network of N = 6 , as 
depicted in Fig. 1a, where each oscillator is coupled with 
neighbors within distance two on the ring. In this paper, we 
use Eq. (2) with Aij of the network to find the chimera state.

2.2  Partition of network oscillators into two 
independently synchronizable clusters

The six oscillators in Fig. 1a are partitioned into two clusters 
C1 = {1, 4} and C2 = {2, 3, 5, 6} . We denote the synchronous 

(1)�̇�i(t) = 𝜔i + K

N∑

j=1

Aijsin(𝜙j(t) − 𝜙i(t) + 𝛼)

(2)�̇�i(t) =

N∑

j=1

Aijsin(𝜙j(t) − 𝜙i(t) + 𝛼).

phase of the first cluster by s1 and that of the second cluster 
by s2 . Then, the time derivatives of s1 and s2 are, respectively, 
given by

Therefore, the synchronous phase of each cluster evolves 
following Eq. (3), meaning that each cluster can be synchro-
nous irrespective of the oscillator phases of the other cluster.

2.3  Observation of a chimera state where only one 
cluster is synchronized

A chimera state of synchronized C1 and desynchronized C2 
is discovered using the following procedure. (i) We avoid 
the complete phase synchronization of all six oscillators 
by using � ∈ (�∕2,�) in which complete phase synchro-
nization is unstable. (ii) In this range of � , we integrate 

(3)

ṡ1(t) =sin(𝜙2(t) − s1(t) + 𝛼) + sin(𝜙3(t) − s1(t) + 𝛼)

+ sin(𝜙5(t) − s1(t) + 𝛼) + sin(𝜙6(t) − s1(t) + 𝛼),

ṡ2(t) =2sin(𝛼) + sin(𝜙1(t) − s2(t) + 𝛼)

+ sin(𝜙4(t) − s2(t) + 𝛼).

(a)

(b)

Fig. 1  a Left: schematic diagram of the network used in this paper. 
Right: �1(◊) , �4 (filled circle), �2 (unfilled circle), �3 (□), �5(▿) , and 
�6(▵) of the chimera state observed in the network. To observe this 
state, we integrate Eq.  (2) with � = 1.58 for a random initial condi-
tion (�1,… ,�6) ∈ [0, 2�)6 at t = −103 to set t to zero after an initial 
transient. (Note that the chimera state is observed for t ≥ 0 in Fig. 2.) 
b Thick lines indicate numerically estimated transverse Lyapunov 
exponents Λ(m)

�
 for each cluster C

m
 . To obtain these lines, we integrate 

Eq.  (6) with Eq.  (4) up to t = 105 for each � . To discard the initial 
transient, we numerically integrate Eq. (4) over −105 ≤ t ≤ 0 for ran-
domly taken s

m
(−105) ∈ [0, 2�) (m = 1, 2) to obtain s1(0) and s2(0) 

for each � . Dotted lines indicate the functional form of Λ(m)
�

(�) dis-
cussed in the main text
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the quotient network dynamics of Eq. (2) for the two syn-
chronous clusters C1 and C2 and show that the synchro-
nous state of C1 is stable, whereas that of C2 is unstable 
along the trajectory of the two synchronous clusters. (iii) 
Finally, we observe the chimera state in the range of � by 
integrating the governing equation (Eq. (2)) for random 
initial phases.

We consider the quotient network dynamics of Eq. (2) 
for the two synchronous clusters C1 and C2 given by

where s1 and s2 are the phases of the synchronous clus-
ters C1 and C2 , respectively (i.e. s1 = �1 = �4 and 
s2 = �2 = �3 = �5 = �6 ). A variational equation of Eq. (4) 
along the trajectory of complete phase synchronization 
s(t) = s1(t) = s2(t) is given by

for s1(t) = s(t) − 2�(t) and s2(t) = s(t) + �(t) . We find that 
�(t) diverges for 𝜋∕2 < 𝛼 < 𝜋 such that complete phase syn-
chronization is unstable and therefore avoided. Accordingly, 
the phases of the two synchronous clusters remain distinct 
( s1(t) ≠ s2(t) ) in the range 𝜋∕2 < 𝛼 < 𝜋.

Along the trajectory (s1(t), s2(t)) of Eq.  (4) for 
𝜋∕2 < 𝛼 < 𝜋  , we show that the synchronous state 
of C1 is stable whereas that of C2 is unstable. For 
the deviation of each phase ��i = �i − sm for i ∈ Cm 
(m = 1, 2) , we consider perturbation transverse to the 
synchronization manifold of each cluster. Specifi-
cally, we consider perturbations �(1)

�
 (� = 2) for C1 and 

�(2)
�
(� = 2, 3, 4) for C2 , where �(1)

2
= (��1 − ��4)∕

√
2 , 

�
(2)

2
= (−��2 + ��3 − ��5 + ��6)∕2 , �

(2)

3
= (��2 − ��5)∕

√
2 

and �(2)
4

= (��3 − ��6)∕
√
2 . Then, variational equations of 

Eq. (2) along �i = sm for i ∈ Cm (m = 1, 2) are given by

We numerically obtain transverse Lyapunov exponents 
Λ(m)

�
= (1∕t)ln(||�(m)

�
(t)||∕||�(m)

�
(0)||) for t ≫ 1 , as shown in 

Fig. 1b. We note that Λ(2)

3
= Λ

(2)

4
 from Eq. (6).

We can obtain a functional form of Λ(m)
�

 depend-
ing on � by using the evolving s1(t) and s2(t) of 
Eq.  (4) with a time-independent phase difference 
Y = s1(t) − s2(t) . If we insert Y = s1(t) − s2(t) into Eq. (4) 
with ṡ1 = ṡ2 , we can derive Y as a function of � such that 
Y(�) = cos−1

[
(−4 − 5cos(2�))∕(5 + 4cos(2�))

]
 . Then, we 

obtain a functional form of Λ(m)
�

(�) from Eq. (6) by using 

(4)
ṡ1(t) =4sin(s2(t) − s1(t) + 𝛼)

ṡ2(t) =2sin(s1(t) − s2(t) + 𝛼) + 2sin(𝛼),

(5)�̇�(t) = −6cos(𝛼)𝜂(t)

(6)

�̇�
(1)

2
(t) = − 4cos(s2(t) − s1(t) + 𝛼)𝜂

(1)

2
(t),

�̇�
(2)

2
(t) = − 2

[
cos(s1(t) − s2(t) + 𝛼) + 2cos(𝛼)

]
𝜂
(2)

2
(t),

�̇�
(2)

3
(t) = − 2

[
cos(s1(t) − s2(t) + 𝛼) + cos(𝛼)

]
𝜂
(2)

3
(t),

�̇�
(2)

4
(t) = − 2

[
cos(s1(t) − s2(t) + 𝛼) + cos(𝛼)

]
𝜂
(2)

4
(t).

the relation �̇�(m)
𝜅

(t) = Λ(m)
𝜅

(𝛼)𝜂(m)
𝜅

(t) . We check that this ana-
lytic form of Λ(m)

�
(�) agrees well with the numerical result, 

as shown in Fig. 1b.
For 𝜋∕2 < 𝛼 < 𝜋 where complete phase synchronization 

(i.e. �i(t) = s(t) for ∀i ) is avoided, we find that Λ(1)

2
< 0 , 

Λ
(2)

2
> 0 and Λ(2)

3
= Λ

(2)

4
> 0 as in Fig.  1b such that the 

synchronous state of C1 is stable while that of C2 is unsta-
ble along the trajectory s1(t) ≠ s2(t) of Eq. (4). Therefore, 
we expect the chimera state to be observed in the range 
𝜋∕2 < 𝛼 < 𝜋 using random initial conditions of �i for which 
only the oscillators in C1 will synchronize spontaneously. Via 
numerical integration of Eq. (2), we indeed observe that the 
chimera state persists even after t = 109 for a random initial 
condition with � ∈ (�∕2,�) , as shown in the right panel of 
Fig. 1a.

We remark that the chimera state is found with finite 
probability for random initial conditions and that other states 
can also be observed depending on the initial conditions 
(Sect. 3).

2.4  The trajectory of the phase differences 
of the desynchronized oscillators relative 
to the synchronous cluster is a stable periodic 
orbit

To show that the chimera state in the right panel of Fig. 1a 
is persistent, we demonstrate the periodic behavior of the 
state. At first, we obtain numerically that �̇�i(t + T) = �̇�i(t) 
(i = 1, 2, 4, 5) and �̇�i(t + 2T) = �̇�i(t) (i = 3, 6) for t ≥ 0 with 
constant T ≈ 2.02 , as shown in Fig. 2. We note that the least 
common multiple of the periods of all �̇�i is 2T. This periodic 
behavior might be understood analytically by finding the 
integral of the motion for this state [10].

As previously mentioned, in the chimera state, two oscil-
lators C1 = {1, 4} are phase synchronized, while the other 
four oscillators C2 = {2, 3, 5, 6} are desynchronized. A nec-
essary condition for phase synchronization of the two oscil-
lators {i, j} over a (finite) interval of t is �̇�i(t) = �̇�j(t) over 
the interval of t. Based on the numerical results in Fig. 2, no 
pair of oscillators {i, j} for 1 ≤ i ≠ j ≤ 6 satisfies �̇�i(t) = �̇�j(t) 
over the common period 2T except the pair C1 = {1, 4} , 
which repeats every 2T. Therefore, the chimera state where 
only the pair C1 = {1, 4} is phase synchronized will persist 
permanently.

Based on the numerical results, �i(t) are quasip-
eriodic functions obeying �i(t + 2T) = �i(t) + ki for 
some constants ki . If we conjecture that ki = k for 
∀i  ( i .e . ,  �i(t + T) = �i(t) + k∕2 (i = 1, 2, 4, 5) )  with 
�3(t + T) = �6(t) + k∕2 , the periodic behavior of �̇�i(t) can 
be derived using Eq. (2) consistently. In this condition, the 
trajectory of the phase differences of the four desynchro-
nized oscillators relative to the synchronous cluster given 
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by �(t) = (�2 − s1,�3 − s1,�5 − s1,�6 − s1) ∈ [0, 2�)4 for 
s1 = �1 = �4 is a periodic orbit of period 2T. We check 
that the trajectory is indeed a periodic orbit of period 2T 
in Fig. 3.

We use Floquet theory for the stability of periodic 
orbits [42] to analyze the stability of the chimera state. 
To do so, we obtain the Lyapunov exponents (real parts 
of the characteristic exponents) of the periodic orbit �(t) 
numerically. To be specific, we consider a 4 × 4 funda-
mental matrix �(t) satisfying �̇(t) = D�(�(t))�(t) with 
�(0) = �4 , where �  is a function such that �̇(t) = �(�(t)) . 

Then, we can obtain characteristic exponents �j by using 
the relation e�j2T = Λj , where Λj is the j-th eigenvalue of 
�(2T) . We note that 2T is the period of the orbit �(t) . A 
periodic orbit is known to have one zero Lyapunov expo-
nent and to be stable if all the other Lyapunov exponents 
are negative. Here, as the numerically measured value of 
the second largest Lyapunov exponent of �(t) is approxi-
mately −0.0028 , the chimera state is stable.

Because of its periodic behavior, the chimera state that we 
observe is not chaotic [43], in contrast to the finite chimera 
state with � ∈ (0,�∕2) , which is chaotic before collapse to 
complete phase synchronization  [7, 8, 18, 30]. Recently, 
several stable chaotic chimera states of finite size have been 
suggested using different types of oscillators [11, 13, 17].

3  Basin stability of the chimera state

For � ∈ (�∕2,�) , we measure the fraction of random ini-
tial conditions (�1(0),… ,�6(0)) ∈ [0, 2�)6 that arrives at 
the chimera state following Eq. (2) (referred to as the basin 
stability of the chimera state). To be specific, we integrate 
Eq. (2) up to t = 104 for each initial condition and regard 
the final state as the chimera state if it satisfies the fol-
lowing two conditions: �1 = �4 and �i ≠ �j for any pairs 
{i, j} ∈ {1, 2, 3, 5, 6} (as well as two other equivalent condi-
tions given by the rotational symmetry of the network), and 
all �̇�i are periodic functions of t. For the latter, we regard 
each �̇�i as a periodic function if the standard deviation of the 
distances between two consecutive peak points of the func-
tion during 9 × 103 ≤ t ≤ 104 is less than the step-size of t 
used to integrate Eq. (2) numerically. Here, we take t = 104 
for the upper limit of integration to measure basin stability 
after discarding the initial transients, because the chimera 
state in Fig. 1a appeared for a time interval of integration 
shorter than 103 beginning with a random condition.

(a)

(b)

(c)

(d)

(e)

(f) (g)

Fig. 2  Periodicity in the time series of �̇�
i
(t) of the chimera state in 

Fig. 1a. Numerical data to support that a �̇�1 (solid line) and �̇�4 (dotted 
line), b �̇�2 , and c �̇�5 are periodic functions with period T. Comparison 
between the left and right panels in each row shows that the same pat-
tern of �̇�

i
(t) (i = 1, 2, 4, 5) during period T appears after 104 cycles. 

Numerical data to support that d �̇�3 and e �̇�6 are periodic functions 
with period 2T. Comparison between the left and right panels in each 
row shows that the same pattern of �̇�

i
(t) (i = 3, 6) during period 2T 

appears after 5 × 103 cycles. f (�̇�1, �̇�3 − �̇�6) and g (�̇�1, �̇�2 − �̇�5) for 
�̇�
i
 in the left panels of (a–e). (�̇�1, �̇�3 − �̇�6) moves around a fixed path 

two times with period 2T, whereas (�̇�1, �̇�2 − �̇�5) moves around a 
fixed path four times with period T. Arrows indicate the direction of 
motion. These results support that the least common multiple of the 
periods of all �̇�

i
 is indeed 2T 

Fig. 3  �2 − s1 (unfilled circle), �3 − s1 (□), �5 − s1(▿) , and 
�6 − s1(▵) for s1 = �1 = �4 of the chimera state in Fig. 1a



480 S. Lee, Y. S. Cho 

Vol.:(0123456789)1 3

We observe the chimera state with a finite probability for 
𝛼 < 1.633 , whereas no chimera state can be observed outside 
this range as shown in Fig. 4a–c. To understand the non-
observance of the chimera state for 𝛼 > 1.633 , we measure 
the second largest Lyapunov exponent of the chimera state 
(see Sect. 2.4) for � ∈ (�∕2, 1.633) , as shown in Fig. 4d. 
As previously mentioned, we find that the measured value 
is negative, such that the chimera state is stable. However, 
it drastically increases to zero as � approaches 1.633 from 
below, which supports the chimera state becoming unstable 
and thus non-observable as � exceeds 1.633.

In the entire range of 𝜋∕2 < 𝛼 < 𝜋 , we observe two other 
states as plotted in Fig. 4a, b. The trajectory of the state 
in Fig.  4a is ( �1 = �4 = �t + k1 , �2 = �5 = �t + k1 + � , 
�3 = k2 , �6 = k2 + � ), and that of the state in Fig. 4b is 
given by ( �1 = �4 = �t + k3 , �2 = �5 = �t + 2�∕3 + k3 , 
�3 = �6 = �t + 4�∕3 + k3 ) for arbitrary constants k1, k2 , and 
k3 . Here, � = −2sin(�) is derived for both states. We obtain 
the basin stability for these two states (considering other sets 

of trajectories given by the rotational and the reflectional 
symmetries of the network) as shown in Fig. 4c using the 
same upper limit of integration t = 104 . We note that these 
two states are distinct from the chimera state in the sense 
that they, respectively, include two and three synchronous 
clusters, in contrast to the chimera state having only one 
synchronous cluster.

We understand roughly why the chimera state does not 
exist for 𝛼 > 1.633 . We can show that the transverse Lya-
punov exponent of both states in Fig. 4a, b is 2cos(�) . This 
means that both states become more stable as � increases 
beyond the marginal value � = �∕2 , where 2cos(�) for 
𝛼 > 1.633 is much smaller than the measured Lyapunov 
exponents of the chimera state in Fig. 4d. Therefore, we 
expect the basin stability of the chimera state to shrink to 
zero for 𝛼 > 1.633.

4  Discussion

In this paper, we have discussed phase synchronization 
�i = �j of oscillators i ≠ j . From the perspective of phase 
synchronization, we observed a chimera state in the network 
depicted in Fig. 1a, where six oscillators are partitioned 
into a synchronous cluster C1 = {1, 4} and an asynchro-
nous cluster C2 = {2, 3, 5, 6} . Previously, a study [9] con-
sidered frequency synchronization Ωi = Ωj of oscillators 
i ≠ j , where the frequency of each oscillator i is given by 
Ωi = limt→∞

1

t
∫

t

0
�̇�i(t

�)dt� . From the perspective of frequency 
synchronization, the authors introduced the so-called weak 
chimera state for oscillators i,  j, k in which Ωi ≠ Ωj and 
Ωi = Ωk . In the invariant subspace of the three-oscillator 
quotient system (�1 = �4,�2 = �6,�3 = �5) of Eq. (2) with 
the same network, they reported a weak chimera state where 
Ω2 ≠ Ω1 and Ω2 = Ω3 . Such existence of weak chimera 
states in three-oscillator quotient systems has recently been 
understood analytically [10].

In the present work, we numerically meas-
ure Ωi =

1

t
∫

t

0
�̇�i(t

�)dt� of the chimera state in Fig.  1a 
a s  Ωi = −1.61081 ± 0.00001  (i = 1, 2, 4, 5)  a n d 
Ωi = −0.05504 ± 0.00002 (i = 3, 6) by integrating �̇�i up to 
t = 105 . Based on the obtained values of Ωi , we assume that 
the oscillators in the chimera state might be partitioned into 
the two clusters {1, 2, 4, 5} and {3, 6} , where the oscillators 
in each cluster have the same value of Ωi . Consequently, 
the chimera state will be a weak chimera state satisfying 
Ω1 ≠ Ω3 and Ω1 = Ω2 in the invariant subspace of this five-
oscillator quotient system (�1 = �4,�2,�3,�5,�6) . We may 
understand the existence of the chimera state analytically 
by extending the analysis in previous works [9, 10] to the 
invariant subspace of this five-oscillator quotient system.

Finally, we note that the persistence of the synchronous 
state of the one subset irrespective of the asynchronous 

Fig. 4  Basin stability of the chimera state and other states. �1(◊) , 
�2 (unfilled circle), �3 (□), �4 (filled circle), �5(▿) , and �6(▵) of a 
a state composed of two synchronous clusters ( {1, 4} , {2, 5} ) and an 
asynchronous cluster ( {3, 6} ), and (b) a state composed of three syn-
chronous clusters ( {1, 4} , {2, 5} , {3, 6} ). We use � = 1.58 to obtain 
these two states. c Basin stability of the chimera state (unfilled circle) 
and the two states in a (▪) and b (◻) versus � . For each value of � , 
we use 104 random initial conditions. The vertical dotted line at 1.633 
indicates where the chimera state is no longer observed in the range 
of � to the right of the line. For each value of � , only the symbols 
of the states with nonzero basin stability are marked. For � = 1.575 , 
we observe states other than the chimera state and the two states in a 
and b ( ▴ ). d The average of the second largest Lyapunov exponents 
of the chimera states observed in (c) for each value of � . Error bars 
(standard deviations) are within the symbol size. The second largest 
Lyapunov exponent is approximately −0.0004 for � = 1.575
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phases of the other subset in the chimera state is related to 
the invariance of the adjacency matrix (symmetry) under 
permutations within the synchronous subset [17, 38–40]. 
The number of permutations conserving an adjacency 
matrix usually increases drastically with increasing network 
size [44]; therefore, we expect that the formation of syn-
chronous subsets in diverse chimera states in large networks 
can be understood from the perspective of symmetry under 
permutations within each subset.
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