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Abstract
The theoretical model, which is based on the density functional approach, has been developed for studying the electrostatic 
properties of colloidal dispersions (modified colloidal primitive model; MCPM) containing hard-spherical ions with a homo-
geneous surface charge distribution. The mean-spherical approximation for the multi-component charged ions has been used 
to account for the electrostatic ion correlation effects. The present study reflects the importance of the charge distribution 
of macroion in determining the ionic structure and mean forces acting on the macroions. Compared with the MCPM, the 
colloidal primitive model (CPM), on which the colloidal charge is assumed to be in the center of particle, shows very long-
range electrostatic properties and mean force acting on the macroions because of the strong cross correlation between the 
hard-sphere contribution and the Coulomb interaction. The long-range attractions and repulsions in the charged colloidal 
dispersions originate from the entropic effects and are found at high packing fractions of the colloidal ions.

Keywords  Colloidal dispersions · Modified colloidal primitive model · Density functional approach · Long-range effective 
interaction

1  Introduction

The study of colloidal and nanoparticle interactions and 
their interfacial properties is a major subject in the fields of 
physics, chemistry, biology, energy and technology [1–4]. 
Most studies on colloidal dispersions have been restricted to 
isolated macroion, i.e., infinite dilution or two liked-charged 
macroions immersed in a model electrolyte, with a focus on 
the electrolyte structure and electrostatic properties of col-
loidal dispersions, where phenomena such as charge rever-
sal, charge inversion and overcharging have been shown to 
be relevant. However, experimental studies on colloidal dis-
persions at finite volume exhibit interesting phenomenology, 
which implies very long-range correlations. An example is 
polymer latex solutions in which an order-disorder struc-
ture of macroions [5–9], which cannot be explained in terms 

of conventional direct short-range interaction potentials, is 
observed.

Theoretical and simulation investigations of colloidal sus-
pensions at finite volume fractions are difficult due to the 
large increase in the integration space for theoretical equa-
tions and the huge number of particles in larger simulation 
boxes because the charge distribution of a macroion has to 
be included in the theoretical model itself [10–18]. Lozada-
Cassou et al. [19–22] recently proposed a theoretical model 
based on the hypernetted-chain/mean-spherical approxima-
tion (HNC/MSA) for studying the structural and the electro-
static properties of colloidal dispersions by using the modi-
fied colloidal primitive mode (MCPM), in which the charge 
of the macroion is uniformly smeared over its surface. They 
compared the results with those obtained using the colloidal 
primitive model (CPM) [20–22], in which the charge of a 
colloidal particle is assumed to be at its center for a local 
particle density and a mean force acting on the macroions. 
However, the CPM and the MCPM based on the HNC/MSA 
have shown the same particle distribution function and mean 
force between macroions in spite of different charge distri-
bution of macroion. The charge distribution of macroions is 
known to be strongly affected by the mean forces between 
microions, as well as the local particle distribution functions 
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[17, 18, 23]. On the other hand, the theoretical model of 
Lozada-Cassou et al., in some sense, does not satisfy self-
consistency in itself; i.e., they calculated the local charge for 
the macroions from the local particle density and solved the 
Poisson equation to obtain the mean electrostatic potential 
arising from the spherical charge distribution of ions. Fur-
thermore, to the best of our knowledge, no theoretical model 
satisfying self-consistency in itself has been used to study 
the structural and the electrostatic properties of the MCPM. 
Jang et al. [17, 18, 23] more recently proposed a theoretical 
model for studying the structural properties of size-sym-
metric electrolytes containing uniformly charged macroions, 
where the ions are treated as charged hard-sphere ions with a 
homogeneous charge distribution. They showed that the pro-
posed model describes the simulation results well even for 
electrolytes with a high valence and that the particle density 
distributions of electrolytes depended strongly on the charge 
distributions of ions, as well as the attractive interactions 
between like-charged electrodes. We here extend the theo-
retical model in order to study a colloidal suspension with 
a charge distribution and investigate the long-range electro-
static properties and mean forces acting on the macroions 
at a finite colloidal concentration. We show that the charge 
distribution of macroions is suspected to play an important 
role in determining the ionic structure and the mean forces 
acting on the macroions.

In this paper, we will develop a theoretical model, the 
MCPM, for studying the structural properties of colloidal 
dispersions containing uniformly charged hard-sphere ions. 
In Sect. 2, we introduce the density functional approach 
based on the modified fundamental-measure theory (MFMT) 
for the hard-sphere contribution and the mean-field approx-
imation for the cross interaction between the hard-sphere 
contribution and the Coulomb interaction. In Sect. 3, we 
compare the results obtained using the proposed theory with 
the Monte Carlo (MC) simulation results for the CPM model 
at a finite colloidal concentration. We show that long-range 
charge reversal and overcharging, as well as long-range 
mean forces of a uniformly charged colloidal suspension, 
are the results of intra-ionic correlations and finite colloidal 
concentrations. In concluding remarks, we briefly discuss 
the advantage of the proposed density functional approach 
and its future applications.

2 � Model and theory

We consider three species of charged ions, i.e., positive ions, 
negative ions, and macroions of species denoted by + , −, and 
M, immersed in a solvent that is considered to be a medium 
of uniform dielectric permittivity � [19, 21]. The macroions 
are assumed to be hard-sphere ions with a homogeneous sur-
face charge density � = eZM∕�dM

2 , where e is the electronic 

charge, ZM the valence, and dM the diameter of macroions. 
The sizes of small ions (anions and counterions), each with 
a point charge embedded at the center of its sphere, which 
is much smaller than the sizes of macroions, are taken to be 
equal, d+ = d− = d . The valences for anions and counterions 
are defined by Z− and Z+ , respectively. For simplicity, the 
counterions of colloidal particles are taken as being equal to 
small ions, such that the charge of the counterions neutralizes 
the total charge on the macroions. Thus, we can obtain here 
either more cations than anions or vise versa, depending of the 
sign of the macroions.

In this model, the interaction between anions and counteri-
ons is described by a pairwise additive potential such as 
uij(r) =

e2ZiZj

�r
 for r > dij , or uij(r) = ∞ for r < dij , where 

dij = (di + dj)∕2 . The macroion–macroion interaction [10, 11, 
24–26] becomes uMM(r) =

e2ZMZM

�

(
2dM−r

d2
M

)
 for r < dM and 

uMM(r) =
e2ZMZM

�r
 for r > dM while the ion–macroion interac-

tion becomes uiM(r) =
e2ZiZM

�

(
2

dM

)
 for r < dM∕2 and 

uiM(r) =
e2ZiZM

�r
 for dM∕2 < r.

The density functional approach for classical ionic fluids is 
known to provide a powerful and well-established framework 
for investigating on an equal footing the structural and thermo-
dynamic properties such as pressure, thermal compressibility, 
or bulk phase behavior [1]. In this case, the grand potential 
Ω[𝜌i(r⃗)] , which is the functional of 𝜌i(r⃗) , is given by

where uext,i(r⃗) is an arbitrary external field on species i and 
�i denotes the chemical potential of the particle reservoir of 
species i. The Helmholtz free energy F[𝜌i(r⃗)] of a system, 
which is the functional of ionic density 𝜌i(r⃗) , can be writ-
ten as

In Eq. (2), 𝛽Fid[𝜌i(r⃗)] =
∑

i=+,−,M ∫ dr⃗𝜌i(r⃗)[ln 𝜌i(r⃗)Λ
3

i
− 1] is 

the ideal free energy of the ions corresponding to the kinetic 
energy of ions, where Λi is the thermal de Broglie wave-
length of species i, � = 1∕kBT  , with kB being the Boltzmann 
constant and T the temperature. The Coulomb interaction 
Fcoul[𝜌i(r⃗)] between ions that interact with the local charge 
density becomes Fcoul[𝜌i(r⃗)] =

1

2

∑
i,j=+,−,M

∫ dr⃗ ∫ ds⃗
𝜌Ni(r⃗)𝜌Nj(s⃗)

𝜖�r⃗−s⃗�  . For 
the macroions with charge smeared uniformly on the ‘sur-
face’, the local charge density 𝜌NM(r⃗) is given by

where �(x) is the delta function. We note that for the 
small ions with charge embedded at the center of sphere, 
the local charge densities become 𝜌N+(r⃗) = eZ+𝜌+(r⃗) and 

(1)Ω[𝜌i(r⃗)] = F[𝜌i(r⃗)] +
∑

i=+,−,M
∫

dr⃗ 𝜌i(r⃗)[uext,i(r⃗) − 𝜇i],

(2)
F[𝜌i(r⃗)] = Fid[𝜌i(r⃗)] + Fcoul[𝜌i(r⃗)] + Fhs[𝜌i(r⃗)] + Fel[𝜌i(r⃗)].

(3)𝜌NM(r⃗) =
eZM

𝜋d2
M
∫

ds⃗ 𝜌M(s⃗)𝛿

(
dM

2
− |r⃗ − s⃗|

)
,
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𝜌N−(r⃗) = eZ−𝜌−(r⃗) . Thus, for the CPM, where the charge of 
the macroion is located at its center, the local charge density 
of the microions simply becomes 𝜌NM(r⃗) = eZM𝜌M(r⃗) . The 
third term, Fhs[𝜌i(r⃗)] , denotes the hard-sphere contribution 
between the ions that were assumed to be the hard spheres. 
We here adopt the modified fundamental-measure theory 
(MFMT) [27–29], which is known to be a successful for 
hard-sphere system:

where Φhs[n𝛼(r⃗)] is the excess free energy of the hard-sphere 
system per volume. The last term, Fel[𝜌i(r⃗)] , is the electronic 
residual contribution, which corresponds to the cross cor-
relation between the hard-sphere contribution and the Cou-
lomb interaction. We approximate the free energy as

where c(2)
el,ij

(r, �i) is the two-particle direct correlation func-
tion (DCF) for the electronic residual contribution. An ana-
lytic expression for a uniformly charged hard-sphere mix-
tures based on the MSA solution [30–34] was used to 
calculate the electronic residual contribution. The detailed 
expression for c(2)

el,ij
(r, �i) is presented in the Appendix. We 

note that the main difference between the CPM and the 
MCPM is the electronic residual contribution originating 
from the cross correlation between the Coulomb potential 
and the hard-sphere interaction of ions.

Because of the charge distribution of the macroions, the 
microions also interact with the mean electrostatic potential 
𝜓(r⃗) through

We should mention that for small ions with a charge embed-
ded at the center of a sphere, the mean electrostatic potential 
simply becomes 𝜓N+(r⃗) = eZ+𝜓(r⃗) and 𝜓N−(r⃗) = eZ−𝜓(r⃗) . 
Then, the Poisson equation for small ions and smeared-out 
macroions is simply given by

because 𝜌N+(r⃗) = eZ+𝜌+(r⃗) and 𝜌N−(r⃗) = eZ−𝜌−(r⃗) . Finally, 
the equilibrium ionic density 𝜌i(r⃗) becomes, from the mini-
mization of the grand potential functional Ω[𝜌i(r⃗)] with 
respect to the ionic density 𝜌i(r⃗),

(4)𝛽Fhs[𝜌i(r⃗)] = ∫
dr⃗Φhs[n𝛼(r⃗)],

(5)

𝛽Fel[𝜌i(r⃗)] = −
1

2

∑

i,j=+,−,M
∫

dr⃗
∫

ds⃗ c
(2)

el,ij
(|r⃗ − s⃗|, 𝜌i)𝜌i(r⃗)𝜌j(s⃗),

(6)𝜓NM(r⃗) =
eZM

𝜋d2
M
∫

ds⃗𝜓(s⃗)𝛿

(
dM

2
− |r⃗ − s⃗|

)
.

(7)∇2𝜓(r⃗) = −
4𝜋

𝜖

∑

i=+,−

eZi𝜌i(r⃗) −
4𝜋

𝜖
𝜌NM(r⃗)

where �i is the bulk ionic density of species i. For the elec-
trolytes near the macroions, the local particle density 𝜌i(r⃗) , 
local charge density 𝜌NM(r⃗) , and mean electrostatic potential 
𝜓Ni(r⃗) depend only on r because of the spherical symmetry; 
i.e., 𝜌i(r⃗) = 𝜌i(r) , 𝜌NM(r⃗) = 𝜌NM(r) and 𝜓Ni(r⃗) = 𝜓Ni(r) . The 
external potential �uext,i(r) for the central macroion becomes 
�uext,i(r) = ∞ for r < dM∕2 and zero otherwise. Then, the 
equilibrium ionic density �i(r) becomes

and zero otherwise. For the CPM model, ��Ni(r) becomes 
��Ni(r) = ��(r) . The local particle density and the mean 
electrostatic potential can be found numerically with an 
iteration procedure, the so-called the standard Picard 
method, along with the over-all electroneutrality condition 
∫ ∞

dM∕2
dr⃗

�∑
i=+,− eZi𝜌i(r⃗) + 𝜌NM(r⃗)

�
+ 𝜋d2

M
𝜎M = 0.

On the other hand, the potential of the mean force for each 
species i contains contributions from the electrostatic and 
the hard-sphere correlations. The potential of the mean force 
between the central macroion and the other species in the elec-
trolytes can be obtained from Eq. (8) as

where  Ji(r) i s  t he  en t rop ic  poten t i a l ;  i . e . , 
Ji(r) =

𝛿Fhs[𝜌i(r⃗)]

𝛿𝜌i(r⃗)
+

𝛿Fel[𝜌i(r⃗)]

𝛿𝜌i(r⃗)
−

𝜕Fhs(𝜌i)

𝜕𝜌i
−

𝜕Fel(𝜌i)

𝜕𝜌i
 [19, 20]. Ener-

getic or entropic competition takes place between different 
ionic components in the colloidal dispersions. The mean 
force Fwi

(r) = −
dwi(r)

dr
 is proportional to the electrostatic and 

entropic components as

where the electrostatic component becomes Fei(r) = −
d�Ni(r)

dr
 , 

which is just the derivative of �Ni(r) with respect to r. The 
entropic component becomes Fsi(r) = −

dJi(r)

dr
 . Both compo-

nents are functionals of the local particle densities, �i(r) , 
implying that the size correlations are coupled. Thus, the 
(total) mean force between the central macroion and an ion 
of species i becomes

(8)
ln

[
𝜌i(r⃗)

𝜌i

]
= − 𝛽uext,i(r⃗) − 𝛽𝜓Ni(r⃗) −

𝛿𝛽Fhs[𝜌i(r⃗)]

𝛿𝜌i(r⃗)

−
𝛿𝛽Fel[𝜌i(r⃗)]

𝛿𝜌i(r⃗)
+

𝜕𝛽Fhs(𝜌i)

𝜕𝜌i
+

𝜕𝛽Fel(𝜌i)

𝜕𝜌i
,

(9)
ln

[
𝜌i(r)

𝜌i

]
= − 𝛽𝜓Ni(r) −

𝛿𝛽Fhs[𝜌i(r)]

𝛿𝜌i(r)
−

𝛿𝛽Fel[𝜌i(r)]

𝛿𝜌i(r)

+
𝜕𝛽Fhs(𝜌i)

𝜕𝜌i
+

𝜕𝛽Fel(𝜌i)

𝜕𝜌i
, r > dM∕2

(10)
wi(r) = −kBT ln[𝜌i(r)∕𝜌i] = 𝜓Ni(r) + Ji(r), r > dM∕2,

(11)Fwi(r) = Fei(r) + Fsi(r),
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where gMi(r) = �i(r)∕�i is the radial distribution function 
between the central macroion and an ion of species i.

3 � Results and discussion

In the CPM and the MCPM, the solvent is modelled as 
uniform dielectric continuum characterized by its dielec-
tric constant � = 78.5 at temperature T = 298K so that the 
results can be compared with available simulation data 
[21]. In all cases, the added salt is a 1:1, 0.1 M electrolyte 
with ionic diameter d+ = d− = d = 0.425 nm . The diameter 
of the macroion is taken to be dM = 10 d , if not pointed out 
otherwise. The ionic diameter d is used as a unit length. 
Both the electrolyte ions and the macroions are assumed to 
have the same dielectric constant to avoid image charges. 
Recall that both models, which are the CPM and MCPM, 
become the restricted primitive model (RPM) in the limit 
� → 0 , where � = ��Md

3

M
∕6 is the packing fraction of the 

macroions [1–3].
To illustrate the applicability of the present theory, we 

have calculated the normalized induced charge QM(r)∕QM 
for the CPM and compared the results with the simulation 
data [21] in the inset of Fig. 1, where the packing fraction 
of the macroions is � = 0.24 . The induced charge QM(r) 
around the central macroion, representing the oscillating 
behavior of the surface charge, is defined by,

(12)
FMi(r) =

1

𝛽

d

dr

[
ln

(
𝜌i(r)

𝜌i

)]

=
1

𝛽

d

dr

[
ln gMi(r)

]
, r > dM∕2,

where QM = eZM is the charge on the macroion’s surface 
[ 2 1 ] .  I n  t h i s  c a s e ,  t h e  m a c r o i o n  h a s 
�M = 6�∕�d3

M
= 9.915 × 10−3 M , equivalent to a macroion 

packing fraction of � = 0.24 and a macroion valence of 
ZM = ��d2

M
∕e = 17.73 , equivalent to a surface charge den-

s i t y  � = 0.05C∕m2  a n d 
�− = −(Z+�+ + ZM�M)∕Z− = 0.6286M because the negative 
ions are the sum of the salt anions plus the macroions’ coun-
terions. Hence, QM(r)∕QM = 1 at the surface of the central 
macroion, and QM(r)∕QM → 0 when r → ∞ because 
QM(r → ∞) → 0 . Charge reversal occurs when the inte-
grated surface charge displays an opposite sign regarding the 
sign of the macroion’s charge, i.e., QM(r)∕QM < 0 . On the 
other hand, the induced charge QM(r) is related to the inte-
grated total charge density distribution around the central 
m a c r o i o n ,  w h i c h  i s  d e f i n e d  b y 
�(r) =

�d2
M

4r2
+

1

r2
∫ r

dM∕2
dr r2

�∑
i=+,− eZi�i(r) + �NM(r)

�
 , where 

� denotes the surface charge density of a macroion. By 
Gauss’ law the electric field EM(r) at a distance from the 
surface of the central macroion is EM(r) = 4��(r)∕� for 
r > dM∕2 . One can see from the insert of Fig. 1 that the 
CPM, the present theory, which is based on the MSA for the 
correlation between the hard-sphere contribution and Cou-
lomb interaction, explains the charge reversal and overcharg-
ing predicted by the computer simulation, does the HNC/
MSA theory of Manzanilla-Granados et al. [19], even though 
we did not display the results of the HNC/MSA theory in the 
figure. However, the agreement with the computer simula-
tion slightly deteriorates with increasing surface charge den-
sity of the macroion. We think that this disagreement per-
haps comes from the basic problem of the MFMT for 
large-size asymmetric ions at high bulk density. The calcu-
lated normalized induced charges QM(r)∕QM for the CPM 
and the MCPM are compared in Fig. 1. Notice here that 
QM(r) for the MCPM is defined for r ≥ dM∕2 whereas QM(r) 
for the CPM is defined for r ≥ (dM + d)∕2 because �i(r) = 0 
for r < (dM + d)∕2 . The CPM and the MCPM illustrate that 
long-range overcharging and charge reversal, which are dif-
ferent from the usual overcharging and charge reversal based 
on the so-called Stern layer [2–4], occur at a finite fraction 
of macroions. Recall that the overcharging event is univer-
sally driven by the ion size-asymmetric effect [2–4]. The 
charge oscillations for the CPM and the MCPM are mild at 
low macroion charge (� = 0.01C∕m2) . The MCPM predicts 
milder charge oscillation than the CPM because of the weak 
electronic residual contribution Fel[𝜌i(r⃗)] . The charge oscil-
lation is directly related to the mean electrostatic potential 
�(r) or �Ni(r) . Thus, the CPM predicts a stronger more 

(13)

QM(r) = QM + 4�
∫

r

dM∕2

dr r2

[
∑

i=+,−

eZi�i(r) + �NM(r)

]
,

Fig. 1   Normalized induced charge QM(r)∕QM of the CPM (solid 
line) and the MCPM (dashed line) for the surface charge densi-
ties � = 0.01C∕m2 and 0.05C∕m2 , where � = 0.24 . The calculated 
QM(r)∕QM for the CPM is compared with the MC simulations [19] 
in the inset: solid circles for � = 0.01C∕m2 and open circles for 
� = 0.05C∕m2
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long-range mean electrostatic potential compared with the 
MCPM. On the other hand, the CPM and the MCPM show 
strong charge reversal at r ≈ dM , which corresponds to the 
diameter of the macroion, because of the large concentration 
of negative ions near the macroions. However, the charge 
oscillations for the MCPM decay more rapidly than those for 
the CPM. The above result contradicts that of Manzanilla-
Granados et  al. [20] for the MCPM; the CPM and the 
MCPM, which are based on the HNC/MSA model, predict 
the same particle distribution functions and mean forces 
between macroions. They predicted that the CPM had a 
much smoother, short-range correlation than of the MCPM. 
In our calculation, the first peak for the CPM was observed 
at r ≈ 3dM∕2 whereas the first peak for the MCPM was 
found at some distance away from r ≈ 3dM∕2 , even though 
the charge correlation increased with increasing surface 
charge density of macroions. We observed the long-range 
charge reversal at r ≈ dM to be a magnitude higher in abso-
lute value than the original surface charge of a macroion. 
This result confirms that the charge distribution of mac-
roions is affected by the charge correlation in a colloidal 
suspension.

The calculated normalized induced charges QM(r)∕QM 
for the CPM and the MCPM are presented in Fig.  2, 
where the surface charge densities are � = 0.05C∕m2 and 
� = 0.10C∕m2 and the packing fraction of macroions 
is � = 0.12 . As can be expected from Fig. 1, the charge 
oscillations are mild at a low surface charge density 
( � = 0.05C∕m2 ) rather than a high surface charge density 
( � = 0.10C∕m2 ). The reader should note that the valence 
ZM of macroions increases with increasing surface charge 
density � of macroions because ZM = ��d2

M
∕e and that the 

packing fraction of negative ions �− also increases to satisfy 
electroneutrality. At the same packing fraction � and surface 
charge density � of macroions, a strong, long-range charge 
oscillation is found when using the CPM rather than the 

MCPM because of the strong electronic residual contribu-
tion Fel[𝜌i(r⃗)].

Figure 3 depicts the radial distribution functions for the 
macroions, gMM = �M(r)∕�M , for the MCPM and the CPM, 
where the surface charge densities are � = 0.05C∕m2 and 
� = 0.10C∕m2 , and � = 0.12 . Here, the radial distribution 
functions for the negative and the positive ions, gM− and 
gM+ , are defined as gM− = �−(r)∕�− and gM+ = �+(r)∕�+ , 
respectively, because a macroion has been chosen as the cen-
tral ion. The peaks of the radial distribution functions for the 
CPM and the MCPM appear at r ≈ 7dM∕5 , and the charge 
oscillation attenuates very fast for the low surface-charge 
density ( � = 0.05C∕m2 ). The radial distribution function 
gMM(r) for the MCPM also shows a long-range correlation, 
even though the CPM predicts a slightly higher particle den-
sity distribution than the MCPM. This result implies that the 
particle density distributions of positive and negative ions 
are strongly affected by the particle density distribution of 
macroions. The inset of Fig. 3 shows the local charge density 
�NM(r)  o f  m a c r o i o n s ,  w h e r e 
𝜌NM(r⃗) =

eZM

𝜋d2
M

∫ ds⃗ 𝜌M(s⃗)𝛿
(

dM

2
− |r⃗ − s⃗|

)
 . An interesting 

thing is that the local charge distribution �NM(r) for the CPM 
predicts a maximum at r ≈ dM because �MM(r) = �M(r) (see 
Fig. 3) whereas �NM(r) for the MCPM shows a maximum at 
some distance away from r = 3dM∕2 because of the smeared-
out macroion (see the insert of Fig. 3). The overall picture 
illustrates that the particle density distribution of macroions 
�M(r) depends on the local charge density of macroions, 
which differs from the results of Manzanilla-Granados et al. 
[20].

The radial distribution function gMi(r) obtained from 
the MCPM for a packing fraction of macroion of � = 0.12 
is displayed in Fig. 4. At a fixed �-value, the high surface 

Fig. 2   Normalized induced charge QM(r)∕QM of the CPM (solid line) 
and the MCPM (dashed line) for a packing fraction � = 0.12

Fig. 3   Radial distribution function gMM = �M(r)∕�M for � = 0.12 and 
for � = 0.05C∕m2 or 0.10C∕m2 . The solid and the dashed line repre-
sent the CPM and the MCPM, respectively. The inset shows the cor-
responding local charge density �NM(r) for the MCPM. Notice here 
that the CPM and the MCPM for � = 0.05C∕m2 are indistinguishable
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charge density implies a high valence for a macroion. Long-
range correlations for the mean electrostatic potential. 
Induced charge appeared for higher surface charge density. 
At a fixed �-value, the maximum position of gMM(r) comes 
closer to the central macroion as the surface charge density 
of macroions increases [21]. This result can be explained 
as follows: with increasing surface charge of a macroion, 
the macroions keep away from one another because of 
the higher repulsive Coulomb force whereas the negative 
ions, i.e., counterions, gM−(r) accumulates more near the 
macroion. Thus, a higher particle density of macroions at 
r ≈ dM appears at a lower surface charge density, and the 
maximum position of gMM(r) becomes closer to the central 
macroion as the surface charge of macroion increases. The 
mean electrostatic potential �(r) (see the insert of Fig. 4) 
also illustrates stronger oscillating behaviors for the CPM 
than for the MCPM.

Figure 5 shows the radial distribution function gMM(r) for 
the MCPM, where the surface charge density � = 0.10C∕m2 . 
As can be expected from Fig. 4, a increase in the packing 
fraction of macroions relatively reduces the packing fraction 
of counterions �−(r) . The maximum position of the parti-
cle density distribution of macroion becomes closer to the 
central macroion because an increase in the packing frac-
tion of macroion relatively reduces the available volume of 
ions. In this case, the entropic force overcomes the repulsive 
coulomb force. Thus, for a low �-value, gMM(r) attenuates 
very fast with increasing distance between macroions. Once 
again, the mean electrostatic potential �(r) also shows strong 
oscillating behaviors at high packing fractions of macroion.

The normalized induced charge QM(r)∕QM for the MCPM 
is depicted in Fig. 6, where the surface charge density of 
macroion is � = 0.10C∕m2 . At a fixed surface charge den-
sity ( � = 0.10C∕m2 ), the normalized induced charge shows 
a strong oscillating behavior when the packing fraction of 

macroion is high ( � = 0.15 ). The distance between two 
QM(r)∕QM peaks increases with decreasing packing frac-
tion of macroions. On the other hand, at very high pack-
ing fraction of macroions, the distance between two peaks 
of induced charge is expected to approach the diameter of 
the macroion. At a high packing fraction of macroions, the 
model colloidal dispersion shows very long-range charge 
correlation, as well as charge reversal and overcharging.

The mean forces FMM(r)d∕kBT  between two macroions 
for two different surface charge densities of macroion 
� = 0.01C∕m2 and � = 0.05C∕m2 are presented in Fig. 7, 
where the packing fraction of macroions is � = 0.24 . 
The (total) mean force between two macroions becomes 
�FMM(r) =

d

dr

[
ln gMM(r)

]
 , where gMM(r) = �M(r)∕�M is 

the radial distribution function of macroions. As can be 
expected from Fig. 1, at low surface charge density of 
macroions, the mean force between two macroions near 
the surface of a macroion is repulsive. At high surface 

Fig. 4   Radial distribution functions gM−(r) , gM+(r) and gMM(r) for 
the MCPM for a packing fraction of � = 0.12 . The inset shows the 
mean electrostatic potential �(r) . The solid and the dashed lines are 
for � = 0.05C∕m2 and 0.10C∕m2 , respectively

Fig. 5   Radial distribution function gMM(r) for the MCPM where 
� = 0.10C∕m2 . The inset shows the mean electrostatic potential �(r) . 
The dotted, solid, and dashed lines are for � = 0.06 , 0.12, and 0.15, 
respectively

Fig. 6   Normalized induced charge QM(r)∕QM for the MCPM where 
� = 0.10C∕m2 . The long-dashed, dashed, and solid lines are for 
� = 0.06 , 0.12, and 0.15, respectively
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charge density ( � = 0.05C∕m2 ), the mean force shows 
a strong oscillating behavior due to the attractive force 
at the surface of the macroion and the repulsive force at 
r ≈ 1.5dM . A relatively strong long-range attraction for 
the highly charged particles was shown experimentally by 
Ise et al. [6]. The attraction at r ≈ 1.1 dM comes from the 
depletion effect due to the negative ions that condensed 
near the central macroion. Thus, a strong attraction is pre-
dicted at high surface charge density of macroions because 
many negative ions near the central macroion condense. 
This means that the increase in the surface charge den-
sity � enhances the mean force which has two component: 
the electrostatic and the entropic forces. The long-range 
attractions and repulsions are entropic effects, which over-
come the electrostatic repulsion of the macroions. Thus, 
the CPM, in which the colloidal charge is assumed to be 
in the center of particle, shows a very long-range mean 
force compared with the MCPM because of the strong 
electrostatic energy between macroions.

The mean forces between two macroions for the 
MCPM are displayed in Fig. 8 for � = 0.10C∕m2 . As can 
be seen from Fig. 7, the mean force near the surface of 
a macroion depends strongly on the surface charge den-
sity of the macroion � . At a fixed surface charge density 
( � = 0.10C∕m2 ), the mean force at the surface of a mac-
roion r = dM is gMM(r = dM) ≈ 0.0 , and a strongly oscil-
lating mean force behavior for a high packing fraction of 
macroion ( � = 0.15 ) compared with a low packing frac-
tion ( � = 0.06 ) is predicted. The attraction at r ≈ 1.2 dM 
comes from the effect of the negative ions that condensed 
near the central macroion. The condensation of negative 
ions near the central macroion enhances with increasing 
packing fraction of macroions. The strong attraction at 
r ≈ 1.2 dM was predicted at a high packing fraction of mac-
roions. This result explains that the long-range attractions 

and repulsions in the colloidal dispersion are entropic 
effects, which overcome the electrostatic repulsion of 
the macroions. On the other hand, one can calculate the 
mean force between a macroion and an ion of species i as 
�FMi(r) =

d

dr

[
ln gMi(r)

]
 . The mean force is strongly related 

to the surface charge density of macroions, as well as the 
packing fraction of macroions. In this case, the mean force 
FM−(r) between the macroion and a negative ion is highly 
attractive at the surface of the macroion whereas the mean 
force FM+(r) between the macroion and a positive ion is 
predicted to be repulsive force (see Fig. 4).

4 � Concluding remarks

In this paper, we proposed a theoretical model for studying 
the structural and the electrostatic properties of uniformly 
charged ions by using the MCPM. The charge distribution of 
macroions, which was neglected in the HNC/MSA theory of 
González-Calderón et al. [20–22], is included in the present 
theory for satisfying self-consistency in itself. The calcu-
lated result implies that the charge distribution of macroions 
and the packing fraction of macroion are strongly affected by 
the charge correlations and the mean forces between mac-
roions. This result contradicts those of Manzanilla-Grana-
dos et al. [20], where the particle distribution function and 
the mean force between macroions do not depend on the 
charge distribution of macroions. A long-range strong charge 
oscillation in the model colloidal suspension is found for 
the CPM, in which the colloidal charge is assumed to be in 
the center of particle, but not in the MCPM, because of the 
strong electrostatic energy between macroions. The origin 
of the long-range attractions and repulsions in the charged 
colloidal dispersions comes from the entropic effects, which 

Fig. 7   Mean force FMM(r)d∕kBT  between two macroions for the 
CPM(solid line) and the MCPM(dashed line), where � = 0.24

Fig. 8   Mean force FMM(r)d∕kBT  between two macroions for the 
MCPM, where � = 0.10C∕m2 . The dotted, dashed, and solid lines 
are for � = 0.06 , 0.12, and 0.15, respectively
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overcome the electrostatic repulsion of the macroions. Thus, 
strong attractions and repulsions between macroions are 
found at high packing fractions of macroion.

On the other hand, the present theory can be easily 
extended to charged colloidal dispersions with a volume 
charge distribution, i.e., 𝜌NM(r⃗) =

6eZM

𝜋d3
M

∫ ds⃗ 𝜌M(s⃗)𝜃
(
dM

2
− |r⃗ − s⃗|

)
 , 

where �(x) is the Heaviside step function. Furthermore, one 
can apply the present theory for studying the structural and 
the electrostatic properties of polymer latex solutions in 
which order-disorder structures coexist [8, 9, 22]. We will 
investigate these issues in the near future.
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Appendix: Electronic residual contribution 
c
(2)

el,ij
(r,�i)

We used an analytic expression to calculate the electronic 
residual contribution based on the solution in the mean-
spherical approximation, which yields reasonable accuracy 
[32–34]. The main difference between the MSA solution for 
size-asymmetric electrolytes with center–center interactions 
and the present solution for uniformly charged hard-sphere 
ions is the Coulomb interaction between two ions [10, 11, 
24–26]. In the MSA approach, the two-particle, direct, cor-
relation function (DCF) [32–34] for uniformly charged hard-
sphere ions, c(2)

chs,ij
(r, �i) , can be expressed as a sum of the 

hard-sphere and the electronic residual contributions:

where dij = (di + dj)∕2 and c(2)
hs,ij

(r, �i) is the two-particle 
DCF of the Percus–Yevick integral equation for the hard 
spheres [35, 36]. �(x) is the Heaviside step function: �(x) = 1 
for x > 0 , and �(x) = 0 for x < 0 . For the MCPM, the coef-
ficients Aij(r) becomes

with

(14)
c
(2)

chs,ij
(r, �i) =c

(2)

hs,ij
(r, �i) +

�e2ZiZj

�
Aij(r)�(dij − r)

+
e2ZiZj

r
�(r − dij),

(15)

Aij(r, 𝜌i) = 𝛼ij − ZiZj∕r, 0 ≤ r ≤ |di − dj|∕2
= 𝛽ij∕r − ZiZj∕r − 𝛾ij + r𝛿ij + r3𝜉ij, |di − dj|∕2 ≤ r ≤ dij
= 0, r > dij

(16)�ij = − 2[−Zinj + xisj − ais
2

j
∕3],

where si = ni + Γxi and xi = Zi + nidi [34]. The Γ and the ni 
functions are obtained numerically to satisfy the algebraic 
equations

with c = (�∕2)[1 − �∕6
∑

i=+,−,M �id
3

i
]−1.

The interaction between two charged hard-sphere ions 
for overlapping separation uij(r) is given by [10, 11, 26]

where the function Bij(r) , which represents the interaction 
potential between the ions [10, 11, 24–26], i.e., the mac-
roion–macroion, macroion–ion, and ion–ion interactions, is 
simply given by

Then, the electronic residual contribution between the hard-
sphere contribution and the Coulomb interaction c(2)

el,ij
(r, �i) 

becomes

Notice here that for hard-sphere ions with a charge embed-
ded at the center of the sphere (CPM), Eq. (24) exactly 

(17)
�ij =(di − dj)[(xi + xj)(si − sj)∕4

− (ai − aj)[(si + sj)
2 − 4ninj]∕16],

(18)
�ij =(xi − xj)(ni − nj) + (x2

i
+ x2

j
)Γ

+ (ai + aj)ninj − (ais
2

j
+ ais

2

j
)∕3,

(19)�ij =xisi∕ai + xjsj∕aj + ninj − (s2
i
+ s2

j
)∕2,

(20)�ij =[(si∕ai)
2 + (sj∕aj)

2]∕6,

(21)
Γ2 =

��e2

�

∑

i=+,−,M

�i(Zi + nidi)
2 and

− xiΓ = ni + c di

∑

i=+,−,M

�idixi

(22)uij(r) =
e2ZiZj

�
Bij(r)�(dij − r) +

e2ZiZj

r
�(r − dij),

(23)

BMM(r) =
2dM − r

d2
M

, 0 ≤ r ≤ dM

B−+ =B++ = B−− =
1

r
, 0 ≤ r ≤ d

B−M = B+M =
2

dM
, 0 ≤ r ≤ dM∕2

=
1

r
, dM∕2 ≤ r ≤ (d + dM)∕2.

(24)

c
(2)

el,ij
(r, �i) =c

(2)

chs,ij
(r, �i) − c

(2)

hs,ij
(r, �i) + �uij(r)

= −
�e2ZiZj

�

[
Aij(r) + Bij(r)

]
�(dij − r).
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recovers the MSA result for size-asymmetric electrolytes, 
is derived by Blum and Hiroike [32–34].
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