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small [1]. As recognized by most researchers, small samples 
tend to have very limited statistical power for detecting pop-
ulation differences (e.g., between groups) and relations (i.e., 
between variables) of interest. That is, even if a rather sub-
stantial difference or relation exists in the population from 
which we sample, small samples often fail to obtain a statis-
tically significant difference or relation. Consequently, using 
small samples, we will often fail to reject the null hypoth-
esis of no difference or no relation when that null hypothesis 
is not true. This testing error is called a Type II error [1], 
familiar to most researchers. So when a small sample size 
produces a significant difference, researchers erroneously 
conclude, ignoring the possibility of Type II error, that the 
difference must reflect a real effect.

However, researchers appear to be less aware of the fact 
that of all statistically significant findings obtained, a larger 
portion results in Type I errors (i.e., rejecting a null hypoth-
esis that is true) in the case of small samples when compared 
with samples of a larger size. It is important to understand 
this issue, as it challenges the aforementioned misconcep-
tion that a statistically significant outcome in a small sample 
must reflect a real effect. Let us, therefore, elaborate on this 
issue in a bit more detail.

What is the proportion of Type I error?

The statistical significance level used in educational 
research is typically 5 % (a = 0.05). This means that if the 
null hypothesis is true, we will still obtain a statistically sig-
nificant result and thus commit a Type I error in about one 
of every 20 samples regardless of sample size. For a small 
sample, we will have the same number of incorrect rejec-
tions but a smaller number of correct rejections (more Type 
II errors) when compared with large samples. Thus, even 

The overall purpose of the ‘Statistical Points and Pitfalls’ 
series is to help readers and researchers alike increase 
awareness of how to use statistics and why/how we fall 
into inappropriate choices or interpretations. We hope 
to help readers understand common misconceptions and 
give clear guidance on how to avoid common pitfalls 
by offering simple tips to improve your reporting of 
quantitative research findings. Each entry discusses a 
commonly encountered inappropriate practice and alter-
natives from a pragmatic perspective with no mathemat-
ics involved. We encourage readers to share comments 
on or suggestions for this section on Twitter, using the 
hashtag: #mededstats.

The statement that a statistically significant outcome in a 
small sample must reflect a real effect is misleading and may 
result in overconfidence in findings obtained in small-sam-
ple studies. We recommend caution in drawing inferences 
for educational practice from small samples, and provide 
some practical tips for reporting at the end of this entry.

We must remember that rejecting a null hypothesis is 
always accompanied with a chance that the null hypothesis 
was actually true. In a study, we take a sample to estimate 
results for the whole population from which the sample is 
taken. Means, correlation coefficients, and other sample 
findings tend to be imprecise estimates of the correspond-
ing population parameters of interest when sample sizes are 

http://crossmark.crossref.org/dialog/?doi=10.1007/s40037-016-0256-6&domain=pdf&date_stamp=2016-3-15


123Statistical significance does not imply a real effect

of 1/65 and 1/17 will be different when assuming a differ-
ent ratio of true/untrue null hypotheses and depends on the 
sample sizes of the two scenarios as well as on the statis-
tical significance level one chooses. Apart from the illogi-
cal scenario in which there are no true or no untrue null 
hypotheses, the rate of Type I errors in a pile of statistically 
significant findings is always expected to be higher in small 
samples than in large samples.

To conclude

We should always be wary of interpreting a statistically sig-
nificant effect as reflecting a real effect but even more so in 
the case of small samples. Of course, logistic factors (e.g., 
time constraints, only a limited number of subjects avail-
able) sometimes limit options in terms of sample size (e.g., 
two groups of ten subjects or a linear correlation in a single 
sample of 15 subjects). However, whatever the reason for 
using small samples, we recommend caution in drawing 
inferences for educational practice. Reporting confidence 
intervals may help both authors and readers to appreciate 
the uncertainty around sample estimates, especially for 
small samples [3]. Reporting estimates of effect size (i.e., 
the strength of a relation or effect of interest expressed in 
statistical units such as standard deviations) may help to do 
power analyses and required sample size analyses for sub-
sequent studies, but they are not immune from the effects 
of poor parameter estimates arising from small samples [4]. 
Replication studies and meta-analyses [5] are commonly 
good options to consider—a series of studies generally pro-
vides more accurate estimates than a single study—but even 
more so when dealing with small samples.
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though we start with the same Type I error rate before col-
lecting any data (here: 5 %, meaning one in every 20 true 
null hypotheses will be rejected), the expected proportion of 
Type I errors in a pile of rejected null hypotheses (i.e., statis-
tically significant results) is always larger when using small 
samples than when using larger samples. Let us demonstrate 
this with the numerical example summarized in Table 1.

Suppose that two researchers, A and B, decide to each 
conduct an experiment to compare two types of objective 
structured clinical examinations (OSCEs) in terms of how 
much learning they evoke. Researcher A runs the experi-
ment with 64 residents per condition, whereas researcher 
B has only 11 residents per condition. If there is a differ-
ence between the two OSCEs in the population and we draw 
many, many samples of the same size from that population, 
statistical power is the proportion of samples that yields a 
statistically significant outcome and thus (correctly) calls 
for the null hypothesis to be rejected. In the case of a so-
called ‘medium size’ or half a standard deviation difference 
at population level, software such as G*power [2] will tell 
you that a traditional two-sided t-test with a statistical sig-
nificance level a = 0.05 yields a statistical power of 0.80 for 
researcher A and a statistical power of 0.20 for researcher B. 
In other words, if we were to run researcher A’s study many, 
many times, we would expect to find a statistically signifi-
cant result in 80 % of the cases, while running researcher 
B’s study many, many times would result in a statistically 
significant result in only 20 % of the cases.

Note that these numbers of 80 % and 20 % take as start-
ing point that the null hypothesis is not true, which is the 
case when at population level there is half a standard devia-
tion difference and the null hypothesis states that there is no 
difference. However, we usually do not know beforehand 
whether the null hypothesis is true or not. For ease of calcu-
lation, suppose that we test 100 null hypotheses of which 20 
are true and 80 are not true because in the latter cases there 
is half a standard deviation difference between conditions 
under comparison where the null hypothesis states there is 
no difference. For all tests, we use the conventional statisti-
cal significance level of a = 0.05.

Using researcher A’s scenario (n = 64 per condition) as 
starting point, we expect to reject one of the 20 true null 
hypotheses (a= 0.05; 1 = 0.05 × 20) and 64 of the 80 untrue 
null hypotheses (power of 0.80; 64 = 0.8 × 80). Using 
researcher B’s scenario (n = 11 per condition), we also 
expect to reject one of the 20 true null hypotheses (a= 0.05; 
1 = 0.05 × 20) but only 16 of the 80 untrue null hypotheses 
(power of 0.20; 16 = 0.2 × 80). Table  1 summarizes the 
comparison.

Thus, scenario A is expected to result in a pile of 65 sta-
tistically significant findings, one of which is a Type I error, 
whereas in scenario B we expect a pile of 17 statistically 
significant findings, one of which is a Type I error. The rates 

Table 1  Scenario A (n = 64 per condition) and scenario B (n = 11 per 
condition) in terms of expected proportions of Type I error prevalence 
in a pile of statistically significant outcomes.

Scenario A (n = 64) B (n = 11)

Expected rejections of the 20 true 
null hypotheses

1 1

Expected rejections of the 80 untrue 
null hypotheses

64 16

Expected proportion of Type I errors 
in the pile of statistically significant 
results

1/65 (≈ 0.015) 1/17 (≈ 0.059)
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