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Data analysis in medical education research: a multilevel 
perspective

Jimmie Leppink

Introduction

A substantial part of medical education research focuses on 
learning in teams (e.g., departments, problem-based learn-
ing groups) or centres (e.g., clinics, institutions) that are fol-
lowed over time. Individual students or employees sharing 
the same team or centre tend to be more similar in learning 
than students or employees from different teams or centres 
[1]. In other words, when students or employees are nested 
within teams or centres, there is an intra-team or intra-centre 
correlation that should be taken into account in the analysis 
of data obtained from individuals in these teams or centres. 
Further, when individuals are measured several times on 
the same performance (or other) variable, these repeated 
measurements tend to be correlated, that is: we are dealing 
with an intra-individual correlation that should be taken into 
account when analyzing data obtained from these individu-
als [2–3]. This paper presents the benefits that result from 
adopting a proper multilevel perspective on the conceptu-
alization and estimation in such a study context, a context 
that is quite common in medical education research. Many 
researchers still resort to methods that cannot account for 
intra-team and/or intra-individual correlation and this may 
result in incorrect conclusions with regard to effects and 
relations of interest.

Context

Suppose, a researcher is interested in the effect of two types 
of group learning on test performance right after a course 
(i.e., immediate test performance) and one month later (i.e., 
delayed test performance), and decides to conduct a random-
ized experiment. The advantage of randomized experiments 
is that they allow for cause-effect inference much more than 
quasi-experimental and other types of studies.
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The researcher decides to randomly allocate 450 students 
to 30 learning groups in such a way that every learning 
group comprises 15 students. Next, the learning groups are 
allocated randomly to either treatment A (control condition) 
or B (experimental treatment condition). The 15 A-groups 
study a medical problem by means of traditional coopera-
tive learning, while the 15 B-groups study the same medical 
problem—and for the same interval of time as in the control 
group—but by means of a newly developed and more struc-
tured type of cooperative learning. The immediate test is 
administered directly after treatment. In the month after the 
test, students do not receive any additional treatment; they 
resume their usual study activities. At the end of the month, 
a delayed test is administered. Figure 1 visualizes the study 
design described.

This type of study design is also known as split-plot 
design. This term stems from agricultural experiments in 
which split plots of land received different treatments and 
were monitored or measured across time [4]. Likewise, in 
quite a number of educational and psychological experi-
ments, students or other subjects are randomly allocated 
to different treatment conditions and are measured two or 
more times on the same performance or other variable [5]. 
In this example, we are dealing with such a design and we 
are confronted with one additional feature: treatment is not 
administered at the level of the individual student (as is the 
case in many psychological experiments) but at the level 

of learning groups in which the students take part (as is the 
case in more and more educational experiments). The fol-
lowing two hypotheses are to be tested:

●● Hypothesis 1 (H1), immediate treatment effect: stu-
dents who undergo treatment B perform better than their 
peers who undergo treatment A, on both immediate and 
delayed test; and

●● Hypothesis 2 (H2), treatment-by-time interaction effect: 
students who undergo treatment A will lose more knowl-
edge in the month following the immediate test than stu-
dents who undergo treatment B.

In this context, we can distinguish between fixed effects 
and random effects. The purpose of a study like this is to 
generalize the findings to a larger population of (possible) 
students, and we assume that the students in our study form 
a random sample from a population that has a particular and 
preferably Normal (i.e., bell-shaped) distribution. In other 
words, we treat ‘student’ as a random effect. Treatment, 
however, is a fixed effect; we are interested in the specific 
comparison of treatments A and B, and we do not consider 
these two treatments to be a random sample of possible treat-
ments to which we generalize. Likewise, in this context time 
is treated as a fixed effect; we are interested in differences in 
performance between two fixed time points, and we do not 
consider these two time points a random sample of possible 
time points to which we generalize. Finally, learning group 
(i.e., 15 students each) is treated as a random effect for the 
same reason as we treat student as a random effect; we con-
sider the learning groups in our study a random sample from 
a population of (possible) learning groups that has a particu-
lar and preferably Normal (i.e., bell-shaped) distribution.

Approach

In fact, we can distinguish three hierarchical levels in this 
problem: learning group (level 3: k), students nested within 
learning groups (level 2: j), and repeated measurements from 
the same students (level 1: i). Three common approaches to 
this type of research problems are:

●● Single-level fixed-effects or ordinary least squares 
(OLS) regression in which the three hierarchical lev-
els are treated as one single level and in which random 
effects of student and learning group are ignored;

●● Split-plot analysis of variance (ANOVA) or two-level 
mixed-effects regression in which the learning group 
level (i.e., k) and thus random effect of learning group 
is ignored; and

●● Three-level mixed-effects regression, which takes into 
account the full three-level hierarchical structure of the 
data.

Fig. 1  Study design used as example in this paper
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consideration, sample size, and a few other factors [6–9]. 
Since SPSS is a much more commonly used programme 
among medical education researchers than MLwiN, some 
instructions on how to do multilevel analysis in SPSS are 
provided in the Appendix.

Between-subject effects

In OLS regression, all test outcomes from all students 
are assumed to be independent and identically distributed 
(i. i. d.). The research problem introduced previously is rep-
resented in the following equation:

where
yi = test score y observed at data point i;
b0 = the average immediate test score in the control condi-
tion (A);
b1 = the difference between treatment conditions in average 
immediate test score;
b2 = the average change from immediate to delayed test in 
the control condition (A);
b3 = the difference between treatment conditions in average 
change from immediate to delayed test
(treatment-by-time interaction); and
ei = the residual or random deviation from the fixed 
prediction.

The student-by-time interaction is ignored; all repeated 
measurements are assumed to be independent observations, 
as if they were 900 randomly sampled students attending 
one and the same lecture once in time. Due to the balanced 
design, the fixed point estimates b0 (44.076), b1 (11.089), 
b2 (− 4.036), and b3 (2.867) in OLS regression are the same 
as the fixed point estimates in the two-level and three-level 
model presented later on. However, the standard errors and 
residuals are different in each model.

Within-subject effects

Repeated measurements data enable the researcher to sepa-
rate within-subject variance from between-subject vari-
ance, and both types of variance are important in medical 
education research. Two types of correlation resonate in 
repeated measurements data: data sampling is hierarchi-
cal in that repeated measurements are taken from the same 
subjects (here: students), and educational measurement 
largely results from observation or self-reporting which cre-
ates serial correlation. Both types of correlation should be 
modelled appropriately. If students are measured more than 
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We speak of mixed-effects analysis if our analysis 
involves at least one fixed and at least one random effect. 
Since all random effects are ignored in OLS regression, we 
call OLS regression fixed-effects analysis. The two-level 
approach includes the random effect of student, and the 
three-level approach includes the random effects of both 
student and learning group.

This paper compares the aforementioned three 
approaches, using this study context as example. For sim-
plicity, this example uses equally large learning groups, an 
equal number of learning groups per treatment condition, 
and all students perform both the immediate and delayed 
test. We then speak of a ‘balanced design’. As a conse-
quence of this design, all three approaches yield the same 
point estimates with regard to average treatment condition 
differences on immediate and delayed test. For unbalanced 
data, both OLS and split-plot ANOVA are likely to yield 
biased point estimates [2]. Further, it is demonstrated in 
this paper that, even for balanced data, OLS and split-plot 
ANOVA are biased in different ways with regard to vari-
ances and standard errors.

In the design at hand, two repeated measurements (level-
1: i) are taken by 450 students (level-2: j) who are nested 
within 30 learning groups (level-3: k) that comprise 15 stu-
dents each. The learning group level residual on the imme-
diate test is a random, allowed-to-vary departure from the 
overall mean of the fixed-effect treatment condition on the 
immediate test, the student level residual on the immediate 
test is an allowed-to-vary random departure from the learn-
ing group level departure on the immediate test, and the 
change from immediate to delayed test is student-dependent.

Method

For educational purposes, to allow for a good comparison of 
the three methods, data from this design were simulated in 
SPSS v19; a detailed overview of the simulation procedure 
is available from the author.

The advantage of a simulation study is that the outcomes 
of the study are known and as such it allows for a comparison 
of strengths and weaknesses of various methods of analysis, 
here: OLS regression, split-plot ANOVA, and three-level 
mixed-effects regression. All analyses were performed in 
MLwiN v2.10, a programme designed for multilevel analy-
sis and suitable for a context like this, using for estimation 
fully informed maximum likelihood (FIML) for the fixed 
effects and restricted maximum likelihood (REML) for the 
random effects (in the two-level and three-level model) [3]. 
There is quite a variety of programmes that enable multi-
level analysis (e.g., SAS, SPSS, STATA, HLM, SYSTAT, 
HLM, MLwiN, Mplus, R), and which programme is recom-
mended depends on study design, types of variables under 
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performed on the aggregated data. In this approach, the stu-
dent level is wiped out of the analysis. Given that we (and 
researchers in medical education in a broader context) are 
also interested in the development of individual students, 
and effects on the individual student level can be different 
from effects on the learning group level, reducing the indi-
vidual students’ data to their learning group average is not a 
feasible approach in medical education research.

A second group of researchers attempts to take the 
learning group level into account by including it as fixed 
effects in either an OLS regression model, or in a split-plot 
ANOVA. Either way, the fixed learning group approach is 
problematic for a number of reasons. First of all, in OLS 
regression and split-plot ANOVA, as discussed previously, 
the fixed effect of the model consumes four degrees of 
freedom (one for each of b0, b1, b2, and b3). When treating 
group as fixed factor, one needs dummy variables for the 
various learning groups and dummy variables for the learn-
ing group-by-time interaction. As a result, the fixed part 
requires 60 instead of four degrees of freedom (imagine 
the consequences if a study includes 300 learning groups). 
This affects standard errors greatly and results in highly 
inaccurate estimation. Moreover, no single parameter in the 
model addresses the treatment effect. Since each treatment 
condition comprises 15 groups, we cannot include both 
treatment and group as fixed effects in the model. Although 
in a balanced design we can compute the average learn-
ing group score for each treatment condition and this will 
indirectly lead to the treatment condition differences in 
average test score as obtained via the OLS regression or 
split-plot ANOVA model discussed previously, the learning 
group-specific standard errors in the model cannot be easily 
translated into one standard error for the treatment effect. 
The same problem is present in the analysis of the time 
effect and the treatment-by-time interaction effect. Finally, 
including learning group as fixed effect in the model dis-
ables generalization to other learning groups. One is gener-
ally interested in the effects of treatments A and B in any 
learning group that could apply one of these treatments. 
The 30 learning groups should therefore be considered as 
random learning groups; the first 15 learning groups form 
a random sample from a population of learning groups in 
which treatment A is applied, and the other 15 learning 
groups form a random sample from a population of learn-
ing groups in which treatment B is applied.

Three levels

Multilevel analysis can take the hierarchical structure of 
the data into account in a way that none of the previously 
discussed approaches does, and enables correct analysis at 
each of the three levels: learning group (k), student (j), and 
repeated measurement (i). The appropriate multilevel model 

twice, serial correlation observes special attention, for there 
are different types of serial correlation [2–3].

In the case of a balanced design with two repeated mea-
surements, quite some researchers opt for split-plot ANOVA. 
In fact, this is a two-level mixed-effects model, in which 
student is the upper level (j) and the repeated measurements 
are correctly treated as observations from the same students. 
The within-subject (i.e., student) variance is separated from 
the between-subject variance, which is something that does 
not happen in OLS regression. The students participating 
in the study are assumed to form a random sample from a 
population that follows a particular (ideally: Normal) dis-
tribution. The OLS regression equation can be adjusted to 
derive the regression equation for the current model:

where
yij = test score y observed for student j at repeated measure-
ment i;
b0j = the average immediate test score of person j in the con-
trol condition (A); and
eij = the residual or random deviation of student j at repeated 
measurement i from the fixed prediction.

In the equation above

and u0j is the student-specific deviation in immediate test 
score with regard to b0. Note that u0j and b0j are random (not 
fixed) effects, hence the denomination mixed-effects model. 
In the standard error of a between-subject effect such as 
the experimental treatment effect, both within-subject and 
between-subject variance are present and cannot be sepa-
rated. In the standard error of a within-subject effect such 
as change in test score over time the within-subject vari-
ance can and should be separated from the between-subject 
variance. It is for that reason that, as becomes clear in the 
results section later on, OLS regression yields a larger stan-
dard error for b2 and b3 than split-plot ANOVA.

Learning groups

The learning group level is not taken into account in either 
OLS regression or in split-plot ANOVA. While the within-
student between-measurement correlation is accounted for 
in split-plot ANOVA, the within-group between-subject 
correlation is not, and in OLS regression both types of cor-
relation are ignored. Some researchers attempt to solve this 
by aggregating the data to the level of learning group. An 
average test score is then computed per repeated measure-
ment for every learning group, and split-plot ANOVA is 

y b b b
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For b2j holds

where
b2 = the average change from immediate to delayed test in 
the control condition (A); and
u2jk = the deviation in change from immediate to delayed test 
for student j in learning group k with regard to b2.

Thus, the model can also be written as

For student j in treatment condition A the immediate test 
score is (b0 + v0k + u0jk), while for student j in treatment con-
dition B the immediate test score is (b0 + v0k + u0jk) + b1. For 
student j in treatment condition A the change from immedi-
ate to delayed test is (b2 + u2jk), whereas for student j in treat-
ment condition B the change is (b2 + u2jk) + b3. The level-3 (k) 
residuals for the various learning groups v0k are assumed to 
form a random sample from a normally distributed popula-
tion with mean zero and variance 2

0vσ :

The level-2 (j) residuals for the students nested within 
learning groups (k), u0jk and u2jk, are also assumed to form 
random samples from normally distributed populations with 
mean zero and variance uΩ :

Results

Table 1 presents standard errors (SE) for each of b0 (44.076), 
b1 (11.089), b2 (− 4.036), and b3 (2.867), as well as random 
intercept variance at the learning group level (k), random 
intercept variance and random slope variance and their 
covariance at the student level (j), and the lowest-level 
residual (e) and associated SEs.

OLS heavily overestimates the standard errors for b2 and 
b3, effects in which within-subject variance plays a role. 
The within-subject variance is separated from the between-
subject variance in split-plot ANOVA and the three-level 
model, and as a consequence, the standard errors for b2 and 
b3 are much smaller than according to OLS. Ignoring the 
learning group level does not affect the standard errors for 
b2 and b3 in the split-plot ANOVA. This is because within-

b b uj jk2 2 2= + ,
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is a three-level mixed-effects model. In this model, the aver-
age immediate test score in the control condition, the differ-
ence in average immediate test score between the treatment 
conditions, the average change from immediate to delayed 
test in the control condition, and the difference in average 
change from immediate to delayed test between treatment 
conditions together form the fixed part. The random part 
can be fully explained by a combination of random intercept 
variance at the learning group level (k), and random inter-
cept variance and random slope variance (and their covari-
ance) at the student level (i), meaning that the residual on 
the lowest level—the level of the repeated measurements 
(i)—is equal to zero (and does not consume any degree of 
freedom). Consequently, the model consumes eight degrees 
of freedom, of which four for the fixed part and four for 
the random part (including one for the covariance between 
random intercept and random slope on the level of student). 
The full model is as follows:

and given that eijk, the residual on the level of repeated mea-
surement i from student j in learning group k is equal to 
zero, the model can be reduced to

where
yijk = the test score from student j from learning group k on 
repeated measurement i;
b0jk = the immediate test score of student j from learning 
group k in the control condition (A);
b1 = the difference in average immediate test score between 
the treatment conditions;
b2j = the change from immediate to delayed test for student j 
in the control condition (A); and
b3 = the difference in average change from immediate to 
delayed test between treatment conditions.

For b0jk holds

where
b0 = the average immediate test score in the control condi-
tion (A);
v0k = the learning group-specific deviation in average imme-
diate test score with regard to b0; and
u0jk = the student-specific deviation in immediate test score 
with regard to v0k.
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The beast of aggregation

In any case, aggregating student-level data to some group 
average does not resolve the phenomenon of within-group 
dependency and is rarely if ever a good approach to deal 
with such dependency. This also holds for situations where 
for instance groups of students trained by the same clinical 
teacher have to rate teaching skills or other characteristics of 
that teacher. While a common argument to ‘justify’ aggrega-
tion is that such ratings aim at ‘evaluating the performance 
of an individual clinical teacher at the workplace’ [11], stu-
dents rarely provide exactly the same ratings, some clinical 
teachers may receive more ratings than others, and some 
clinical teachers may receive more varied ratings than oth-
ers. All this information is lost when aggregating students’ 
data to one single average score per teacher, and this can 
have major influences on effects and relations of interest, 
including negative correlations being artificially changed 
into positive ones and vice versa [1]. Therefore, do not wipe 
out the student level through aggregation.

A similar reasoning holds for repeated measurements. 
Recently, a series of well-designed randomized experi-
ments provided evidence for the statement that in studies 
where learners have to perform a series of tasks, it is better 
to measure a characteristic of interest—for instance men-
tal effort—after each task (i.e., repeatedly) than once retro-
spectively [12]. This is an excellent statement, for repeated 
measurements data enable the researcher to separate within-
subject variance from between-subject variance, and both 
types of variance are important in (medical) education 
research. However, if we aggregate these repeated measure-
ment data to one average score to then correlate that average 
score to some other (perhaps also aggregated) variable, we 
fall in the same trap of aggregation and can face potential 
serious distortions of effects and relations of interest [1].

N students being measured k times does not equate N times 
k independent observations

Ignoring intra-individual correlation as is done in OLS is 
unfortunately still quite common in (medical) education 
research, including in high-quality research published in 
respectable journals. For instance, in a recent study, six 
medical residents who individually interpreted eight elec-
trocardiograms (ECGs) were treated as a ‘sample size of 
48’ (i.e., six times eight) on which something comparable 
to OLS regression was performed [13]. This is like see-
ing 48 residents who independently rated one single ECG. 
In the latter case, assuming 48 independent observations 
could be realistic. In the current context, however, there is a 
within-resident between ECG/interpretation correlation that 
reduces the number of independent observations to some-

subject effects have different variances and degrees of free-
dom than between-subject effects, and ignoring the learning 
group level only affects the degrees of freedom of between-
subject effects. This also explains why the standard error for 
b1 is underestimated in both OLS and split-plot ANOVA.

Conclusion

The advent of the personal computer with more and more 
computational power resulted in an increased use of mul-
tilevel models [10]. Nonetheless, many still use OLS and 
related ANOVA approaches for multilevel data because 
they are used to it. For instance, in experimental psychology 
there is a longstanding tradition of using ANOVA models, 
and OLS is typically (over)used in much of health research. 
Many researchers continue using ANOVA or OLS because 
they ‘have always done it like that’ and think that ‘a more 
complex analysis does not make much difference anyway.’ 
Indeed, there are situations when a more complex analy-
sis does not make much difference. That is, when little to 
no interaction between students within groups results in 
very little within-group dependency, taking into account 
the group level may not result in substantially different 
outcomes with regard to the effects or relations of interest. 
However, this is not the norm, and even smaller within-
group dependency should make researchers examine what 
adding the group level changes in outcomes [1].

Table 1  Standard errors (SE) for each of b0 (44.076), b1 (11.089), b2 
(− 4.036), and b3 (2.867), as well as random intercept variance at the 
learning group level (k), random intercept variance and random slope 
variance and their covariance at the student level (j), and the lowest-
level residual (e) and associated SEs (between parentheses)
Model OLS regression

(single level)
Split-plot ANOVA
(two levels)

Three-level 
mixed-effects

SE(b0) 1.481a 1.481a 5.344
SE(b1) 2.095a 2.095a 7.557
SE(b2) 2.095b 0.267 0.267
SE(b3) 2.962b 0.378 0.378
s2(v0k) – – 422.301 (110.551)
s2(u0jk) (SE) – 485.599 (32.498)c 90.020 (6.212)
s2(u2jk) (SE) – – 16.048 (1.070)
cov(u0jk, u2jk) 
(SE)

– – 0.980 (1.854)

e (SE) 493.624 (23.167) 8.025 (0.533)d 0.000 (0.000)
aunderestimation of SE due to overestimation of degrees of freedom
boverestimation of SE, since within-subject variance is not separated 
from between-subject variance
cu0j for this model, since k is ignored here
dthis is the difference between 493.624 and 485.599; it is the variance 
assumed for both treatment conditions
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estimated correctly. Multilevel analysis is the only approach 
that enables the researcher to conceptualize the hierarchi-
cal structure of the data and specify the hierarchical levels 
in the data correctly and completely. In split-plot ANOVA, 
the given three-level mixed-effects structure is reduced to a 
two-level mixed-effects structure, and in OLS regression it 
is reduced to a one-level fixed-effects structure. The fixed 
learning group approach results in non-interpretable models 
that consume many degrees of freedom and the estimates 
cannot be used to generalize to other learning groups in 
which treatment A or B is or could be applied.

Secondly, whether one is interested in estimating 
between-subject or within-subject effects or a combina-
tion of these two types, multilevel modelling enables the 
researcher to model and estimate these effects appropriately. 
OLS regression results in underestimated standard errors 
of between-subject (here: treatment) effects and overesti-
mated standard errors of within-subject (here: time) effects 
and split-plot interaction (here: treatment-by-time) effects, 
whereas the split-plot ANOVA approach results in under-
estimated standard errors of between-subject effects. While 
standard errors of within-subject and split-plot interaction 
effects are inflated when intra-student correlation is ignored, 
ignoring intra-group correlation induces a downward bias 
in standard errors of between-subject effects. Standard 
errors affect outcomes of statistical significance tests and 
the width of confidence intervals around the point estimates 
(i.e., the latter are used for interval estimation). Underesti-
mated standard errors result in a larger Type I error prob-
ability in hypothesis testing (i.e., incorrect rejecting of a true 
null hypothesis) and too narrow confidence intervals for an 
effect or relation of interest. Overestimated standard errors 
result in larger Type II error probability in hypothesis test-
ing (i.e., failing to reject an untrue null hypothesis) and too 
wide confidence intervals for an effect or relation of interest. 
Either of the two can result in incorrect conclusions with 
regard to (treatment) effects and relations of interest, and 
this is not a good thing if we decide to use the outcomes of 
our analyses for curriculum and policy making in (medical) 
education.

Thirdly, in all approaches discussed in this paper except 
for the three-level model, different types of homogeneity 
assumptions are made. OLS regression assumes homogene-
ity of variance across combinations of treatment condition 
and repeated measurements (which is what ‘identically’ in 
i.  i. d. refers to), meaning for the design discussed in this 
paper that the variance in immediate test score is equal for 
both treatment conditions and equal across repeated mea-
surements. In split-plot ANOVA, homogeneity of the cova-
riance matrix for both treatment conditions is assumed. 
Both types of homogeneity assumptions are frequently vio-
lated, and not taking these violations into account can lead 
to serious bias in standard errors and interval estimation. 

where between the number of residents (i.e., six) and the 
total number of data points (i.e., six times eight).

A slightly different yet similar approach is chosen when 
researchers perform separate ANOVAs to test for group dif-
ferences at each time point instead of accounting for the fact 
that at least considerable proportions of students have taken 
multiple tests and that students taking the test at some point 
may have been nested within learning groups [14]. Even if 
testing for group differences at a specific time point is legiti-
mate from an interest in group differences at that very point 
in time, ignoring group nesting and the intra-group correla-
tion that goes with it tends to result in an overestimation of 
the number of independent observations at that time point 
and this may exaggerate to some extent the statistical sig-
nificance of a group difference at that time point.

One thing should be added, before turning to the next 
section. The papers used as examples of studies in which a 
multilevel approach should or could have been used [11–14] 
were not chosen because of a lack of quality. On the contrary, 
each of the papers discussed presents high-quality research 
published in a respectable journal. However, it is well possi-
ble that adopting a multilevel analysis approach would have 
resulted in somewhat different conclusions with regard to 
some effect(s) or relation(s) of interest. These papers illus-
trate that even in the case of a well-designed study, differ-
ent approaches to analysis do exist and it is worth thinking 
carefully about which analysis approach accounts for your 
study design and data to an optimal extent. There is a meta-
phorical bridge between research questions, study design, 
and data analysis; the study design is supposed to logically 
follow from your research questions and should be reflected 
in the data analysis stage. Even if both optimal and sub-
optimal approaches of analysis result in a statistically sig-
nificant p-value for a particular effect or relation of interest, 
statistics is not in the first place about p-values; it is rather 
about the mathematical modelling of empirical phenomena. 
For instance, it is possible that in a particular context OLS 
regression yields a statistically significant positive correla-
tion between two variables where appropriate multilevel 
regression yields a statistically significant negative correla-
tion between the same variables.

In the following section, some benefits of multilevel 
analysis to the aforementioned approaches are discussed.

Some benefits of multilevel analysis

Compared with the approaches discussed previously, appro-
priate multilevel analysis has a number of benefits on the 
conceptualization and estimation in a study context as dis-
cussed in this paper.

Firstly, multilevel analysis stimulates the researcher to 
conceptualize and specify the various levels in the research 
design, so that the variance at each level can be modelled and 
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Essentials

●● When individuals are nested within teams, there is an 
intra-team correlation that should be taken into account 
in the analysis of data obtained from individuals in these 
teams or centres.

●● The intra-individual correlation resulting from individu-
als being measured two or more times should be taken 
into account when analyzing data obtained from these 
individuals.

●● Multilevel analysis enables the researcher to conceptual-
ize the hierarchical structure of research data and appro-
priately account for intra-individual and/or intra-team 
correlation.

●● Traditional regression and analysis of variance methods 
fall short in dealing with intra-individual and/or intra-
team correlation and are therefore generally not recom-
mended in such a context.

●● Much of (medical) education research is about individu-
als nested within teams and/or individuals measured 
repeatedly; therefore, (medical) education research pro-
vides a natural context for multilevel analysis.

Source(s) of support in the form of grants  None.

Appendix

This appendix provides some instructions on how to do mul-
tilevel analysis in SPSS v19 and later. For a more detailed 
tutorial of multilevel analysis in SPSS, Chap. 20 in Andy 
Field’s Discovering Statistics Using IBM SPSS Statistics is 
recommended [17].

Data entry

In studies in which you have individuals nested within 
learning groups or a similar kind of random groups, take 
care that your data file has as many rows as there are indi-
viduals and that you have two separate columns for group 
and individual code, respectively. This way, you communi-
cate to SPSS that row X in the data file has all the data from 
individual j in learning group k.

In studies in which individuals have been measured 
repeatedly on the same performance or other variable, take 
care that the number of rows in your data file equals the 
number of individuals times the number of repeated mea-
surements (i.e., univariate or long data file). This way, 
you communicate to SPSS that row X in the data file cor-
responds with individual j measured at time point i. This 
is different from what people trained in classical repeated 
measures ANOVA are used to, because there you typically 

Further, in designs in which students undergo more than two 
repeated measurements, different serial correlation struc-
tures can arise. Multilevel analysis enables the researcher to 
model heterogeneity of variances and potential serial corre-
lation easily. In the study discussed in this paper, difference 
in variance between immediate and delayed test score and 
between treatment conditions is modelled by the inclusion 
of the random intercepts and random slope. The random part 
is modelled completely, whereas in all other approaches dis-
cussed in this paper a considerable proportion of the random 
part remains unexplained.

Fourthly, especially in non-experimental studies, unbal-
anced designs (e.g., learning groups of varying size, missing 
data) are to be expected, and then split-plot ANOVA and 
OLS regression yield biased point estimates. However, even 
in experimental studies, dropout can occur, and then mul-
tilevel analysis generally provides a less biased and more 
efficient approach than split-plot ANOVA, OLS regression 
or similar approaches [15].

A note on the number of levels

The need for a three-level mixed-effects model in this paper 
arises from the presence of both intra-individual correlation 
and intra-group correlation. The intra-individual correlation 
results from the same individuals being measured twice, 
while the intra-group correlation is due to the fact that indi-
viduals were learning in groups of 15. Had only one test 
been administered (instead of two), there would have been 
no repeated measurements and thus no intra-individual cor-
relation to be taken into account in the analysis. In that case, 
a two-level model with group (level-2: j) and individual 
student (level-1: i) would have been appropriate. This may 
hold even if group size is as small as two students [16].

Likewise, had treatment not been administered at the level 
of groups of collaborating individuals but at the level of the 
individual, there would have been no intra-group correla-
tion to be taken into account in the analysis. If then students 
were still measured twice (i.e., immediate and delayed test), 
a two-level model with individual student (level-2: j) and 
measurement occasion (level-1: i) would have been appro-
priate [15]. OLS could have been appropriate had treatment 
been administered at the level of the individual and only 
one test was administered (i.e., no repeated measurements).

Many medical education research questions focus on 
learning in teams or clinics and/or learning over time. In 
this context, medical education research could profit from 
the benefits of multilevel analysis more than it has done 
until now. This paper demonstrates what can happen when 
resorting to a frequently used but suboptimal method of 
analysis and provides an approach that can be used by other 
researchers dealing with this kind of data.



22

1 3

J. Leppink

Subjects and Repeated, asks us to specify subjects and/or 
repeated measurements variables.

The Subjects field is used to define if we have some group 
nesting going on in our study. If so, we first drag the variable 
that defines the random groups to the field and subsequently 
the variable that defines the individuals. Thus, in the exam-
ple discussed in this paper, we would first drag the ‘learning 
group’ variable and then the ‘student’ variable to that field.

The Repeated field is used for defining repeated mea-
surements variables. In the example discussed in this paper, 
that would be the ‘time’ variable. Had the students in our 
example study not been nested within learning groups, we 
would have needed to drag only the ‘students’ variable to 
the Subjects field and the ‘time’ variable would still be in 
the Repeated field.

At the end of the menu, you see Repeated Covariance 
Type. For the example study discussed in this paper, you 
could put that on Scaled Identity, because we model the ran-
dom effects through random intercepts and random slopes 
later on. Elaborating on the meaning of some of the repeated 
covariance types listed in that menu would require an exten-
sive explanation that could easily fill a full paper by itself 
[2–3].

Dependent variable, factor(s), covariate(s)

After you click ‘continue’ in the first screen, a second 
screen—Linear Mixed Models—appears. On the left hand 
of the menu you see all variables, while on the right hand 
you see three fields: Dependent Variable, Factor(s), and 
Covariate(s).

The dependent or response variable is the variable we 
want to predict or compare across groups, in the current 
example ‘test score’. The Factor(s) field is useful if we are 
interested in, for instance, testing for differences in aver-
age test score between more than two groups (including post 
hoc tests involving pairwise comparisons). An easy way of 
analysis in our example is to use 0/1 coding for the two 
treatments and for the time variable and include these two 
variables in the Covariate(s) field. There is much more to 
say on coding [6] and Factor/Covariate difference [17], but 
elaborating on this would require a substantial extension of 
this paper.

Fixed

In the ‘fixed’ submenu, you can specify the fixed part of 
the model. In our example study, that would be ‘treatment’, 
‘time’, and ‘treatment by time’. This is because ‘treatment’ 
and ‘time’ are considered fixed effects in our example.

have one row per individual and for the response variable 
measured repeatedly as many columns per row as there are 
repeated measurements (i.e., multivariate or wide data file).

Note that additionally you still need to use columns for 
the other variables of interest (e.g., treatment, gender, age, 
grade-point average).

Restructuring and screening

It is also possible to save the data once in univariate and 
once in multivariate format. Although you can order relevant 
descriptive statistics and graphical output in both formats (in 
the multivariate format, you can use the Split file or Select 
cases function in the Data menu), many people are used 
to doing much of the descriptive and graphical work in the 
multivariate format. Further, it is relatively easy to restruc-
ture a multivariate data file into a univariate data file and 
vice versa, using the Restructure function in the Data menu. 
With the first option (i.e., Restructure selected variables into 
cases) you can restructure a multivariate data file into a uni-
variate data file, and with the second option (i.e., Restructure 
selected cases into variables) you can restructure a univar-
iate data file into a multivariate data file. When using the 
Restructure function, it is recommendable to save the file 
under a different name, so that both files remain available 
just in case you make a mistake in the restructuring process.

Mixed models

The terms multilevel model, mixed model, mixed-effects 
model, and hierarchical model are used interchangeably 
for the same type of model, a model in which two or more 
(hence multi) hierarchically structured (hence hierarchi-
cal) levels are taken into account (as done in the two-level 
and three-level model in this paper) and some effects are 
fixed (e.g., treatment) while other effects are random (hence 
mixed).

It is therefore of little surprise that much of multilevel 
analysis in SPSS can be done in the Analyze menu through 
Mixed Models. The Generalized Linear Mixed Models 
option provides some options for multilevel analysis when 
dealing with categorical response variables or when deal-
ing with quantitative response variables that have a specific 
non-Normal distribution. For the kind of study discussed in 
this paper, we can use the Linear option.

Specify subjects and repeated

So we go to Analyze, Mixed Models, and then choose Lin-
ear. The screen that pops up, Linear Mixed Models: Specify 
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Syntax

Once you have specified and ordered everything as intended, 
you can click ‘OK’ or better ‘Paste’. The great advantage of 
the ‘Paste’ function is that SPSS saves the model you want 
to run in a few lines of ‘syntax’ in a separate syntax file. You 
can save the syntax file separately and return to your analy-
sis at a later point in time.

Final note

Of course, much more can be said about multilevel analysis 
than has been done in this paper and appendix. However, 
various key references have been provided for readers who 
are interested in bringing it further [1–3, 6–10, 17].

Open Access  This article is distributed under the terms of the Creative 
Commons Attribution License which permits any use, distribution, and 
reproduction in any medium, provided the original author(s) and the 
source are credited.
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Random

The ‘random’ submenu allows you to specify the random 
part of the model. On the downside of the submenu, you see 
under Subjects the variables listed that you previously (i.e., 
in the Specify subjects and repeated screen) dragged into 
the ‘Subjects’ field. When you drag, for instance, the ‘learn-
ing group’ variable to the Combinations and hit the Include 
intercept box, you specify the learning group-level random 
intercept. To also model a random intercept and/or slope 
for ‘student’, we need to click ‘next’ on the upper right of 
the submenu, there drag ‘student’ to Combinations, hit the 
Include intercept box for a student-level random intercept 
and drag the ‘time’ variable from the Factors and Covari-
ates field to the Model field. Then click ‘continue’.

Estimation

The default method chosen in the ‘estimation’ submenu is 
REML. This method is preferred when estimating and test-
ing random effects; the second method, ML, is generally 
preferred when estimating and testing fixed effects [3]. 
For many studies in medical education where a two-level 
or three-level linear model could be applied, the other set-
tings in the ‘estimation’ submenu can generally be left to the 
default options, only perhaps increasing Maximum scoring 
steps to 10 (instead of 1).

Statistics

In the ‘statistics’ submenu, we generally check Param-
eter estimates and Tests for covariance parameters, and—
depending on what our model looks like—also Correlations 
of parameter estimates and/or Covariances of param-
eter estimates, and Covariances of random effects and/or 
Covariances of residuals.

Estimated Marginal Means and Save

The ‘EM Means’ (i.e., estimated marginal means) submenu 
is especially useful when dealing with factors that comprise 
more than two groups and want to obtain estimates of group 
means. Using the ‘Save’ submenu requires a more profound 
understanding of multilevel analysis and regression analysis 
in a broader perspective.
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