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Abstract On account of technological and industrial appli-
cations, nanofluids are more realistic to boost heat transfer 
as compared to simple fluids. Therefore, the contemporary 
mathematical study offers a theoretical analysis regard-
ing incompressible, time-independent electrical magne-
tohydrodynamic nanofluid flow over a vertical stretching 
surface. In addition, the influence of convective boundary 
conditions along with gravitational body forces is consid-
ered. To explore the performance of the nanofluid with a 
viscosity variable for different bodily impacts, we deliber-
ated Brownian motion and thermophoresis parameters in the 
flow. A well-known shooting technique was implemented to 
numerically solve the nonlinear system of governing equa-
tions. Throughout, the significance of emerging parameters 
like bioconvection parameter, Peclet number thermopho-
resis, Lewis numbers, Brownian motion, Prandtl number, 
magnetic parameter and Schmidt number is elucidated via 
plots, whereas the division of numerous appreciated physi-
cal measures like local Nusselt number, coefficient of skin 
friction, local Sherwood number and local density of the 
motile microorganisms is also tabulated. The core finding of 
the current study is that it helps to control the rate at which 
heat is transported as well as fluid speed in any industrial 
applications to make wanted nature of the eventual outcome.
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Abbreviations
BVP  Boundary value problem
IVP  Initial value problem
MHD  Magnetohydrodynamics
ODEs  Ordinary differential equations
PDEs  Partial differential equation

List of symbols
M  Harman number
�  Variable viscosity
Pr  Prandtl number
R
ex

  Local Reynolds number
�  Swimming microorganism intensity variation 

parameter
Nt  Thermophoresis parameter
Lb  Bioconvection Lewis number
B
T
  Local concentration Grashof number

Nb  Brownian motion parameter
Sc  Schmidt number
Gr  Thermal Grashof numbers
Br  Concentration Grashof numbers
Pe  Peclet number
G

T
  Local thermal Grashof number

(u, v)  Components of velocity

Introduction

In recent days, the development of the computer age, com-
munication, household appliances, heavy mechanical indus-
tries, transportation and the electronics industries have 
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all been running due to some electronics and mechanical 
devices. To prevent overheating all these devices, a system 
of cooling or heating is built in which fluid flows over or 
around the device at a certain temperature threshold.

The improvement in the thermal conductivity of con-
ventional fluids is imperative because many mechanical 
and electronic devices have retarded their efficiency and 
working age, as conventional fluids with low thermal 
conductivity do not occur at the temperature essential. 
Non-Newtonian fluids have the devotion of engineers and 
scientists due to their vast applications in the fields of 
manufacturing, technology and energy. Regular examples 
of such fluids are fiber technology, rubber sheet manufac-
turing, plastic, wall paint, polymer processes, lubricants, 
enhanced oil recovery, plastic, shampoo, greases, blood, 
mud, food production, toothpaste, ketchup, and drilling. 
Nanofluid is one of the most important types of non-New-
tonian fluids. Nanofluids are the suspension of nanomate-
rial’s (e.g., nanoparticles, nanosheets, nanofibers, nano-
tubes, nanowires, nanorods, or droplets) in base fluids.

In the modern era, nanofluids are the center of attention 
for many researchers due to their wide range of applications. 
Suspension of nanoparticles in conventional fluids is termed 
nanofluids, where nanoparticles include metallic and nonme-
tallic particles of nanosize. For the very first time, Choi [1] 
introduced the concept of nanofluids. A thin suspension of 
nanoparticles and base fluids makes nanofluids. Buongiorno 
[2] developed the numerical study of nanofluids that meas-
ure Brownian motion as well as thermophoresis features. 
Khan and Pop [3] presented a numerical study for nanofluid 
flow with effects of thermophoresis and Brownian motion 
via a linearly extending plate. Tiwari and Das [4] studied the 
mathematical model, which is very important to observe a 
strong volume fraction of nanomaterials in the regular fluid. 
Arifin et al. [5] inspected the dynamics of flow suction as 
well as joule heating and the thermal features of the hybrid 
(copper and aluminum oxide) nanofluid due to the paral-
lel shrinking and stretching of the film with the combined 
influence of electrical conducting fluids. Shafiq et al. [6] 
discussed the flow properties of third-class non-Newtonian 
nanoliquid over a vertically extending disk. Micro-polar 
hybrid nanofluid with the impact of slip conditions across 
the Riga channel has been scrutinized by [7].

An analysis of bioconvection for nanofluid flow in an 
acoustically dominated source has been investigated by 
Mansour et al. [8]. Kolsi et al. [9] deliberated the utiliza-
tion of nanoliquid on a cuboidal surface in occurrence of 
magnetic flux. The effect of flow rate and buoyancy force 
with such mass flow features over Sisko nanofluid owing 
to stretched surfaces in the presence of porous channels has 
been discovered by Sharma et al. [10].

Due to the various applications of fluid flow over 
stretching sheets in metallurgy and plastic engineering, it 

has become a center of research. Crane [11] was the first 
to deliberate the momentum boundary layer of a linearly 
extending sheet. Later on, many investigators studied and 
explored the idea of a stretching sheet [12–21]. Recently, 
[22] analyzed the influence of variable viscosity and sec-
ond-order slip flow on hybrid nanofluids over the porous 
extending sheet.

The study of magnetohydrodynamics MHD flow plays 
various roles in different industrial and engineering appli-
cations. In industrial applications, the most important roles 
are liquid metal fluid, metal turning, glass blowing, aero-
dynamics, and cooling in nuclear plants. In engineering 
applications used in metal spinning and polymer extru-
sion, drawing plastic film, paper production and producing 
cooling when a product is manufacturing. The electrical 
conducting flow of nanofluids, along with thermophore-
sis by HAM is studied by [23]. Hayat et al. [24], with 
the assistance of HAM, inspected the electrical MHD 
flow of nanofluids due to an extending plate along with 
buoyancy forces in the occurrence of a magnetic field. 
Khan et al. [25] examined the magnetohydrodynamics of 
incompressible flow through a rotating disk using coupled 
stress fluid. Hayat et al. [26] discovered the magnetohy-
drodynamic (MHD) consequences of squeezing flow in 
Jeffery nanofluid.

By witness of above survey of literature current analysis 
are not preform yet, our attention is to evaluate the magne-
tohydrodynamic MHD magnetized transport of nanofluid 
flow with the swimming of gyrotactic microorganisms 
and variable viscosity due to vertical stretching sheet. The 
influence of convective boundary conditions along with 
gravitational body forces is also a segment of this study. 
The literature survey reveals that such analyses have not 
been performed yet. The consideration of non-Newtonian 
viscous nanofluids, swimming motile microorganisms, 
and the impact of variable viscosity made this analysis 
quite motivating. The associated boundary value problem 
is solved numerically by using the shooting technique after 
converting it into a first-order initial value problem. The 
physical features of effective parameters are graphically 
underlined and discussed for involved profiles.

Mathematical Analysis

A steady MHD transport of nanofluid toward a stretching 
sheet with variable viscosity and convective boundary con-
ditions has been under consideration. The theory of micro-
organisms is used through bioconvection to alleviate the 
suspended nanoparticles under the influence of buoyancy 
forces where it is taken as a coordinate system. A magnetic 



225J. Inst. Eng. India Ser. E (December 2023) 104(2):223–235 

1 3

field of strength is induced in the fluid, and it is assumed 
that the sheet is stretching along the x-direction. In the 
presence of gravitational body forces, the corresponding 
governing equations for nanofluid can be described as 
[27–31] (see Fig. 1).

The equation of Mass Conservation
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where u and v are velocity constituents along x − axis 
and y − axis, respectively, and B0 represents the strength 
magnetic field, while N , T , and C are density, energy, and 
concentration of nanofluid, respectively. Equations (2)–(5) 
are subjected to:

for y = 0 , u = uw(x) = bx , v = 0,

The similarity transformation and dimensionless vari-
ables are described as

where � is the stream function and � is the similarity vari-
able defined as u =

��

�y
 and v = −

��

�x
, which directly satisfies 

the equation of mass conservation. The viscosity of fluid in 
momentum equation is temperature-dependent that may vary 
exponentially [35].

where �0 represents the fluid viscosity at T∞ . The strength 
dependency between �(T) and T  are depicted by H. Utiliz-
ing the similarity variables illustrated in Eqs. (8 and 9) and 
then applying the Maclaurin’s expansion, we obtained the 
succeeding illustration [32]

Now, by using the similarity function given in Eqs. (8–9), 
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Fig. 1  Geometry of problem
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where M =
B2

0�
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The auxiliary conditions in dimensionless form are:

Fig. 2  Effects of Harman number M over f �(�)

Fig. 3  Effects of Harman number M over �(�)
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Physical quintiles of interest, like microorganism density 
number, local Sherwood number, local Nusselt number, and 
skin fraction coefficient, are defined as:

(16)
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Fig. 4  Effects of thermal Grashof number Gr over f �(�)

Fig. 5  Effects of thermal Grashof number Gr over �(�)
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So dimensionless form becomes as

(20)
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Numerical Technique

In daily life, many mathematical models of equations are 
highly nonlinear differential equations. We know that exact 
solutions to extremely nonlinear differential equations are 
not usually possible. In cases of boundary value problems, 

Fig. 6  Effects of concentration Grashof number Br over f �(�)

Fig. 7  Effects of concentration Grashof number Br over �(�)
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the shooting method is one of the best and most well-known 
schemes among all other methods. This procedure is straight-
forward, sensitive and free from error or complexity. First of 
all, convert the modeled ODEs into first-order form. Computa-
tional software Mathematica is engaged to solve these equation 
numerically. The steps of shooting method is given below:

Let us use f  by y1 , � by y4 , � by y6 , and � by y8 . The sub-
sequent equations are:
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Fig. 8  Effects of Biot number Bi over �(�)

Fig. 9  Effects of Prandtl number Pr over �(�)
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Results and Discussions

This section is equipped to explore the act of non-dimen-
sional velocity profile f �(�) , energy profile�(�) , nano-
fluid concentration profile �(�) and density �(�) under 
the influence of several prominent parameters like Peclet 
numberPe , the variable viscosity� , Prandtl numberPr , 
swimming microorganism intensity variation parameter� , 
thermophoresis parameterNt , bioconvection Lewis num-
berLb , Brownian motion parametersNb , Schmidt num-
berSc , concentration Grashof numberGr , thermal Grashof 
numbers Br, and Harman number M. Figures 3 and 4 are 
demonstrated to investigate the effect of Hartman number 

M on the velocity profile f �(�) and temperature profile 
�(�) . Figure 2 depicts that the supplementing values of 
M causes retardation in the velocity profile. Temperature 
enhanced by increasing values of M (see Fig. 3). Hartman 
number includes Lorentz forces that are resistive forces. 
When M increased, the Lorentz force also increased, which 
led to a decrease in liquid flow velocity and an increase 
in temperature. Figure 4 shows that the increment in Gr 
increases the fluid speed f �(�) ; it is due to occurrence of 
buoyancy forces. A inverse relation between Gr and �(�) 
is obtained by Fig. 5, and an increment in values of Gr 
decreases the curve of�(�) . A straight relation between 

Fig. 10  Effects of thermophoresis parameter Nt over �(�)

Fig. 11  Effects of thermophoresis parameter Nt over �(�)
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Br and f �(�) is obtained by Fig. 6, and an increment in 
values of Br as a result increases the curve of velocity 
component f �(�). Figure 7 show that the increment in Br 
decreases the fluid temperature�(�) . Figure 8 designates 
the distinction of Bi on fluid temperature field �(�) . The 
improvement in Biot number Bi results in much convec-
tive heat transfer and concentration rate. The dimension-
less metric Biot number, which is linked to the coefficient 
of heat transfer, improves the temperature distribution of 
nanoparticles. Figure 9 shows how the Prandtl number 
affects the temperature field. Nanoparticle temperatures 
decrease as Pr is improved. Prandtl number is defined as 

the relationship between a fluid’s thermal conductivity and 
thermal diffusivity. Therefore, the maximum thermal dif-
fusivity results from the smallest Prandtl number, while 
the temperature and thickness of the boundary layer are 
reduced. Figures 10 and 11 elucidate the impact of ther-
mophoresis parameter Nt on non-dimensional energy �(�) 
field and volumetric concentration profile �(�) . These fig-
ures depicts that temperature field and volumetric concen-
tration filed are the accumulative functions of Nt for some 
rising values of thermophoresis parameter. The increasing 
value of Nt results to raise the thermal conductivity of liq-
uid. Tiny fluid particles are moved from a hot surface to a 

Fig. 12  Effects of Nb over �(�)

Fig. 13  Effects of Schmidt number Sc over �(�)
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cool one during thermophoresis. The temperature rises as 
a result of the many microscopic particles leaving the hot 
surface, and this high temperature indicates an increase in 
the concentration. When a small change occurs, the con-
centration profile falls off and rises more quickly. The por-
trayal for implication of Brownian motion parameter Nb on 
temperature field of nanoparticles is explored in Fig. 12. 
By enhancing the parameter Nb energy profile improved. 

Usually, this Brownian parameter Nb exists because of 
the participation of nanoparticles. The impact of Schmidt 
number Sc on concentration and density profile is shown 
in Figs. 13 and 14. The curve of concentration distribu-
tion as well as density field is decreased as value of Sc 
increased. The microorganism profile under the influence 
of the bioconvection Lewis number is examined in Fig. 15. 

Fig. 14  Effects of Sc over �(�)

Fig. 15  Effects of bioconvection Lewis number Lb over �(�)



233J. Inst. Eng. India Ser. E (December 2023) 104(2):223–235 

1 3

Fig. 16  Effects of swimming microorganism intensity variation parameter � over �(�)

Fig. 17  Effects of Peclet number Pe over �(�)

Table 1  Comparison table for 
different values concentration 
Grashof number Br , thermal 
Grashof number Gr , and 
variable viscosity parameter � 
on −f ��(0) , −��(0) , −��(0).

Br Gr lambda M = 0 Bandar [27] M = 0 Present

−Cf Nu Sh −Cf Nu Sh

0 0.5 0 0.8826 0.08681 2.3980 0.8826 0.08681 2.3980
0.2 0.8385 0.0864 2.3886 0.8385 0.0864 2.3886
0.4 0.7895 0.0859 2.3664 0.7895 0.0859 2.3664

0.5 0.5 0 0.77303 0.0873 2.4144 0.77303 0.0873 2.4144
0.2 0.73079 0.0869 2.4018 0.73079 0.0869 2.4018
0.4 0.6839 0.0865 2.3870 0.6839 0.0865 2.3870
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As the Lewis number rises, the density profile’s inhibiting 
behavior is seen. The weak diffusivity of microorganisms 
is what is causing the density profile to behave slowly. 
Because of the strengthening that occurs as a result of the 
weaker diffusivity, the density profile is delayed. Figure 16 
represents the effects of parameter � called microorgan-
ism concentration difference on density profile �(�) . By 
enhancing, the values of � density profile retarded. From 
Fig. 17, it is demonstrated that within the increment in bio-
convection Peclet number Pe, the density �(�) is retarded. 
Here, the extreme rapidity of cell swimming is enriched 
by increasing the value of Pe . This advanced rapidity of 
cell swimming is accountable in the lesser performance of 
�(�) . Comparison of current study with published work is 
given in Table 1.                

Conclusion

Time-independent electrical magnetohydrodynamics 
nanofluid flow over a vertical stretching surface has been 
investigated. In addition, the influence of convective 
boundary condition along with gravitational body forces 
is considered. The core features of the current investiga-
tion are enumerated below:

• A decreasing act is observed in the velocity function 
with an increase in the value of M but enhanced by 
growing the value of Br and Gr.

• The temperature field improved by exaggerating the 
value of thermophoresis parameter Nt , biot number Bi, 
and Brownian motion Nb deteriorating behavior was 
observed in the energy distribution as boosted up in the 
value of Pr.

• Concentration profile is decreased for rising value of 
Brownian motion Nb.

• The volumetric concentration profile increased as the 
Brownian motion Nt value was magnified, but the 
Schmidt number Sc exhibited the reverse tendency.

• The density of gyrotactic motile microorganisms stead-
ily decreases as the Peclet number Pe , Lewis number, 
and the value of the bioconvection increase.

Reader may read the following interested articles 
[33–40].

Future Recommendations

In the future, this problem may be extended in many direc-
tions, considering the following ideas:

• The impact of Joule heating.

• The impact of viscous dissipation.
• The impact of different nanoparticles.
• The impact of source and sink.
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