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Abstract In cotton spinning industries, attainment of the

most desired yarn characteristics mainly depends on dif-

ferent parameters of the ring or rotor spinning process.

Thus, it is often required to determine the optimal para-

metric settings of a spinning process with the help of some

optimization tools. In this paper, two multi-response opti-

mization problems are considered and subsequently solved

using four popular evolutionary algorithms, i.e. artificial

bee colony algorithm, ant colony optimization algorithm,

particle swarm optimization algorithm and non-dominated

sorting genetic algorithm-II for searching out the global

optimal settings of ring and rotor spinning processes. As

the process parameters’ settings derived using single

response optimization solutions are often impractical to

maintain, it is always recommended to set them based on

the results of multi-response optimization techniques. It is

observed that among these four algorithms, particle swarm

optimization excels over the others with respect to the

derived optimal solution, consistency of the solution and

convergence speed. The developed scatter diagrams also

help in investigating the effects of changing values of

different process parameters on various yarn qualities.

Keywords Spinning � Yarn characteristic � Parameter �
Optimization � Evolutionary algorithm

Introduction

One of the important production processes in any textile

industry is the spinning process. Using cotton fibres as the

input material, yarns are usually produced through a ring or

rotor spinning process. Out of the total volume of staple yarn

manufactured around the world, approximately 60–70% is

the outcome from the ring spinning process and rotor spin-

ning caters the remaining volume. As compared to ring

spinning process, rotor spinning involves lesser labour force,

lower maintenance cost, lesser floor space, lesser spare parts

and lower energy consumption. It has also been observed that

in rotor spinning process, labour productivity is improved

and lesser waste is generated. With respect to quality, rotor

spinning process produces more even yarn with minimum

count variation and imperfections. Yarn breakage rate is also

lower in rotor spinning as compared to ring spinning.

However, rotor-spun yarns are weaker in strength against

ring-spun yarns due to some structural differences [1].

In both the ring and rotor spinning processes, quality of

the resulting yarn plays a significant role in determining its

end application. It is the task of the spinning industry

personnel to produce a good quality yarn with minimum

possible cost. Thus, there must be a trade-off between these

two conflicting objectives. In textile industries, quality of a

yarn is often evaluated with respect to its several charac-

teristics, like specific strength, unevenness, hairiness,

imperfections, breaking elongation etc. It is worthwhile to

mention here that these yarn characteristics are often

conflicting in nature, such as maximum yarn strength

against minimum yarn imperfections. In order to achieve

these yarn characteristics, it is always recommended to

determine the optimal settings of the concerned ring or

rotor spinning process which are often available from the

manufacturers’ data handbooks or are determined in
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consultation with the spinning experts. Due to scarcity of

the experts and high consultation time involved, it is

advised to deploy some mathematical tools and techniques

which would ultimately help in predicting the settings of

different spinning process parameters so as to attain the

target yarn characteristics. Thus, determination of the

optimal spinning process parameters, to have the most

preferred yarn characteristics, can simply be formulated as

a mathematical optimization problem. In a single objective

optimization problem, each of the yarn characteristics is

optimized separately and for each of them, there would be

individual parametric settings. These settings often do not

match with each other and it becomes impossible/imprac-

tical to operate a spinning process at different settings to

achieve all the desired yarn characteristics. As the manu-

factured yarn has multiple quality characteristics which

need to be simultaneously fulfilled, it is always advised to

employ a multi-objective optimization tool which would

determine a single best parametric setting for the consid-

ered spinning process which would be feasible to maintain.

At that setting, all the yarn characteristics are simultane-

ously optimized. Several evolutionary algorithms are now

available which have already proven their ability to solve

multi-objective optimization problems with an aim to

search out the global optimal solutions.

Literature Review

Sette et al. [2] proposed a novel approach to simulate and

optimize the fibre-to-yarn production process while com-

bining neural network with genetic algorithm (GA), and

also achieved simultaneous optimization of yarn qualities

as a function of the optimal input parameters. Sette and

Van Langenhove [3] presented a model while taking into

consideration different machine settings and fibre quality

parameters as the inputs, and yarn tenacity and elongation

as the responses. A constrained optimization algorithm was

later adopted to optimize the blend of fibre qualities for

having the best yarns. Van Langenhove and Sette [4]

developed a complex model while integrating different

fibre properties, process parameters and spinning results.

Based on the developed model, a specific blend could be

determined and the corresponding machine settings could

also be identified for the optimal yarn strength and elon-

gation. Based on the Box–Behnken design plan, Ishtiaque

et al. [5] optimized three ring-frame process parameters,

i.e. spindle speed, top roller pressure and traveller mass for

better yarn quality and production. Majumdar et al. [6]

presented various techniques of modelling, optimization

and decision making intended for design of functional

clothing. Arain et al. [7] developed a multi-response opti-

mization model to identify the best rotor speed and yarn

twist level for optimal rotor yarn strength and unevenness,

and minimum yarn hairiness and imperfections. Feng et al.

[8] quantitatively studied and optimized the relationship

between various spinning parameters and properties of the

fine modified yarns while employing fractional factorial

design and response surface methodology (RSM). While

applying Monte Carlo simulation techniques, Ochola and

Mwasiagi [9] studied the influences of different cotton fibre

properties on the strength of ring- spun yarn. Jeyaraj et al.

[10] applied GA as a multi-response optimization tool for

determining the optimal combinations of five parameters in

a colour fast finishing process for attaining the target values

of five quality characteristics. Ghosh et al. [11] first for-

mulated an artificial neural network (ANN)-based input–

output relation between different cotton fibre properties

and yarn strength, and then derived the optimal solutions

using non-dominated sorting genetic algorithm II (NSGA-

II). El Messiry et al. [12] investigated the effects of varying

values of different fibre properties while controlling noil

percentage on the structural parameters of compact single

and ply yarns, and also determined the optimal combing

noil percentage for production of quality compact yarns.

Fattahi and Hoseini Ravandi [13] applied robust regression

and extra sum squares methods to predict and evaluate yarn

characteristics from various fibre properties. The optimal

equations with appropriate variables were also developed

along with their relative importance. Das and Ghosh [14]

formulated a relationship between raw material and yarn

properties which was subsequently optimized using simu-

lated annealing technique in order to maximize yarn

strength. Hasanuzzaman et al. [15] studied the effects of

three spinning process parameters, i.e. spindle speed, rov-

ing twist multiplier and yarn twist multiplier on several

yarn quality characteristics, and also determined the opti-

mal combination of those process parameters while

applying desirability function approach. Eldeeb et al. [16]

optimized the spinning and plying processes of raw and

finished conventional ring-spun and compact yarns. A

graphical method was subsequently employed to determine

the range of alpha single and alpha plied twist factor to

achieve the target yarn characteristics. Bagwan and Patil

[17] determined the effects of opening roller speed on

different properties of open-end yarn. Majumdar et al. [18]

derived the Pareto optimal solutions using NSGA-II opti-

mization technique so as to obtain the effective knitting

and yarn parameters to engineer knitted fabrics having

optimal comfort properties and desired level of ultraviolet

protection. Mukhopadhyay et al. [19] developed a regres-

sion model correlating different slub yarn parameters (i.e.

slub length, slub thickness and slub frequency) with abra-

sive damage of fabric in terms of fabric mass loss and

appearance deterioration. A set of optimal parametric

combinations was subsequently derived using multi-
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objective evolutionary algorithms. It is clearly observed

from the above cited literature review that ANN-based

models and GA have extensively been utilized in textile

industries in order to predict/optimize various yarn char-

acteristics based on different ring/rotor spinning process

parameters. But, the application of GA tool may often lead

to near or sub-optimal solutions. Thus, in this paper, four

popular evolutionary algorithms in the form of artificial bee

colony (ABC) algorithm, ant colony optimization (ACO)

algorithm, particle swarm optimization (PSO) algorithm

and NSGA-II are applied for searching out the parametric

settings of ring as well as rotor spinning process for global

optimal values of various considered yarn characteristics.

The optimization performance of these algorithms is also

compared with respect to the value of the derived solution,

consistency of the solution and computational speed.

Evolutionary Algorithms

Evolutionary algorithm is a domain term used to describe

computer-based problem solving systems based on the

deployment of computational models of evolutionary pro-

cesses. There are several variants of evolutionary algo-

rithm. The common underlying principle behind all these

techniques is the natural selection causing a rise in the

fitness of the population (survival of the fittest). For

example, in a maximization problem, a set of candidate

solutions is randomly created and their abstract fitness

measures are computed. Based on these fitness values,

some of the better candidates are chosen to seed the next

generation while applying crossover and/or mutation of

them. Execution of crossover and mutation operations

leads to a set of new candidates replacing the old ones with

poor fitness values. This process is continued until a can-

didate with the desired quality is achieved or a predeter-

mined number of iterations is complete.

ABC Algorithm

The ABC algorithm is based on the intelligent foraging

behaviour of honey bees [20]. In this algorithm, colonies of

artificial bees are categorized into three elements, i.e.

employed bees, onlooker bees and scout bees [21]. The

idea of position and quality of food source is known by the

employed bees, and with this information, they start wag-

gle dance which is an indication of the quality of food

source. The onlooker bees present in the hive watch the

waggle dance to have the information about the food

sources and get attracted towards them. The nectar content

of a food source is related to the nature of dance of the

employed bees and it represents the fitness value correlat-

ing the quality of the solution. The onlooker bees now

become the employed bees and start consuming nectar

from the best food source. When this food source becomes

abandoned, the employed bees start finding out a new food

source and become scout bees. After obtaining a new food

source, these scout bees act as employed bees. The cycle is

repeated till the best food source position is obtained which

becomes the optimal solution. The ABC algorithm consists

of four main phases, i.e. initialization phase, employed bee

phase, onlooker bee phase and scout bee phase. In the first

phase, settings of different control parameters and vectors

of the population of foods are initialized. The initial solu-

tions are then subjected to repeated cycles which indicate

the search process of the employed, onlooker and scout

bees. In the next phase, searching of the neighbouring food

sources with more nectar content is performed by the

employed bees. These neighbour food sources remain

present in their memory which are further employed for

evaluation of the fitness values. The fitness value is cal-

culated for each new food source and subsequently, a

greedy selection process is applied. During the onlooker

bee phase, information about the food sources are being

shared with the onlooker bees waiting in the hive and

further food sources are chosen probabilistically by them.

Scout bee phase deals with searching the new solutions in

place of the abandoned solutions while making the scouts

free. The employed bees, whose solutions cannot be

improved, are set as scout bees and are abandoned. These

scout bees further search for new solutions randomly which

results in more exploitation of the poor food source and

gets abandoned. Thus, the negative feedback of such

behaviour leads to a balanced positive feedback.

ACO Algorithm

This algorithm works on the principle of foraging beha-

viour of real ants [22, 23]. Near-blind ants have the ability

of establishing the shortest route from their nest to the food

source and back to the nest. This behaviour of ants fasci-

nates the researchers to develop the ACO algorithm. The

medium for communication used by these ants is called

pheromone, a substance secreted by them. They use the

pheromone trails to communicate between themselves. The

ants follow these trails and the probability of trails is

increased by more deposition of pheromone by other ants

which were moving on that route. There is a cooperative

search behaviour of the ants leading to inspiration of

solving large complex optimization problems. There are

three main operations in this algorithm which include

construction of ant-based solution, pheromone update and

daemon action. In the first operation, artificial ants are

constructed which represent the solutions and the solutions

are chosen probabilistically according to the pheromone

level. It results in forcing the algorithm to search in the area
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of better solution. In the operation of pheromone update,

there is an increase in the amount of pheromone which

results in good solution or a decrease for a bad solution by

evaporation. Centralized actions are implemented in the

third operation which cannot be performed by a single ant.

Moreover, a global criterion is collected and adopted as a

decision whether the additional deposition of pheromone is

required or not. The selection of a solution by the artificial

ants mainly depends on the selection probability which is

proportional to the pheromone trail.

PSO Algorithm

This optimization algorithm is based on the social beha-

viour of animals and birds. It deals with the random motion

of intelligent swarm to find out the optimal objective

function defined in a given search space [24]. In this

algorithm, the group is known as swarm and it consists of

number of individuals called as particles. These particles

fly in an n-dimensional space and each particle is treated as

a point in this space. Each particle represents a candidate

solution which keeps track of the information of the best

coordinates in the problem space and till then, these

coordinates are the best solution, termed as personal best

(pbest). The position of the particles must be checked

which may have better solution than a particular particle as

it keeps track on the neighbouring particles. The term local

best (lbest) denotes the particle with better coordinates than

the first particle. Now, after comparison with all the par-

ticles, the particle with the best coordinate value is termed

as the global best (gbest) which represents the best solution

for an optimization problem. Velocity update and position

update are the two main parameters in this algorithm [25].

Each particle in a new generation is accelerated towards

the previous best position of the particle, and the new

velocity of particle is calculated based on its current

velocity, distance from its previous best position and dis-

tance from the gbest position. The next position of the

particle is calculated based on the new velocity component

in the search space. The process is repeated until minimum

error is achieved. It follows some fundamental steps. In the

first step, the population size is specified with random

generation of initial positions and velocity of particles. The

objective function value is then calculated for each particle.

The pbest value is set as the current position and among all

the particles, pbest value with the best objective function is

stored as the gbest value. In the next step, new positions of

particles in the solution space are determined and the

particles migrate towards the gbest value. For each new

position of particle, new objective function value is cal-

culated. Depending on this new position, the pbest value is

replaced by the current pbest value. This replacement is

performed only if the new position is better than the

previous position. From each pbest value, a new gbest

value is selected. If this new gbest value is better than the

previous gbest value, there is a replacement of previous

gbest value by the current gbest value and is stored. These

steps are repeated for a predetermined number of iterations.

NSGA-II Algorithm

The application of GA is based on the principle of natural

genetic systems and it works with a population of feasible

solutions. The NSGA, which has been proven to be an

effective evolutionary multi-objective optimization tool, is

an extension of GA. This algorithm also adopts three bio-

logical operators, i.e. selection, crossover and mutation. The

principles of crossover and mutation operators in NSGA are

same as those of GA, but the selection operator works dif-

ferently. The principle of shared fitness is adopted in the

selection procedure, which is calculated by the ranking

process and non-dominated sorting of the individuals. The

non-dominated sorting of individuals is obtained from the

current population while assigning a large dummy fitness

value. The same fitness value is also provided to the indi-

viduals selected so that they have equal reproductive

potential. The individuals are then shared with their dummy

fitness values. This sharing procedure involves the process of

using degraded fitness values in a selection operation. The

degraded fitness values are calculated by dividing the orig-

inal fitness value of an individual by a quantity proportional

to the number of individuals around it. This results in the

coexistence of multiple optimal points in the population.

Now, processing of the rest of the population occurs by

neglecting the non-dominated individuals after the sharing

process is terminated. A new set of points obtained is

assigned with a new dummy fitness value which is kept

smaller than the minimum shared dummy fitness of the

previous front. The process continues until the entire popu-

lation is classified into several fronts. The new population is

reproduced according to the dummy fitness values. The

entire activity in NSGA results in searching for non-domi-

nated regions, quick convergence of the population towards

non-dominated regions and development of schemata rep-

resenting the Pareto optimal regions.

In order to overcome the demerits of NSGA with respect

to high computational complexity and lack of elitisms,

NSGA-II was developed for obtaining the set of Pareto

optimal solutions in constrained multi-objective optimiza-

tion problems. It has the advantage of arriving at the true

Pareto-optimal solutions using elite-preserving operator

maintaining diversity and without specifying any additional

parameter [26, 27]. The two main aspects of NSGA-II are a

fast non-dominated sorting of the population and a large

crowding distance. In this algorithm, based on the range of

problem and constraints, a population is initialized at first.
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Non-dominated solution is then sorted out from the initial

population based on its rank. After completion of this

sorting process, crowding distances are calculated for all the

solutions. Selection of the parents is based on the rank and

comparison of crowding distance in the population.

Crowding distance is mainly preferred for selection of the

required parents if they are less than the number of indi-

viduals of specific rank. Offspring are then generated from

the selected parents using genetic operators, like crossover

and mutation. The increase in values of crossover proba-

bility and mutation probability causes population to con-

verge to a global optimal solution. But, these phenomena

may also result in disruption of the near optimal solution

and may cause non-convergence to a global optimum.

Therefore, by maintaining lower values of crossover prob-

ability and mutation probability for higher fitness solution,

and higher values of crossover probability and mutation

probability for lower fitness solution may overcome the

above problem while preserving better solutions of the

population. After combining the initial offspring population

and initial population, a new population is created, and

based on the rank and crowding distance, the best individ-

uals are identified from the population. The process is

repeated until the maximum number of generation is

reached or the specified termination criterion is met so that

the new solution obtained is better than the previous one.

Illustrative Problems

Problem 1

In order to study the effects of rotor speed and yarn twist

level on four yarn (30 tex) characteristics, i.e. yarn strength

(YS) (in cN/tex), unevenness (YU) (in CVm%), hairiness

(YH) and imperfections (YI), Arain et al. [7] developed a

multi-response optimization model based on RSM tech-

nique which was subsequently optimized using desirability

function approach. During the experiment, rotor speed (x1)

was set at four different levels, i.e. 70,000, 80,000, 90,000

and 100,000 rpm, and twist level (x2) had also four levels,

i.e. 500, 550, 600 and 700 twist per metre. As the outcomes

of the experiment, four second-order regression equations

were formulated as presented below:

YðYSÞ ¼ �23:568 þ 0:00035x1 þ 0:05271x2
� 1:92333E�9x21 � 3:27182E�5x22 ð1Þ

YðYUÞ ¼ 25:8516 � 3:28901E�4x1 þ 2:10938E�9x21

ð2Þ

YðYHÞ ¼ 15:5734 � 2:17571E�4x1 � 0:00234x2
þ 1:26251E�9x21 ð3Þ

YðYIÞ ¼ 2516:21 � 0:06916x1 þ 0:40028x2
þ 4:43751E�7x21 ð4Þ

Based on the experimental data and at 50% quality level,

Arain et al. [7] obtained a composite desirability score of

1.0 at 77,800 rpm rotor speed and 700 yarn twist per metre

with the optimal response values as yarn strength = 12.7

cN/Tex, yarn unevenness = 13 CVm%, yarn

hairiness = 4.6 and yarn imperfection = 101. Now, in

order to search out the global optimal values of the

considered yarn characteristics (responses), ABC, ACO,

PSO and NSGA-II algorithms are separately employed to

optimize the four RSM-based equations with respect to the

constraints as imposed by the chosen limiting values of

rotor speed and yarn twist level, i.e. 70,000B x1 B 100,000

and 500B x2 B 700. Here, the responses are first

individually optimized. Among these responses, yarn

strength needs to be maximized so as to withstand the

stress generated during the subsequent weaving or knitting

process. On the other hand, minimization of yarn

unevenness, hairiness and imperfections are required for

providing a perfect appearance to the end products. The

results of single response optimization derived while

employing ABC, ACO, PSO and NSGA-II algorithms in

MATLAB (R2013a) are exhibited in Table 1. For ABC

algorithm, various control parameters are set as maximum

number of iterations = 500, population size (colony

size) = 500, number of onlooker bees = 500 and

acceleration coefficient upper bound = 1. For ACO

algorithm, the corresponding control parameters are fixed

as maximum number of iterations = 500, population size

(archive size) = 500, sample size = 40, intensification

factor (selection pressure) = 0.5 and deviation distance

ratio = 1. On the other hand, for PSO algorithm, the

corresponding values of different control parameters are set

as maximum number of iterations = 500, population size

(swarm size) = 500, inertia weight = 1, inertia weight

damping ratio = 0.99, personal learning coefficient = 1.5

and global learning coefficient = 2. Similarly, for NSGA-II

algorithm, the values of various control parameters are

maximum number of iterations = 500, population

size = 500, crossover probability = 0.9, mutation

probability = 0.07 and tournament selection process.

From the results of single response optimization, it is

interestingly noticed that for all the evolutionary

algorithms under consideration, the derived response

values are significantly improved with respect to those as

attained by the past researchers based on desirability

function approach. Amongst these algorithms, it is

observed that PSO algorithm outperforms the others with

respect to the derived optimal solution and consistency of

the solution in terms of standard deviation (SD) value. The

superiority of PSO algorithm can also be well validated
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from the convergence diagrams for all the four responses,

as shown in Fig. 1.

As in this example, PSO algorithm emerges out as the

most attractive single response optimization tool, the cor-

responding scatter plots are generated in Figs. 2 and 3 for

this algorithm in order to show the variations in yarn

strength, unevenness, hairiness and imperfections with

varying values of rotor speed and yarn twist level. These

plots provide a better insight into how a response behaves

with variations in several input parameters, as opposed to

surface plots, where only variation of a response with

respect to a particular input parameter is depicted whilst

other parameters are kept constant. It is observed from

Fig. 2a that yarn strength gradually increases with the

increment in rotor speed and after reaching its maximum

value at rotor speed of around 90,000 rpm, it starts going

on decreasing. On the other hand, for non-beneficial or

smaller-the-better type of responses, they all start

decreasing with the increasing values of rotor speed and

after arriving at their corresponding minimum values, they

follow the increasing trends. Similarly, in Fig. 3a, with the

increasing values of yarn twist level, yarn strength shows a

steadily increasing trend. For yarn unevenness, it can be

revealed from Fig. 3b that yarn twist level has basically no

effect on it. In Fig. 3c, yarn hairiness is observed to

decrease with the increasing values of yarn twist level and

in Fig. 3d, yarn imperfections exponentially increase with

the varying values of yarn twist level. The reasons behind

these variations in yarn strength, unevenness, hairiness and

imperfections with changes in rotor speed and yarn twist

level were well explained by Arain et al. [7].

In multi-objective optimization of the same problem,

instead of treating the four responses individually, all of

them are simultaneously optimized. For this, the following

objective function is developed.

Min Z1ð Þ ¼ w1

YðYUÞ � YUmin

YUmax � YUmin

� �

þ w2

YðYHÞ � YHmin

YHmax � YHmin

� �

þ w3

YðYIÞ � YImin

YImax � YImin

� �

� w4

YSmax � YðYSÞ
YSmax � YSmin

� �
ð5Þ

where Y(YU), Y(YH), Y(YI) and Y(YS) are the second-order

response surface equations for unevenness, hairiness, imper-

fections and yarn strength respectively; YUmin, YHmin, YImin

and YSmin are the minimum values of unevenness, hairiness,

imperfections and yarn strength respectively; YUmax, YHmax,

YImax and YSmax are the maximum values of unevenness,

hairiness, imperfections and yarn strength respectively; and

w1, w2, w3 and w4 are the weights assigned to unevenness,

hairiness, imperfections and yarn strength respectively. These

minimum and maximum values of the responses are obtained

from the single objective optimization results. The weight

values can be anything provided that w1 ? w2 ? w3 ? w4-

= 1 and it depends on the priorities of the considered yarn

characteristics as set by the spinning industry personnel. Here,

equal weights for all the four responses, i.e. w1 = w2 = w3-

= w4 = 0.25 are considered, and the results obtained after

solving thismulti-objective optimization problemusingABC,

ACO, PSO and NSGA-II algorithms are provided in Table 2.

Table 1 Results of single response optimization problem for example 1

Optimization method Response Mean SD Optimal value Parameter

Rotor speed Yarn twist

ABC algorithm Yarn strength 13.1948 0.0080 13.1951 90,800 700

Yarn unevenness 12.9999 0.0037 12.9988 77,950 623

Yarn hairiness 4.5624 0.0014 4.5619 86,104 700

Yarn imperfection 21.7348 0.5002 21.6618 77,832 500

ACO algorithm Yarn strength 13.0909 0.0020 13.0911 91,542 682

Yarn unevenness 12.9317 0.0114 12.9304 78,018 595

Yarn hairiness 4.5630 0.0101 4.5618 86,166 700

Yarn imperfection 23.0545 0.4655 23.0301 83,250 507

PSO algorithm Yarn strength 13.2180 0.0150 13.2200 90,988 700

Yarn unevenness 12.9108 0.0076 12.9104 77,999 523

Yarn hairiness 4.5536 0.0403 4.5455 90,121 630

Yarn imperfection 20.6333 0.4230 20.5699 77,925 500

NSGA-II algorithm Yarn strength 13.1627 0.0216 13.1672 91,480 693

Yarn unevenness 12.9243 0.0223 12.9207 77,963 615

Yarn hairiness 4.5978 0.0956 4.5743 90,175 698

Yarn imperfection 52.2836 22.6050 27 79,992 514
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It is observed that among the four considered evolutionary

algorithms, PSO algorithm again supersedes the others with

respect to the derived objective function value and consis-

tency of the solution. Thus, it can be concluded that using PSO

algorithm, at 83,053 rpm rotor speed and 700 yarn twist per

metre, an optimal combination of yarn strength = 13.0994

cN/Tex, yarn unevenness = 12.0859 CVm%, yarn hairi-

ness = 4.5539 and yarn imperfections = 82 is attained. There

are improvements in yarn strength, yarn unevenness and yarn

hairiness values at that optimal parametric setting as com-

pared to those derived by Arain et al. [7]; but yarn imperfec-

tions are drastically reduced from 101 to 82.

Problem 2

In this example, the experimental data of Hasanuzzaman

et al. [15] are considered for single as well as multi-re-

sponse optimization of yarn characteristics. Based on the

Box–Behnken design plan, Hasanuzzaman et al. [15]

conducted 15 experiments in order to investigate the effects

of three process parameters, i.e. spindle speed (x1), yarn

twist multiplier (yarn TM) (x2) and roving TM (x3) on

breakage rate per 100 spindle per hour (BR), specific

strength (SS) (gm/tex), yarn irregularity (IR) (%), breaking

extension (BE) (%), hairiness index (HI) and imperfection

per km (IM). It is worthwhile to mention here that SS and

BE are the beneficial (larger-the-better) type of quality

characteristics, and the remaining four are non-beneficial

(smaller-the-better) responses. Each of those process

Fig. 1 Convergence diagrams of ABC, ACO, PSO and NSGA-II algorithms for four responses
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parameters was set at three different levels, i.e. spindle

speed 15,000, 17,000 and 19,000 rpm; yarn TM 3.7, 3.9

and 4.1; and roving TM 1.1, 1.3 and 1.5. Using desirability

function approach, an optimal parametric combination of

spindle speed = 17,020 rpm, yarn TM = 4.1 and roving

TM 1.3 was derived for BR = 5.81433, SS = 16.5792

gm/tex, IR = 8.6359%, BE = 3.86991%, HI = 5.67938

and IM = 87.5435 with an overall desirability of 0.664.

Based on the experimental observations and using RSM

technique, the following six second-order regression

models were also developed showing the relationships

between the process parameters and yarn characteristics.

YðBRÞ ¼ 6:46 þ 4:36x1 � 1:33x2 � 0:44x3
� 1:15x1x2 þ 1:81x21 þ 0:63x22 ð6Þ

YðSSÞ ¼ 16:15 þ 0:43x2 þ 0:12x3 � 0:26x21 ð7Þ

YðIRÞ ¼ 8:62 � 0:068x2 � 0:32x3 þ 0:095x1x2
� 0:085x1x3 þ 0:22x21 þ 0:071x22 ð8Þ

YðBEÞ ¼ 3:72 � 0:18x1 þ 0:045x2 � 0:46x3
þ 0:10x22 þ 0:13x23 ð9Þ

YðHIÞ ¼ 5:81 þ 0:047x1 � 0:14x2 � 0:066x3
� 0:080x1x2 � 0:068x2x3 � 0:067x23 ð10Þ

YðIMÞ ¼ 83:38 þ 5:12x1 � 3:38x2 þ 7:50x3
þ 5:00x1x2 þ 7:58x22 þ 27:33x23 ð11Þ

Now, this problem is first solved applying ABC, ACO,

PSO and NSGA-II algorithms while optimizing each of the

responses separately with the constraints set as

15,000B x1 B 19,000, 3.7B x2 B 4.1 and 1.1B x3 B 1.5.

Table 3 provides the detailed solutions for these individual

optimization problems. It is interestingly revealed that for

all the considered evolutionary algorithms, there are

improvements in the derived yarn characteristics and

PSO algorithm provides the best optimization

performance. For these algorithms too, the settings of

various control parameters remain the same as those of the

first example.

The deployment of the considered evolutionary algo-

rithms proves that there are scopes for improvements in the

derived yarn characteristics with different combinations of

the three process parameters. But, in a ring spinning pro-

cess, it is not at all possible to set the process parameters at

Fig. 2 Variations in responses with changing values of rotor speed
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Fig. 3 Variations in responses with changing values of yarn twist level

Table 2 Results of multi-response optimization problem for example 1

Optimization method Response Mean Z1 SD of Z1 Optimal value Z1 Parameter

Rotor speed Yarn twist

ABC algorithm Yarn strength 3.0721 0.0131 13.0716 3.0654 82,205 700

Yarn unevenness 12.9287

Yarn hairiness 4.5716

Yarn imperfection 100

ACO algorithm Yarn strength 3.8507 0.2691 13.0160 3.8043 79,171 695

Yarn unevenness 12.9938

Yarn hairiness 4.5853

Yarn imperfection 98

PSO algorithm Yarn strength 0.6989 0.0048 13.0994 0.6969 83,053 700

Yarn unevenness 12.0859

Yarn hairiness 4.5539

Yarn imperfection 82

NSGA-II algorithm Yarn strength 6.0988 0.0049 12.7360 6.0965 79,064 525

Yarn unevenness 12.9333

Yarn hairiness 4.5950

Yarn imperfection 99
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different operating levels for achieving different target

response values. Thus, it is always recommended to adopt

multi-response optimization for this considered problem

which would determine one unique setting for all the three

process parameters for simultaneous optimization of the six

responses. For this purpose, the following multi-response

optimization problem is developed and subsequently

solved using ABC, ACO, PSO and NSGA-II algorithms.

Min Z2ð Þ ¼ w1

YðBRÞ � BRmin

BRmax � BRmin

� �
þ w2

YðIRÞ � IRmin

IRmax � IRmin

� �

þ w3

YðHIÞ � HImin

HImax � HImin

� �

þ w4

YðIMÞ � IMmin

IMmax � IMmin

� �

� w5

BEmax � YðBEÞ
BEmax � BEmin

� �

� w6

SSmax � YðSSÞ
SSmax � SSmin

� �

ð12Þ

where Y(BR), Y(IR), Y(HI), Y(IM), Y(BE) and Y(SS) are the

second-order response surface equations for breakage rate

per 100 spindle per hour, yarn irregularity, hairiness index,

imperfection per km, breaking extension and specific

strength respectively; BRmin, IRmin, HImin, IMmin, BEmin

and SSmin are the minimum values of BR, IR, HI, IM, BE

and SS respectively; BRmax, IRmax, HImax, IMmax, BEmax

and SSmax are the maximum values of BR, IR, HI, IM, BE

and SS respectively; and w1, w2, w3, w4, w5 and w6 are the

weights allotted to BR, IR, HI, IM, BE and SS respectively.

In this multi-response optimization problem, equal weight

is assigned to each of the responses, i.e. all the responses

are seemed to be equally preferable to the concerned

spinning industry personnel. Table 4 provides the optimal

solutions as derived for this multi-response optimization

problem while employing ABC, ACO, PSO and NSGA-II

algorithms. It can be noticed that for all the adopted evo-

lutionary algorithms, the responses are simultaneously

optimized at a particular setting of the considered process

parameters. It is clearly revealed that in this problem also,

the optimization performance of PSO algorithm is the best

as compared to the others. For this algorithm, at a para-

metric combination of spindle speed = 15,000 rpm, yarn

TM = 4.010 and roving TM = 1.273, the optimal values of

Table 3 Results of single response optimization problem for example 2

Optimization method Response Mean SD Optimal value Parameter

Rotor speed Yarn TM Roving TM

ABC algorithm BR 3.4745 0.012 3.4549 15,000 3.9138 1.496

SS 16.9444 0.0093 16.9471 15,036 3.7 1.112

IR 8.2828 0.0012 8.2825 17,229 3.967 1.499

BE 4.6050 0.010 4.6113 15,094 4.096 1.103

HI 5.4431 0.0048 5.4420 18,919 4.097 1.498

IM 75.5055 0.038 75.4842 15,001 4.026 1.272

ACO algorithm BR 3.5523 0.044 3.5414 15,024 3.8617 1.4995

SS 16.8958 0.0399 16.900 15,164 3.7164 1.1238

IR 8.2993 0.0009 8.2992 17,231 3.971 1.1105

BE 4.6175 0.0078 4.6193 15,098 4.0974 1.101

HI 5.4450 0.0048 5.4414 18,870 4.0993 1.498

IM 76.2340 0.38 76.1554 15,043 3.9578 1.281

PSO algorithm BR 3.4573 0.00475 3.4459 15,000 3.928 1.5

SS 16.9599 0.00167 16.9610 15,002 3.7 1.1

IR 8.2817 0.00015 8.2816 17,209 3.981 1.5

BE 4.633 0.0147 4.6350 15,000 4.1 1.1

HI 5.437 0.0073 5.436 19,000 4.1 1.1

IM 75.4295 0.0026 75.4293 15,000 4.0105 1.2725

NSGA-II algorithm BR 3.5095 0.1264 3.4709 15,001 3.922 1.4941

SS 16.9472 0.012 16.9486 15,024 3.701 1.1014

IR 8.2838 0.0268 8.2828 17,214 3.981 1.499

BE 4.6144 0.012 4.6260 15,006 4.099 1.102

HI 5.4473 0.0054 5.4428 18865 4.1 1.496

IM 75.543 0.1127 75.4461 15,004 4.012 1.273
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the six responses are achieved as BR = 3.7270, SS =

16.671 gm/tex, IR = 8.6071%, BE = 4.1104%, HI =

5.5358 and IM = 75.5628. The developed scatter dia-

grams (not shown here due to lack of space) depicting the

relationships between yarn characteristics and process

parameters are also observed to be in well congruence with

the observations of Hasanuzzaman et al. [15].

Conclusions

It has been observed that the desired yarn quality charac-

teristics can only be achieved when different parameters of

a ring or rotor spinning process are set at their optimal

operating levels. As the multiple yarn characterises are

often conflicting in nature, it is always desired to search for

a single optimal parametric combination for the considered

spinning process in order to simultaneously optimize all the

yarn qualities. In this paper, four evolutionary algorithms,

i.e. artificial bee colony algorithm, ant colony optimization

algorithm, particle swarm optimization algorithm and non-

dominated sorting genetic algorithm-II are applied for

multi-response optimization of various yarn characteristics.

It is noticed that particle swarm optimization algorithm

provides the best solution with respect to the objective

function value, consistency of the solution and conver-

gence speed. In the ring spinning process, in order to

simultaneously optimize all the six yarn characteristics,

spindle speed, yarn twist multiplier and roving twist mul-

tiplier are to be set at 15,000 rpm, 4.010 and 1.273

respectively. On the other hand, in the rotor spinning

process, an optimal parametric setting of 83,053 rpm rotor

speed and 700 yarn twist per metre concurrently optimizes

all the four yarn qualities. The developed scatter diagrams

also help in investigating the effects of different spinning

process parameters on the final yarn characteristics. These

multi-response optimization techniques can also be adop-

ted in any of the intermediate processes of a textile industry

where a global optimal parametric setting is needed to

achieve a set of conflicting target responses.

Table 4 Results of multi-response optimization problem for example 2

Optimization method Response Mean Z2 SD of Z2 Optimal value Z2 Parameter

Spindle speed Yarn TM Roving TM

ABC algorithm BR - 89.226 0.0167 3.9990 - 89.230 15,003 4.002 1.273

SS 16.6577

IR 8.6253

BE 4.0122

HI 5.5899

IM 75.9551

ACO algorithm BR - 89.223 0.0154 3.9725 - 89.237 15,003 4.002 1.274

SS 16.653

IR 8.6178

BE 4.0107

HI 5.6442

IM 75.7559

PSO algorithm BR - 583.45 0.0001 3.7270 - 583.47 15,000 4.010 1.273

SS 16.671

IR 8.6071

BE 4.1104

HI 5.5358

IM 75.5628

NSGA-II algorithm BR - 89.231 0.0197 3.9011 - 89.235 15,004 4.013 1.267

SS 16.5974

IR 8.6181

BE 4.0217

HI 5.5699

IM 75.8872
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