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Abstract The experimental studies of drop weight and 
Izod impact test of FFAL (flax fibre aluminium laminate) 
are presented in the research. The materials taken for the 
study are plain woven flax and aluminium lamina with epoxy 
resin as an adhesive material. Alkaline with diluted epoxy 
chemical treatment is added to flax, and aluminium is treated 
with NaOH to strengthen the binding between the fibres and 
metal. The FFAL was prepared by hand layup method fol-
lowed by compression moulding technique. The low-veloc-
ity and Izod impact tests were conducted for treated and 
untreated samples. The outcomes exhibited that the increase 
in the impact strength of 40% and energy absorption capac-
ity of low-velocity impact strength also improved for the 
treated sample. The experimental damage of low-velocity 
and Izod impact test results are also examined.

Keywords FFAL · Chemical treatment · Drop weight 
test · Izode Impact Test

Introduction

The stacked layers of thin metal sheets and fibres (natural/
synthetic) are a new type of lightweight material widely 
used in aerospace and defence applications because of 
good mechanical properties like high strength-to-weight 
ratio, good corrosion resistance, high stiffness, good impact 
resistance and wear resistance [1–3]. The investigation of 
ecologically friendly materials has been spurred by rising 
environmental consciousness, heightened community inter-
est, and more stringent environmental laws. Natural fibres 
have become a strong alternative because of their advan-
tages over synthetic fibres [4–6]. Because of the numerous 
benefits provided by natural fibres, there has been a signifi-
cant increase in demand for fibre metal laminate in recent 
years [7–10]. These benefits include lightweight composi-
tion, affordability, and minimal impact on machinery during 
processing, favourable mechanical properties such as tensile 
and flexural modulus, improved surface finish, and abundant 
availability as renewable resources, processing adaptability, 
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biodegradability, and concurrent reduction in health risks 
[11–15]. However, it is important to remember that natural 
fibres may have some disadvantages. Their composition of 
cellulose, hemicelluloses, lignin, pectin, and waxy materi-
als allows them to absorb moisture from the surrounding 
air, which causes the link between the polymer and fibre to 
become weak [16–20]. Furthermore, the various chemical 
structures of polymer matrices and natural fibres make it dif-
ficult to achieve good coupling at the interface, which results 
in ineffective stress transfer inside the composites [1, 7, 18, 
21, 22]. Certain procedures are used to alter natural fibres in 
order to address these problems. Reagent functional groups 
are commonly used to improve composite materials. These 
groups have the ability to interact with fibre structures, alter-
ing their composition [23–27]. When fibres improve the 
adhesive characteristics between themselves and the matrix, 
the overall performance of composite materials improves, 
effectively minimising moisture absorption [28–30].

Extensive research has been dedicated to examining the 
behaviour of materials like carbon-reinforced aluminium, 
aramid-aluminium laminate, and glass fibre-aluminium 
laminates through low-velocity impact experiments, often 
comparing them with metals such as titanium and magne-
sium [31–35], and these material are promising in the field 
of automotive and defence sector; specifically, it can be used 
as car front hood, back panel, tail gate, bumper, fender and 
body armour, etc. These experiments have provided valu-
able insights into how fibre metal laminate (FML) responds 
to impact forces. One prominent challenge identified in 
FML during low-velocity impacts is laminate delamina-
tion. Parameters such as interfacial adhesion, energy absorp-
tion, and deflection stiffness are crucial factors associated 
with FML delamination [36–41]. Notably, surface treat-
ment applied to both the fibre and metal layers serves to 
enhance inter-laminar strength, thereby improving the over-
all mechanical characteristics of the laminate.

Aghamohammadi et al. [15, 26, 27] investigated various 
surface treatment and their effects on the flexural properties 
of aluminium metal fibre laminate. The treatment effect on 
fibre metal laminates (FMLs) helps to improve their impact 
characteristics. Despite this, there are few reports on the use 
of flax fibre in FMLs. Mujahid Khan et al. [16, 30] inves-
tigated the mechanical characteristics of epoxy composites 
reinforced with banana fibres after alkali treatment. The 
purpose of alkaline treatment or retting is to break down the 
pectins and other components that bind the fibres together 
in the flax, and when it is treated with flax fibre, following 
changes happen fibre softening: the treatment can result in 
softer and more pliable fibres, making them more suitable 
binding with other fibres or metals. Improved fibre quality: 
alkaline treatment can lead to an improvement in the qual-
ity of the flax fibres by removing impurities and unwanted 
substances from the raw material. After fibre treatment with 

a 4.5% NaOH solution, the results demonstrated a general 
increase in mechanical properties, notably tensile and com-
pressive strengths. When compared to the untreated sample, 
the treated samples showed significant improvements, with a 
24.2% increase in tensile strength and a 34.8% rise in com-
pressive strength. This treatment elevates the material to the 
status of structural alloy with enhanced strength properties. 
The greater strength of aluminium alloy 6082 over 6061 has 
contributed to its growing popularity in a variety of appli-
cations. This alloy is preferred because of the considerable 
manganese addition, which allows for better control over 
the grain structure and higher material strength. R. Eslami 
Farsani et al. [17, 31] studied the influence of adding micro 
glass powder into basalt fibre-reinforced epoxy composites. 
Unlike epoxy composites reinforced merely with basalt fibre, 
the inclusion of tiny glass powder increases energy absorp-
tion, particularly at high temperatures.

Natural fibre-laminated composites are prone to delami-
nation due to their inherent low inter-laminar strength. The 
polymeric matrix within the composite is critical in promot-
ing energy transmission among its components to improve 
impact energy absorption. Delamination between layers may 
occur with minimal apparent surface damage in low-veloc-
ity impact scenarios, although real piercing is uncommon 
[42–47]. Contaminated reinforcing fibres, insufficient fibre 
wetting, mechanical stress during machining, and insuffi-
cient reinforcement in the thickness direction are all vari-
ables that might lead to pre-existing delamination inside a 
composite. These flaws have the ability to drastically reduce 
the energy absorption capacity of the composite [48–52].

Over time, research on metal laminate made of natural 
fibres, such as flax fibres, has made steady progress. Sur-
prisingly, in spite of these advancements, there is a glaring 
deficiency in comprehensive review papers targeted spe-
cifically at flax composites. In order to gain a foundational 
understanding for future research in the field of natural fibre 
metal laminate, the study thoroughly examines flax fibres 
and aluminium lamina, their surface treatments, the produc-
tion of treated and untreated NFML, mechanical testing, and 
microstructural analysis.

Materials and Methods

Materials

Vruksha composites, Guntur, A.P., offered a unidirectional 
flax fibre with the following properties: 1.31 g/cm3, 0.65 mm 
thickness, 365 MPa tensile strength, 35 GPa tensile modulus, 
294 MPa maximum flexural strength, and 50% fibre fraction 
by volume. For this project, PMC Corporation in Bangalore, 
Karnataka, offered aluminium 6082 with a density of 2.71 g/
cm3, a Young’s modulus of 70 GPa, an ultimate tensile 
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strength ranging from 141 to 335 MPa, a yield strength of 
270 MPa, and a thickness of 1 mm. The hardener and epoxy 
resin LY556 were also purchased from CS Marketing in 
Bangalore, Karnataka. At 250 °C, LY556 has a viscosity 
varying from 10,000 to 12,000 MPa and a density ranging 
from 1.15 to 1.2 g/cm3. It also has a flash point of 1950 °C. 
The optimum ratio of epoxy to hardener during mixing was 
found to be 10:1. About 150 g of epoxy was taken along with 
15 g of hardener.

Alkaline Treatment for Aluminium 6082

The aluminium alloy sheets underwent a treatment process 
wherein they were immersed in an alkaline solution bath at 
a temperature of 65 °C for duration of 1 min. Subsequently, 
the sheets were thoroughly cleaned and dried using clean 
water. This process is likely employed for surface treatment 
or preparation, and the specific conditions mentioned sug-
gest a carefully controlled procedure for enhancing certain 
properties or characteristics of the aluminium alloy sheets.

This solution contains 35 g/L sodium hydroxide and 
35 g/L sodium carbonate; this allows for better roughness on 
the surface of the aluminium, and also the chemicals allow 
for better bonding with the treated flax fibres. Figure 1a–d 
shows the treatment process of Aluminium 6082.

Chemical Treatment for Flax Fibre

The flax fibres by themselves have a rough nature. The treat-
ment of flax fibres helps in increasing the bonding between 
the matrix and the flax fibres and also helps increase other 
properties due to the removal of pectins [20].

Several procedures were required in the manufacture 
of the flax fibre unidirectional (UD) mats. The mats were 
first immersed in a 1% concentration sodium hydroxide 
(NaOH) solution at room temperature for 20 min. Follow-
ing the immersion, the fibres were thoroughly cleaned in 
cold water and then in acidified water (made by adding 20 
drops of 0.1 M hydrochloric acid to 1 L of water) to remove 
excess NaOH. After that, a final rinse with cold water was 

Fig. 1  a 30 g/L solution of NaOH is created by adding 60 g NaOH 
in 2L of distilled water. b 30  g/L solution of  Na2CO3 is created by 
adding 60 g  Na2CO3 in 2L of distilled water. c The aluminium sheets 

are dipped inside the solution (heated to 60 °C for 1 min. d The alu-
minium sheets are dried in air
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conducted. The cleaned fibres were then dried for eight 
hours in an oven set at 80 °C. The fibres were then sub-
merged in acetone-dissolved epoxy, precisely a 3% solution 
of epoxy LY556. This epoxy application lasted two hours 
at ambient temperature. The full methods involved in the 
alkaline and dilute epoxy treatment of flax fibre are depicted 
in Fig. 2a–i. This extensive procedure is most likely used 
to improve the compatibility and bonding properties of the 
flax fibres with the epoxy matrix in the composite material.

Specimen Preparation

The fabrication method used was the hand-layup method 
followed by compression moulding technique. One of the 
most basic and affordable methods for fabricating NFML 
is through the hand-layup technique. This method involves 
layering the materials in a calculated ratio by volume and 

then fabricating those layers by hand. The manufacturing 
procedure in this study entails generating layers consisting 
of dual layers of flax fibres sandwiched between two layers 
of aluminium. The epoxy is made by combining it with the 
hardener in a 10:1 ratio. Following that, the epoxy mixture is 
poured over each layer and uniformly dispersed, as shown in 
Figures 3(a–b). Finally, the layers are layered on top of one 
another. This assembly method implies the formation of a 
composite structure in which flax fibres, aluminium layers, 
and an epoxy matrix are mixed to produce a cohesive and 
integrated material for further study or application [53–57].

The drawbacks of the hand-layup process (Fig. 3a, b) 
are that the composite will not have enough pressure or 
heat to bond evenly throughout the material during the 
process and that the epoxy may not spread as evenly when 
spread by hand. This is overcome by using compression 
moulding (Fig. 3c) right after this process. The purpose of 

Fig. 2  a Weighing of NaOH crystals upto 20  gms. b Mixing of 
NaOH with 2000 ml distilled water for 1% NaOH solution. c Setting 
up flax fibres for the pouring process. d The 1% NaOH solution is 
poured onto the flax fibres and left for 20 min. e 1000 ml of distilled 
water is poured onto the fibre. f Twenty-five drops of 0.1 M HCl are 

dropped into the water and mixed to get rid of excess NaOH in the 
fibres. g 30 g of epoxy LY556 in 1L acetone with a few drops of hard-
ener. h The treated fibre is kept in an oven. i The temperature is set to 
80 °C and it is left for 8 h
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this process is to evenly spread the epoxy among the layers 
and to provide pressure and heat as shown in Fig. 3d–e. 
This allows the epoxy to harden and cause the bonds 
between the metal and fibre to strengthen while adhering 
the two together, therefore acting as a sort of curing pro-
cess Fig. 3f and help in increasing mechanical properties.

Impact Tests

Impact Drop Weight Test

The INSTON 9520HV testing device was used for the drop 
weight tests. Figure 4a depicts a schematic representation 
of the arrangement. The parameters of the drop weight test 

Fig. 3  a,  b Hand-layup process of FFAL. c The compression moulding apparatus. d The compression and heater plates inside the apparatus. e 
The material is kept inside the apparatus and a pressure of 30 bar is applied. f The heaters are heated to 70 °C and then left for 4 h

Fig. 4  a Schematic diagram of 
drop weight testing machine. 
b Sample size treated and 
untreated. c Specimen clamped 
for testing
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are specimen geometry, notch configuration, drop weight, 
drop height, impact velocity. The drop hammer utilised in 
the testing was outfitted with an acceleration sensor that 
recorded the acceleration history during the impact. The 
specimens utilised in the testing were 100 mm square with 
a thickness of 3 mm, as shown in Fig. 4b. This experimental 
setup and specimen size suggest a controlled way for evalu-
ating the impact resistance and behaviour of the materials 
or structures under consideration. The use of an acceleration 
transducer enables extensive monitoring and analysis of the 
acceleration dynamics during drop weight testing.

Drop weight impact testing was performed on both treated 
and untreated flax fibre-reinforced aluminium (FBAL) 
specimens. Figure 4c depicts the experimental setup, which 
included clamping the specimens between two square steel 
plates with a central square aperture. The apertures in the 
steel plates were 70 mm in diameter. The 6.2 kilogramme 
impacting projectile utilised had a hemispherical diameter 
of 10 mm. As seen in Table 1, the drop weight heights were 
consistently fixed at 1 m. This arrangement and the set-
tings indicated imply a controlled testing environment for 
evaluating and comparing the impact resistance of treated 
and untreated FBAL specimens under consistent conditions 
[58–62].

Izod Impact Test

The Izod impact test evaluates a material’s impact resist-
ance by measuring the energy it can take before breaking 

under a single applied force. A material specimen is placed 
in a pendulum-like contraption, which is subsequently hit 
by a weighted pendulum. The pendulum swings downward 
upon contact, and the following rise in height is measured 
to calculate the amount of energy absorbed by the speci-
men. The Izod impact test findings are stated in terms of the 
energy absorbed by the specimen prior to breaking. This 
impact energy value is critical for determining the material’s 
resistance to impact forces. Figure 5 shows a schematic illus-
tration of the Izod impact test, exhibiting the fundamental 
set-up and mechanics of the test.

Results and Discussions

Drop Weight Test Results

Drop weight impact test, the acceleration vs. time curve 
illustrates the dynamic response of a material to sudden 
impact forces. As the test begins, the curve typically starts 
with zero acceleration as the weight is at rest, and it accel-
erates downward rapidly once released, primarily due to 
gravity. Upon impact with the material specimen, the accel-
eration drops abruptly to zero, indicating the moment of 
impact. Subsequently, the acceleration may exhibit fluctua-
tions, which are often associated with the material’s ability 
to absorb and release energy through elastic deformation.

The force vs. time curve in a drop weight impact test illus-
trates how a material responds to sudden impact forces. It 
begins at zero force, accelerates rapidly upon impact, reaches 
a peak force at the moment of impact, and then may exhibit 
fluctuations or a gradual decline as the material undergoes 
deformation. The curve concludes with a sharp drop to zero 
force at the point of catastrophic failure, indicating the mate-
rial’s ultimate strength and ability to withstand dynamic 
loading conditions, making it crucial for evaluating impact 
resistance and material suitability in various applications.

The energy vs. time curve in a drop weight impact test 
shows the transfer and absorption of kinetic energy during 

Table 1  The impact test 
parameters

Test parameters

Displacement 17 mm
Mass 6.3 kg
Drop height 1 m
Velocity 4.5 m/s
Acceleration 1620.45 m/s2

Energy 60 J

Fig. 5  a Sample dimensions as per ASTM D256 sample size, b schematic diagram of Izod impact tester and c sample for testing
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Fig. 6  Drop weight results for a untreated sample and b treated sample

Fig. 7  Drop weight of a 
untreated and b treated samples 
of FBAL
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an impact event. Starting at zero, it rapidly increases as 
the weight accelerates due to gravity. Upon impact with 
the material, there is a sudden spike in energy, represent-
ing the instant energy transfer from the weight. The curve 
may then fluctuate or gradually rise as the material absorbs 
and releases energy through deformation. It concludes with 
a peak, signifying the maximum energy absorbed before 
material failure. This curve provides insights into the mate-
rial’s energy dissipation and its ability to withstand dynamic 

loading conditions, aiding the assessment of its impact 
resistance and suitability for applications.

The displacement vs. time curve in a drop weight impact 
test illustrates the motion and deformation of a material 
under sudden impact. Starting at zero displacement, it rap-
idly increases upon impact, showing an initial jump at the 
moment of contact. Subsequently, the curve may exhibit 
fluctuations or a gradual rise as the material undergoes elas-
tic or plastic deformation. It concludes with a sharp spike at 
the point of catastrophic failure, representing the maximum 
deformation the material can endure. This curve offers criti-
cal insights into the material’s deformation behaviour and 
damage characteristics under dynamic loading conditions, 
aiding in the assessment of its impact resistance and struc-
tural integrity for various applications.

The velocity vs. time curve in a drop weight impact test 
tracks the motion of a material under sudden impact. It 
begins at zero velocity and rapidly increases as the weight 
accelerates due to gravity. Upon impact with the material 
specimen, the velocity drops abruptly to zero, signifying 
the instant of contact. The curve may then exhibit fluctua-
tions or a gradual decline as the material undergoes elastic or 
plastic deformation, depending on its response. Ultimately, 
it concludes with a sharp spike at the point of catastrophic 
failure, representing the maximum deformation the mate-
rial can sustain. This curve provides crucial insights into 
the material’s dynamic behaviour, energy absorption, and 
impact resistance, aiding in its suitability assessment for 
various applications [63–67].

The forces, acceleration, displacement, energy, and veloc-
ity lines of the treated and untreated samples are clearly 
different, as the graph in Fig. 6 shows. The treated sample’s 
results line deviates slightly from the other data, suggest-
ing that it has a higher energy-absorbing capacity than the 
untreated sample [68–71].

This demonstrates that the sample that has been treated 
can absorb more energy, offering greater protection against 
energy impacts (Figs. 7, 8, 9, 10).

Izod Impact Test Results

The average impact strength of the untreated specimen was 
0.0618 J/mm2, while the treated specimen had higher impact 
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Fig. 8  Impact energy of treated and untreated FBAL
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Fig. 9  Impact strength of treated and untreated FBAL

Fig. 10  Tested samples after impact test, a treated and b untreated
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strength of 0.0801 J/mm2. As a result, the treated specimen 
had an impact strength that was almost 40% more than the 
untreated one. This increase in impact strength indicates that 
the treatment had a beneficial effect on the specimen’s capac-
ity to absorb energy before fracture under impact pressures.

The treated sample absorbs 12% more impact energy than 
the untreated sample. The improved findings are mostly due 
to FFAL’s ductility, which absorbs the shock load for the 
treated sample.

Conclusion

The effect of surface treatment on low-velocity impact per-
formance and Izod impact characteristics was investigated 
in the context of aluminium 6082 and flax fibre. Aluminium 
6082 was treated with NaOH in this study, whereas flax fibre 
was treated with alkaline. The test findings demonstrated 
that the layer-by-layer fabrication of the material increased 
the surface energy, formed covalent connections, and created 
a porous structure on the surface of flax fibre and aluminium 
6082, improving the inter-laminar characteristics of FFAL. 
The bonding ability of aluminium is improved by the NaOH 
treatment for aluminium and the alkali treatment for flax. 
When compared to the untreated sample, the treated speci-
men’s impact strength increased by 40%, according to the 
results. The treated sample exhibited a remarkable enhance-
ment in adhesion properties and absorbed 12% more impact 
energy than the untreated sample. By comparing force line 
curves between the treated and untreated samples, the low-
velocity impact strength of the treated sample suggests a 
greater potential for energy absorption. This demonstrates 
that the sample that has been treated can absorb more 
energy, offering greater protection against energy impacts.
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