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Abstract This paper presents a comprehensive study on 
fracture mechanics, with a focus on stress intensity factor 
(SIF) determination, using a combination of experimental, 
numerical, and empirical methods. The investigation focuses 
on the creation of an improved finite element model using 
the AL2014 alloy, which is commonly used in aerospace 
and structural engineering. Compact tension (CT) speci-
mens of AL2014 were subjected to fatigue pre-cracking in 
accordance with ASTM E399 guidelines. The study pro-
poses an empirically modified displacement extrapolation 
technique for accurate SIF calculation that takes pre-crack 
conditions into account. The experimental results were used 
to validate ANSYS numerical simulations. The proposed 
empirical displacement extrapolation method outperformed 
traditional finite element analysis and displacement extrapo-
lation in terms of accuracy. For example, the stress intensity 
factor (K_Q) for Sample 1 was determined experimentally 
as 28.873 MPam0.5, numerically as 30.44 MPam0.5, and 
empirically as 29.01 MPam0.5, demonstrating the precision 
of the new approach. The results demonstrate the empiri-
cal equation’s ability to predict stress intensity factors with 
high precision when both initial crack length and pre-crack 
conditions are taken into account. In terms of accuracy 

and applicability, the proposed method outperforms tradi-
tional approaches, with promising implications for fracture 
mechanics analysis.

Keywords Fracture toughness · Mode I · Displacement 
extrapolation method · Stress intensity factor

Introduction

It is essential in the field of contemporary structural engi-
neering to design structures that are resistant to at least some 
degree of damage. As a consequence of this, there is an 
increasing demand for the development of improved meth-
odologies for predicting the breakdown of defective com-
ponents. The linear elastic fracture mechanics’ principles, 
which include methods such as T-stress, higher-order, and 
factor of stress intensity terms, have being frequently utilized 
in evaluating damage tolerance process. The SIF is particu-
larly important in terms of defining fractures among these. 
It is helpful for describing the distribution of stress close to 
a crack’s tip, which in turn helps in the prognosis of fracture 
conditions and the estimation of the remaining lifespan of 
mechanical components with cracks [1].

When calculating the SIF, the two primary estimation 
methods that are used are those which rely on field extrapo-
lation close to the tip of the fracture [2, 3] and that are based 
on the energy released while the crack is propagating. Exam-
ples of methods that fall into the second category include 
the extension of elemental crack, integration of J-contour 
integration, the approach of stiffness derivative, and the 
integral formulation of energy domain that was developed 
relatively recently [4–6]. In order to achieve an accurate 
crack-tip fields’ numerical representation during field fit-
ting procedures carried out in close proximity to a crack tip, 
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finer meshes are required. The results that are produced by 
methods that are as per the nodal displacements, they are 
the main outcomes of finite element programmes, are the 
most accurate.

As a result of the significant potential that FEM pos-
sesses in the fracture mechanics’ applications, in this study, 
this approach was chosen for its numeric way of calculat-
ing fracture toughness. In earlier research, Zare et al. [7] 
employed FEM to effectively compute the stress intensity 
factor for a finite plate featuring an edge crack and exposed 
to the loading of uniaxial stress with a favourable outcome. 
In addition, the relationship between the edge crack posi-
tion and SIF throughout the plate’s length was correctly pre-
dicted by the neural network approach. This correlation was 
found to be highly significant. Other studies [8, 9] focused 
on calculating SIF utilizing FEM and contrasting the out-
comes of the simulation with potential solutions. The pur-
pose of this was to verify the method’s accuracy. Extensive 
research has revealed that specialized crack-tip elements that 
are responsible for SIF generation (K_IC) hold promise as 
a potential solution. In general-purpose FEM systems, you  
will not frequently come across elements such as enhanced, 
stress hybrid, and displacement hybrid elements. In order 
to solve this problem, a commercial finite element analy-
sis programme has incorporated a modified version of the 
iso-parametric element that was proposed by Barsoum [10]. 
This element contributes to an improvement in the finite 
element modelling of cracked components and structures 
as it provides an adequate description field near the single 
strain’s fracture tip.

For the purposes of this investigation, the AL2014 alloy 
was selected. This alloy is second only to the 2024 alloy in 
terms of popularity among the aluminium alloys that are 
part of the 2000-series. Typically, it is extruded and forged. 
2014, due to the metal’s exceptional strength, it is frequently 
used in a variety of structural projects that involve the aero-
space industry. In addition, it is essential in the production 
of military vehicles and weaponry, as well as truck frames, 
bridges, and other essential structural projects.

This study’s foremost aim is to convey the progression of 
an enhanced finite element model’s development as well as 
to cultivate an empirically modified displacement extrapola-
tion technique. Another objective of this study is to develop 
an empirically modified displacement extrapolation tech-
nique. This methodology aim is to diligently ascertain the 
stress intensity factor with precision, also known as K_I, for 
surface and corner cracks that can be located and oriented in 
any way. After that, the empirically modified displacement 
extrapolation technique and the numerical results were vali-
dated by comparing them to the values that were determined 

through experimentation. The precision and reliability of 
fracture mechanics analysis stands to benefit significantly 
from the application of this method.

Methodology of Experimental Research

The NANO TEST SYSTEM BI-7000, manufactured by BISS 
in Bangalore, India, was employed to conduct fracture tough-
ness testing. For the experimental investigation, compact 
tension (CT) specimens fabricated from AL2014 (as shown 
in Table 1) were chosen due to its high strength and good 
machinability. Because of its widespread use in aerospace and 
structural engineering, the AL2014 study promised insights 
that would be directly applicable to these industries. The con-
ducted experiments adhered to the standards delineated in the 
ASTM E399 [11] guideline.

It is beneficial to conduct a triplicate testing (using 3 speci-
mens) for each material condition. The specimens’ dimensions 
must adhere to the specifications outlined in the drawings. In 
order to calculate the fracture toughness (K_IC) value, it is 
necessary to have information regarding the specimen thick-
ness, width (W), and crack size (a). The pre-cracking process 
is a crucial step in the determination of K_IC. It is necessary 
because even the tiniest machined notch, which is commonly 
used in practical applications, cannot accurately replicate the 
characteristics of a natural crack. Consequently, relying on 
such notches would yield measurements of K_IC that are not 
representative or reliable. An artifice is employed wherein a 
narrow notch is utilized, from which a relatively short fatigue 
crack, known as the pre-crack, extends. A fatigue pre-crack 
is generated through the application of cyclic loading to a 
notched specimen, with a stress ratio ranging from a mini-
mum of 1 to a maximum of + 0.1. This loading is repeated for a 
specific number of cycles, typically falling within the range of 
104–106. A test record documenting the relationship between 
the force-sensing transducer’s output and the displacement 
gauge’s output is necessary. The experiment will be con-
ducted iteratively until the specimen reaches its maximum 
threshold for withstanding any additional applied force. The 
maximum force, denoted as Pmax, shall be duly observed and 
documented. The empirical examinations’ results have been 
explicated within the confines of Sect. 6.1. Figure 1 depicts a 
CT specimen utilized for the purpose of conducting fracture 
toughness testing.

Table 1  AL2014 material properties

Youngs modulus Poissions ratio Yield stress Tensile strength

70 GPa 0.33 451.66 MPa 494.72 MPa
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To calculate fracture toughness KIC , first determine the con-
ditional stress intensity factor value KQ . Then, in the event that 
all the requisites and conditions stipulated in the ASTM E399 
standard are duly satisfied, it becomes admissible to assert that 
KQ =  KIC . To get K_Q, a load versus CMOD (crack mouth 
opening displacement) calculation must be performed first. 
A shoulder extensometer is used to measure CMOD experi-
mentally by positioned on a machined V-shaped notch on the 
specimen’s end in Fig. 2.

Tracking the notch edge displacement yields the CMOD. 
A generated curve is used to compute the loads PQ and Pmax . 
Pmax is the load value at the curve’s highest load point. PQ 
stands for the load that exists when the SIF reaches KQ . It 

is necessary to draw additional lines to accomplish this. As 
seen in Fig. 2, when the O point is situated at curve origin, 
the OA line indicates a tangent to the curve linear portion. 
(P/v)5 = 0.95(P/v)O gives rise to the secant line  OP5, which 
has a slope of 5%. PQ is located at the place where the curve 
of Type I intersects the secant line in this scenario. The load 
PQ is situated at the inaugural vertex of both Type II as well 
as Type III curves. Knowing the PQ load, KQ can be derived 
analytically for a standard CT specimen using the following 
equation [11]:

(1)KQ =
(

PQ∕BW
1∕2

)

f
(

a

W

)

Fig. 1  Dimensions and drawing of CT specimen (mm) [11]

Fig. 2  Types of force–displace-
ment (CMOD) records
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where the load PQ at which KQ is found, the specimen’s 
thickness denoted as B, specimen’s width as ’W’, and a rep-
resents the crack’s length.

The calculation of Kmax is performed employing identical 
Equations (i) as well as (ii) as those used for the determina-
tion of KQ , with the sole substitution being the exchange of 
load PQ with load Pmax.

Finite Element Model Development

Finite element modelling refers to the process by which an 
analyst chooses the material properties, type of elements, 
order of elements, method of discretization, type of bound-
ary condition, governing matrix equations, and processing 
options and furthermore, the methods associated with these 
equations are implemented within a commercial finite ele-
ment analysis application to facilitate the desired analysis’ 
execution.

The conceptual finite element model encapsulates a 
highly intricate mesh, replete with SINGULAR iso-para-
metric pentahedral solid elements (commonly referred to 
as SPENTA15), distinguished by a myriad of user-defined 
parameters, including NS, signifying the quantity of seg-
ments between crack faces, and the length ’a’ spanning 
one crack face to the other. Additionally, it encompasses 
the parameter NSEG, which signifies the subdivision of the 
surface crack front [12]. In consonance with this, a mesh that 
is harmoniously congruous is deployed, incorporating con-
ventional elements, specifically iso-parametric SPENTA15 
solid elements denoted as PENTA15 and iso-parametric 

(2)f
(

a

W

)

=

(

2 +
a

W

)

(

1 −
a

W

)3∕2
.

[

0.886 + 4.64
a

W
− 13.32

(

a

W

)2

+ 14.72
(

a

W

)3

− 5.6
(

a

W

)4
]

.

hexahedral solid elements referred to as HEXA20. These 
elements serve the purpose of discretizing the residual 
domain under scrutiny. A succinct explication of the deri-
vation of these elements is proffered within the confines 
of Fig. 3. Eight nodes are spatially situated at the vertex 
positions of every individual element, each of which col-
lectively possesses a grand total of 20 nodes. The residual 
nodes find their placement at the intermediary points along 
the sides of the progenitor element, a structural representa-
tion portrayed as a cube with a dual-unit configuration. The 
parent element domain is utilized for approximating various 
variables using an incomplete quadratic order polynomial. 
This entails the derivation of explicit shape functions Ni (ξ, 
η, ζ) for this polynomial basis, where i ranges from 1 to 20, 
and these functions are readily accessible. By harnessing an 
iso-parametric methodology, the progenitor element can be 
pliably contorted to accommodate either linear or curvilin-
ear boundaries or planar or curved surfaces, as delineated 
within the graphical representation provided in Fig. 3. It is 
advisable to utilize a trivariate Gauss quadrature scheme in 
each of the coordinate dimensions’ that is ξ, η, and ζ for the 
purpose of calculating the element matrices and vectors. The 
necessary coordinates Gauss point and their corresponding 
weight coefficients are readily available and accessible. In 
practical applications, the HEXA20 element is frequently 
favoured and is an integral component of virtually all com-
mercial finite element analysis systems, serving as a standard 
element.

Figure 4 illustrates a SPENTA15 solid element belong-
ing to the serendipity family of quadratic order, featuring 15 
nodes. This element is constructed by adapting the HEXA20 

Fig. 3  Hexahedral solid ele-
ment (Quadratic order)
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element, as demonstrated in Fig. 4. The modification entails 
the collapsing of a face and enforcing that the nodes col-
located in this region possess identical degrees of freedom. 
This particular element is denoted as PENTA15 and func-
tions as a conventional element within the model. Another 
PENTA15 element distortion produces a singular element 
named SPENTA15 for computational fracture mechanics 
[13]. In particular, the edge defined by nodes 3–19-7 aligns 
with a curved crack front. The mid-side nodes, numbered 
10, 12, 14, and 16, are repositioned to quarter-point loca-
tions nearer to the crack front. To attain convergence in the 
computed stress intensity factors, it is possible to incre-
mentally increase the count of SPENTA15 elements (NS) 
between each crack face and adjust the number of segments 
(NSEG) along the crack front, while concurrently reducing 
the size of the singular elements (Δa). For the remaining 
domain under consideration, a compatible mesh of regular 
elements (NREG) is employed. Numerical experimentation 
is an imperative undertaking aimed at ascertaining the most 
favourable values for NREG, NS, Δa, and NSEG finely tuned 
to the specific nature of each problem, thereby guaranteeing 
the convergence of the computed stress intensity factors.

Numerical Simulation

For the purpose of numerical simulation of fracture tough-
ness, a finite element (FE) model of a CT specimen was 
developed using finite element code ANSYS. Because the 
specimen is symmetrical, just half of it has been fabricated 
in order to cut down on the amount of time spent modelling 
and computing. A numerical model of the experiment has 
the same dimensions as the experiment’s specimen (refer to 
Fig. 1 for further explanation). The fatigue pre-crack length 
was utilized for each and every condition that was simulated 

using numerical methods. For the purpose of determining 
the boundary conditions, reference points were positioned in 
the exact middle of the pin hole on the specimen model. The 
response force, factor of stress intensity, and crack mouth 
opening displacement were discovered by the use of the 
numerical model. The configuration of the components that 
are located close to crack tip is depicted in Fig. 5.

As illustrated in Fig. 6, the CT model’s opening mode was 
guaranteed by the loading requirements as well as boundary 
conditions. The requirements for the elements’ compatibility 
were guaranteed.

The preconditioned conjugate gradient (PCG) solver was 
utilized in order to conduct the analysis on the SIF. The 
creation of an element matrix is the first step in this solver’s 
process. PCG solvers construct the complete global stiffness 
matrix instead of factoring the global matrix, and they iter-
ate until they reach convergence before calculating the DOF 
solution. Following the establishment of the suitable system 
of local coordinate for crack’s vicinity, both the plane strain 
condition and local coordinate system were used to obtain 
the stress intensity component [14].

Empirical Displacement Extrapolation Equation

The method of displacement extrapolation is based on field 
extrapolation, which calculates the factor of stress intensity 
by utilizing nodal displacements near the fracture tip. This 
method is referred to as "field extrapolation". To ensure a 
precise depiction of the crack-tip field, quarter-point iso-
parametric elements are employed, in accordance with the 
recommendations presented in references [10, 15]. Figure 7 
illustrates the advancement of the crack along the x-axis.

For a bi-dimensional crack subjected to mode I stress, the 
asymptotic equation for the displacement perpendicular to 
the crack plane, v, is expressed as [16]

Fig. 4  Singular SPENTA15 element
Fig. 5  Element arrangement near crack tip
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Here, modulus of elasticity as ‘E’, Poisson’s ratio as v , � for 
plain strain (3 − 4v) and for plane stress (3 − v)/(1 + v) , The 
specimen’s load as well as geometry affect the parameters Ai, 
while the polar coordinates are r and y, as shown in Fig. 7. As 
prescribed to the symmetry of mode I, at the fracture tip the 
normal displacement, v(r = 0), is zero.

When assessing the displacement v along the crack faces 
(θ =  ± π), Eq. (3) exclusively encompasses terms with r1/2, r3/2, 

(3)

v = KI
1 + v
4E

√

2r
�

{

(2� + 1) sin �
2
− sin 3�

3

}

+ A1
(1 + v)r

E
(� − 3) sin �
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3
2

E

{
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3
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2

− sin �
2

}

+⋯

r5/2, and so on, enhancing the precision of the extrapolation, as 
discussed by Chen in 1992. Customizing Eq. (3) for nodes A and 
B located on the singular element at the upper face of the crack, 
we obtain: (θ =  ± π).

where l is the element side TB’s length. Equations (4) and 
(5) can be solved or KI and A1 by ignoring higher order 
terms. Thus, the value of the stress intensity factor is:

or

The definition of the efficient elastic modulus (E′) referred 
to as E/(1 − v 2) for plane strain and E for planar stress. The 
quarter-node displacement allows for a more simple calcula-
tion of KI , vA , if terms in l

3

2 and Eq. (4) ignores higher:

Finally, In the event that the coefficient containing the 
r^(1/2) term in the displacement expansion along the upper 
crack face aligns with the analogous coefficient in the 
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Fig. 6  Boundary conditions 
and loading conditions used in 
ANSYS

Fig. 7  SINGULAR elements and crack extension coordinates of the 
crack tip
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element’s interpolation function for v(r) , a different estima-
tion of KI  can be obtained.

For a single eight-node or six-node iso-parametric ele-
ment, the displacement field along the crack edge θ = π is a 
function of the nodal displacements vA and vB and is given 
by:

By setting θ = π in Eq. (2) and identifying terms with 
√

r 
in Eqs. (3) and (9), we obtain: 

And the stress intensity factor now is 

The quarter-point element’s nodal displacements on the 
crack’s upper face are used in Eqs. (7), (8), and (11) to 
calculate KI . The lower face element could accomplish the 
same outcome due to symmetry.

Formulation of Empirical Displacement Extrapolation 
Method.

The suggested empirical equation is obtained from a thor-
ough examination of crack propagation mechanics, taking 
into account the effects of both pre-crack and initial crack 
lengths. The factor of stress intensity must be precisely 
predicted, consider initial crack length ao and the pre-crack 
length apc in Eq. 11. Formulating empirical displacement 
extrapolation equation:

where a0 =  initial crack length;   apc =  pre-crack length.
To demonstrate the reliability and adaptability of the 

suggested empirical equation, a comprehensive set of 
experiments and numerical simulations on a variety of 
materials and fracture geometries were carried out. These 
experiments and simulations were performed on a variety 
of different fracture surfaces. The findings demonstrate 
an astonishing concordance between the predicted param-
eters of stress intensity and the actual data, outperforming 
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earlier approaches in terms of accuracy and applicability. 
Furthermore, the capability of the equation to account for 
various combinations of pre-crack lengths and initial crack 
lengths highlights its potential to increase our understand-
ing of crack growth behaviour in a variety of different 
scenarios [16–18].

Results and Discussion

Experimental Research Outcomes

The factor of stress intensity had been assessed for the 
crack propagation’s opening mode using the experimental 
method, FEM, and empirical displacement extrapolation 
methods. Table 2 gives the results of fatigue pre-cracking, 
and Fig. 8 shows fatigue crack propagation. Experimen-
tally determined load vs. COD curves for samples 1, 2, 
and 3 depicted in Figs. 9, 10, and 11, respectively. The 
numerical model for fracture toughness simulation used 
these curves to describe material behaviour. The experi-
mentally determined stress intensity factor is shown in 
Table 3 for three samples, and the results are evaluated 
against PQ and Pmax.

Results of Numerical Fracture Toughness Simulation

In accordance with ASTM E398,  we have conducted finite 
element analysis, and the CT specimen was subjected to a 
variety of loading conditions. In the CT specimen, Fig. 12 
portrays the plastic zone and stress state located in imme-
diate proximity to the crack tip. The fracture toughness’ 
numerical outcomes are presented in Table 4. ANSYS was 
used to derive the u, v, and w displacement components 
along coordinates x, y, and z, respectively. As a result of 
the fact that they are derived from converged solutions of 
finite element, the factor of stress intensity that is presented 
here is thought to be accurate. The stressed model and the 

Table 2  Fatigue pre-crack length

Initial crack length in mm Final crack 
length in 
mm

Sample 1 10.716 12.504
Sample 2 10.718 12.506
Sample 3 10.714 12.524
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Fig. 8  Fatigue pre-cracking

10.716 10.718 10.714

12.504 12.506 12.524
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11.5
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12.5

13
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Pre-Crack

Ini�al Crack Length in mm Final Crack length in mm

Fig. 9  Load Vs COD curve for 
specimen 1

Fig. 10  Load Vs COD curve 
for specimen 2
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plastic region are depicted in Fig. 1. Figure 13 presents the 
findings of an analysis that compares the results of numeri-
cal and experimental calculations of the stress intensity 
factor.

Results of Empirical Displacement Extrapolation 
Method

The finite element analysis at the nodes that were flagged 
allowed for the nodal displacements’ extraction. We deter-
mined the factor of stress intensity by applying Eqs. 7, 8, 
and 11 to the situation. Table 5 demonstrates the SIF when 
DEM is used by making use of the empirically modified 
displacement extrapolation method (Eq. 12). Figure 14 dis-
plays a findings comparison that were derived from empiri-
cally modified approach of displacement extrapolation, the 

Fig. 11  Load Vs COD curve 
for specimen 3

Table 3  Experimental fracture toughness results

PQ in kN P
max

 in kN KQ in MPa  m0.5 K
max

 in MPa  m0.5

Sample 1 5.477 5.909 28.873 31.152
Sample 2 5.148 5.805 27.236 30.711
Sample 3 5.536 6.094 28.277 31.127

Fig. 12  Photograph of stressed 
model

Table 4  Fracture toughness 
(Numerical results)

KQ in MPa  m0.5

Sample 1 30.44
Sample 2 28.61
Sample 3 30.77
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numerical method, the method of displacement extrapo-
lation, and the experimental method. It was discovered 
through examination of Fig. 14 that the SIF derived from 
the empirically modified DEM equation produces the most 
precise outcomes. Table 6 displays all of the obtained mode 

I SIF results alongside their corresponding deviation val-
ues. ASTM’s solution is compared to these results. Material 
properties can significantly affect stress intensity factor (SIF) 
values. Disparities can result from material inhomogeneities 
or simulation property differences. Due to small variations 
in experimental set-up or execution, loading rates, environ-
mental factors, and crack length precision can also affect 
SIF values. Variations can result from FEM and DEM model 
assumptions like boundary conditions, mesh size, and ele-
ment types. These method simplifications or approximations 
may not fully capture the physical scenario. The empiri-
cally modified DEM (E-DEM) may be more accurate due 
to refined material behaviour, crack geometry, and loading 
conditions assumptions.

Fig. 13  Stress intensity factor 
(KQ, experimental and numeri-
cal)
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Table 5  Stress intensity factor in MPa  m0.5

Sample 1 Sample 2 Sample 3

Equation 7 31.25 29.36 31.57
Equation 8 31.65 29.75 31.99
Equation 11 30.40 28.58 30.73
Equation 12 29.01 27.27 29.33

Fig. 14  Comparison of results 
(ASTM, FEM, DEM, E-DEM)
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Conclusion and Future scope

The primary focus of a comprehensive investigation into frac-
ture mechanics was to determine stress intensity variables 
using ASTM E399 standards. The outcomes of the factor of 
stress intensity were experimentally validated to ensure their 
accuracy and reliability. The serendipity family’s iso-para-
metric solid elements, SPENTA15 and hexahedral in shape, 
and ANSYS’ quadratic order were then used in finite element 
analysis. P_Q was used to calculate K_Q, and nodal displace-
ments in the y-axis were calculated at flagged nodes. The 
stress intensity factors were also computed using displace-
ment extrapolation while accounting for nodal displacement, 
providing an in-depth assessment of stress intensity factors.

The study discovered an empirically derived equation for 
stress intensity factor calculation that outperformed both FEM 
analysis and the displacement extrapolation method in terms of 
accuracy. This proposed equation extracted the pre-crack condi-
tion for evaluating SIF, which had previously been overlooked 
in previous studies. Based on empirical data, the proposed 
equation demonstrated a high level of agreement with experi-
mental results. Its ability to predict stress intensity factors with 
high accuracy holds great promise for fracture mechanics prac-
titioners and researchers. This empirical formulation can be fur-
ther investigated for in-plane shear mode and out-of-plane shear 
mode crack propagation by taking the u and w displacements 
for the flagged nodes into account, and it can be effectively 
used for extracting the FCG condition using the respective 
Paris–Erdogan equation. The mixed mode crack propagation 
can be evaluated using an efficient virtual fixture conditions for 
a compact tensile test specimen. As a result, the derived results 
and the experimental findings are in good agreement.
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Table 6  Mode I stress intensity factor for compact tension specimen 
with deviation values

KASTM SIF Experimental.  KFEM  SIF FEM, KDEM  SIF using displace-
ment extrapolation method. KE−DEM SIF using empirical displace-
ment extrapolation method.

Dev. % K
ASTM

 . 
& K

FEM

Dev. % K
ASTM

 &K
DEM

Sple 1 7.6101289 7.4687227 2.5548568
Sample 2 5.0447937 4.9346453 0.1248348
Sample 3 8.8163525 8.6748948 3.7238745
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