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Abstract  CNC milling is a common technique for mate-
rial removal that is used to create components with complex 
shapes and features. The purpose of the experiment is to 
determine how the CNC milling variables would affect the 
milling of Cu–Al–Mn (CAM) shape memory alloys (SMAs). 
For the investigation, an orthogonal array (OA) of the Tagu-
chi’s L9 was employed. The CNC milling process’s depth of 
cut, feed rate, and spindle speed were chosen as the milling 
machining factors to study how they affected the MRR and 
SR of the workpiece. The examined end outcomes identi-
fied the milling settings that were most effective. ANOVA 
revealed that, in comparison with other components, the feed 
rate had the greatest influence on surface finish. By choosing 
the machining settings as given by the S–N Ratio graph, the 
ideal value of MRR and SR with a superior surface polish 
may be produced. SEM was used to examine the surface 
texture of the Cu–Al–Mn (CAM) SMAs’ milled profile.

Keywords  Cu–Al–Mn SMAs · CNC end milling · 
Material removal rate · Surface roughness · ANOVA

Introduction

CAM SMAs have superior strength, extremely high damp-
ing, and shape memory effects when compared to conven-
tional metals or alloys. Since these CAM SMAs can be eas-
ily produced compared to Ni–Ti SMAs, they do not require 
performing a vacuum casting process. Due to their lower 
melting temperatures, the Mn-rich CAM SMAs also have 
greater castability [1].

CNC machining has become increasingly indispensable 
in the last few decades by providing improved reliability, 
accuracy, and productivity. Furthermore, when compared 
to a traditional milling process, CNC milling offers greater 
ease in selecting the levels of the cutting parameters [2, 3]. 
Various milling methods, including side milling, end mill-
ing, plain milling, and gang milling, are used in industries. 
Due to its high precision, accuracy, and durability, the CNC 
end milling technology has gained the lead among these in 
the automotive, aerospace, and metal processing sectors [4]. 
One of the adaptable procedures that has already achieved 
success in the industrial sector by fulfilling needs is end 
milling. Any machining operation involves a number of vari-
ables that control the process. These variables are separated 
into ones that can be controlled and those that cannot. Rake 
angle, spindle rotation, feed rate, cutting speed, and depth of 
cut are all variables that may be changed to suit the needs. 
Non-controllable factors are ones that can be governed indi-
rectly by controllable parameters rather than being directly 
controlled. Chip development during vibrations can happen 
for a variety of reasons, such as tool wear and surface rough-
ness [5–7]. Modern CNC vertical milling technology has 
advanced greatly to satisfy the norms of numerous manu-
facturing sectors, particularly the precision metal cutting 
industry [8]. A multi-point cutting instrument called a cut-
ter is one of the processes used in milling to create smooth, 
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curved, and helical surfaces. In the milling process, a work 
item with several cutting edges is fed through a rotating 
cylindrical tool. The tool’s rotational axis is perpendicular 
to the feed vein. Surface finishing is a crucial component of 
any machining process in the creation of a high quality prod-
uct. [9–11]. The milling technique is frequently employed in 
modern manufacturing due to its adaptability and precision 
[12, 13]. Taguchi design, which can quickly and precisely 
determine the appropriate surface roughness for controlling 
particular end milling processes [14–16].

For cutting samples to required sizes and shapes along 
with better surface quality and increased productivity in not 
much time and money. The most popular application for 
CNC milling is in manufacturing industries and machine 
shops, etc. In many machining procedures, high quality and 
productivity are two crucial yet crucial factors. End milling, 
which is conducted with the aid of a computer numerically 
controlled machine, is a popular technique for removing 
material that is used in the process of producing components 
with complex geometries and profiles. One component that 
contributes to chip formation during vibrations is tool wear, 
and two other factors include surface texture [17–20]. In the 
process of removing metal, CNC milling may create compo-
nents with curved or flat shapes. The milling process may be 
greatly improved by improving the surface quality [21, 22]. 
Malay et al. [3] examined on optimization of input factors 
under CNC milling process on aluminium 6351. According 
to the results of the ANOVA, the spindle has a considerable 
impact on Ra, followed by the feed rate and the depth of 
cut. The surface finish can be improved by optimising these 
parameters [3]. Sahare et al. [6] conducted an evaluation of 
the Al2024 end milling operation. End milling’s primary 
output machining characteristics were thought to be Ra, cut-
ting forces, and MRR. The surface roughness, cutting pres-
sures, and metal removal rate are all influenced by the depth 
of cut, cutting speed, and feed rate, according to the S/N 
ratio response chart. From ANOVA, cutting depth has major 
influence on surface roughness than cutting speed. The pre-
dicted model’s predictions and the data from the experiment 
agreed well [6]. End milling of Inconel 7018 super alloys 
has been studied by Reddy Sreenivasulu et al. [7]. Tagu-
chi’s DOE provided confirmation of the Inconel 718 super 
alloy’s machining capacity. S/N ratios and ANOVA results 
revealed that the feed rate and combination rotational speed 
had the greatest impact on burr height [7]. For aluminium 
alloy AA6063, Maiyar et al. [10] reported on an examina-
tion of the CNC milling parameters. The analysis revealed 
that Ra is mostly impacted by feed rate. With an increase in 
feed rate, Ra’s value rose. An increase in cut depth allowed 
for the achievement of the maximum MRR. The process 
parameters used determine the type of chip that is produced. 
On the machining time in this case, the spindle speed was 
determined to be inconsequential [10].

The length, width, and thickness of chips can change 
when feed rates and materials are changed during milling, 
according to a 2017 study by L Prasetyo et al. Measurements 
of the chip’s length, breadth, and thickness were used to 
ascertain its properties. The AISI 1020’s hardness is what 
causes a chip to develop in a discontinuous pattern. The 
length, breadth, and thickness of the chip will all grow when 
the feed rate is increased, regardless of the type of material 
being cut. The key conclusion of this study was that it is 
possible to determine the degree of hardness that various 
kinds of materials possess by looking at the amount of chips 
that are produced [11]. The effect of CNC milling process 
parameters on Ra using aluminium alloy 7024 was reported 
by Routara et al. in [12]. According to the experimental 
findings, Ra was most significantly influenced by the tool’s 
diameter, followed by cutting speed, depth of cut, and feed 
rate. Less surface roughness will be produced with a bigger 
tool diameter. Raising spindle speed will result in a reduc-
tion in surface roughness [12]. Raja and Baskar [13] Investi-
gation of effect of input factors such as feed rate, speed, and 
depth of cut on Ra and MRR of the machined parts during 
milling of aluminium alloy 6065-T6 under a CNC vertical 
milling machine. A carbide tool cutter is used as a tool dur-
ing the process. Based on Taguchi’s L16 OA, experiments 
were performed. The main factor affecting the output is the 
feed rate from the ANOVA method [13].

Syeddu and colleagues [14] When CNC end milling the 
alloy Al6061-T6, Taguchi’s method was utilised to fore-
cast how different machining parameters will affect surface 
roughness. To mill the work material, uncoated and TiAlN 
coated carbide tools were employed. Tests comparing the 
two types of tools were carried out to establish which type 
gave a higher surface quality. According to an ANOVA, 
spindle speed is more important than cut depth for uncoated 
carbide tools. Variations in cut depth and spindle speed 
affect the quality of the surface roughness. The main fac-
tor affecting coated tools is also spindle speed rather than 
feed rate. Cut depth has little to no effect on surface finish. 
2500 rpm, 150 mm/min, and 0.6 mm were found to be the 
ideal parameter values for the sample that was machined 
using a carbide tool coated in TiAlN. For the coated car-
bide tool, a surface roughness of 0.1406 mm is ideal [14]. 
George et al. [15] investigated on AISI 410 and AISI 420 
Martensitic Stainless Steel (MSS) dry milling characteristics 
and were optimised. Optimal machining parameters improve 
component quality and productivity. Spindle speed affects 
surface roughness and cutting force for both MSS grades. 
Depth of cut affects both MSS classes’ cutting temperature. 
Depth of cut affects both MSS classes’ cutting temperature. 
Surface roughness and cutting force are higher in MSS AISI 
420 because to its higher chromium and carbon composition. 
ANOVA shows that spindle speed, followed by feed and 
cutting depth, most affects Ra of both grades. According 
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to ANOVA results for both grades, spindle speed, feed, and 
depth of cut affected Fc the most. ANOVA findings for both 
grades reveal that feed, spindle speed, and depth of cut all 
affect temperature [15]. The mechanism that governs the 
milling process is depicted in Fig. 1.

From the literature, it was found that many research-
ers have already worked on CNC milling machining using 
various materials such as steels and composites. But for Cu-
based SMAs till today, no work was carried out and reports 
are not available on milling studies of CAM SMAs [16]. 
Hence, new trail is carried out to evaluate the factors and 
their effect on the output responses, such as MRR and sur-
face roughness, using the Taguchi method. The most popular 
optimisation approaches are Taguchi method, full factorial 
designs, and others. The Taguchi strategy, however, is one 
of the best techniques for optimisation as it needs the fewest 
tests while taking into account all relevant sets of input vari-
ables that can possibly have a big impact on the result. The 
goal of the current effort is to assess the output parameters 
with different input elements, such as depth of cut, feed, and 
spindle speed in order to maximise MRR and minimise Ra 
and provide an alloy surface finish of a higher grade.

Experimental Details

Materials and Method

From the literature, the alloy chosen is ductile in nature 
because of the presence of manganese in the Cu-Al binary 
alloy. In this experiment study, pure Cu, Al, and Mn of 
weight 200 g by varying the percentage of Al (10–13wt.%) 
and Mn (0–7.5wt.%) and rest being copper have been added 
and prepared alloy using induction melting process. Figure 2 
shows the prepared seven samples of CAM SMAs for CNC 
Milling process. In this investigation, the as-cast samples of 
dimension 100X50X4mm (LXWXT) are homogenised at 
900 °C for 45mints to 1 h to remove the agglomeration in the 
prepared alloy and to enhance uniformity in the composition. 

Later on the samples are betatized for 900 °C for 1 h and step 
quenched in hot water and cold water to relive the internal 
stress present in the alloy and also the alloy is converted 
from austenite to martensite phase to obtain martensite 
structure.

Finally, the shape memory alloy is subjected to CNC end 
milling operation. Following the stage quenching procedure, 
Fig. 3 indicates that CAM SMA sample-7 has quenched 
cracks formation throughout its surface. As a result, alloy 7 
exhibited poor machinability due to brittleness of the alloy; 
hence, this alloy is not suitable for CNC end milling opera-
tion and machining has been carried out for remaining six 
samples.

Chemical Compositions of CAM SMAs

The compositions chosen based on wt.%. The chemical com-
positions obtained after the sample preparation using optical 
spectrophotometer. Table 1 shows CAM SMA compositions.

Experimental Details

The current work was mostly completed using a CNC 
three-axis end milling machine. Based on a review of the 
literature, carbide was chosen as the material for cutting 
tools. A flat-end mill cutter with a 6 mm diameter has been 

Fig. 1   CNC milling operation [16]

Fig. 2   Step quenched CAM SMA samples for CNC end milling 
machining

Fig. 3   Brittle CAM-7 SMA sample
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chosen as the cutting tool. A CNC end milling machine 
was used in this particular experiment (Fig. 4). Figure 5 
depicts the usage of a flat-type milling cutter as a cut-
ting tool during a milling process. End milling was done 
on the workpiece material while it was dry utilising nine 

trails (i.e. a L9 orthogonal array) and adjusting the various 
parameters, as given in Table 2.

Machining Conditions

Cutting fluids harm the environment, economy, and health. 
Dry cutting, which fully forgoes the use of cutting fluids, is 
the greatest way to eradicate their effects. In addition to dry 
machining, there are also various machining conditions that 
can be utilised, such as wet machining, minimum quantity 
of lubricant (M.Q.L) machining, flooded machining, and 
cryogenic cooling. This type of machining uses no coolant, 
oil, or metal cutting fluid. It is mostly used in milling opera-
tions, not it is suggested for drilling operations. The use of 
cutting fluids in cutting operations causes significant eco-
nomic, environmental, and health issues. Dry cutting, which 
fully forgoes the use of cutting fluids, is the greatest way to 
eradicate their effects which also lowers machining costs, 
environmental risks, and increase productivity [17–22]. 
However, this is not suitable for all machining operations 
and materials, and in some instances, dry cutting exhibits 
benefits including reduced thermal shock and extended tool 
life [23–27]. Dry machining does not need coolants. Con-
sequently, the working atmosphere is more comfortable and 
clean, which eliminates the possibility of slippage when 
cutting [28–35]. Hence for the present investigation, a dry 
machining cutting condition is employed. Without the use 
of any cutting fluid, the machining process was carried out 
at 28 °C room temperature. Figure 6 shows the benefit in 
choosing dry condition for the present investigation as per 
the previous literature.

Table 1   Compositions of CAM 
SMAs based on wt.%

Alloy ID Cu Al Mn

(Set-1-aluminium-constant)
CAM-1 88.5 10 1.5
CAM-2 86.5 10 3.5
CAM-3 84.5 10 5.5
CAM-4 82.5 10 7.5
(Set-2-manganese-constant)
CAM-5 87.5 11 1.5
CAM-6 86.5 12 1.5
CAM-7 85.5 13 1.5

Fig. 4   Three axis vertical end milling machine

Fig. 5   Carbide flat-end mill cutter

Table 2   Process parameters and their ranges

Process parameters Level-1 Level-2 Level-3

Spindle speed (RPM) 400 800 1200
Feed rate (mm/min) 100 200 300
Depth of Cut (mm) 0.3 0.4 0.5

Fig. 6   Advantage of dry machining [24]
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Results and Discussions

CAM SMA Samples after Milling Process

Figure 7 shows the CAM SMA samples obtained milling 
profile on the surface after undergoing CNC end milling 
operation. The samples are subjected to study the surface 
harshness using Mitutoyo surface roughness tester. Table 3 
shows the milling data obtained based on Taguchi design 
and conducted the experiments using L9 orthogonal array. 
However, CNC milling was also carried out for all the 
seven samples of CAM SMAs. This combination of SMA 
was chosen because the addition of manganese concentra-
tion provides required ductility for the SMA [36–42]. For 
CAM-7 SMA, machining was unable to carry out due to 
the brittleness of the alloy taken place after step quenching 
process, because their parent phase has L21 structure due to 
the decrease in the degree of order [43–48]. A surface tester 
(Mitutoyo) was used to measure the texture that resulted 
from the machining process. For the analysis, the average 
roughness value (Ra) is taken into account. Figure 9 indi-
cates the samples of CAM SMAs after milling operation.

The formulae used for evaluating MRR are as follows,

where w—width of cut in mm, d—depth of cut, mm, f—feed 
rate in mm/min, and ρ—density of material in gm/cc.

S/N Plots for MRR and Ra

Figures 8 and 9 indicate the S/N curve for MRR and Ra. To 
determine MRR, “larger is better” method was chosen and 
“smaller is better”, for Ra. Figure 10 shows that the MRR 
was observed to be decreasing as spindle speed rose. Higher 
cut depths allow for the achievement of the maximum MRR 
[10]. According to the graph, MRR rises with rising feed 
rate and cutting depth, respectively. From Fig. 10, it was 
observed that an increase in feed rate and spindle speed 
tends to increase Ra value but decreases with an increase 
in feed rate. The MRR response data are shown in Table 4. 
Consequently, it was discovered that the feed rate is the 

(1)MRR (gms∕min) = wxdxfx�

Fig. 7   Cu-Al-Mn SMA alloy samples after milling operation

Table 3   CNC end milling data 
of CAM SMAs for MRR

Sl. no Spindle 
speed 
(rpm)

Feed (mm/rev) Depth of 
cut (mm)

MRR (gms/min) S/N Ratio Ra (µm) S/N ratio

1 400 100 0.3 1.305 2.3122 0.852 1.39121
2 400 200 0.4 3.480 10.8316 1.100 − 0.827854
3 400 300 0.5 6.525 16.2916 1.243 − 1.88942
4 800 100 0.4 1.740 4.8110 0.625 4.08240
5 800 200 0.5 4.350 12.7698 0.821 1.71314
6 800 300 0.3 3.915 11.8546 0.772 2.24765
7 1200 100 0.5 2.175 6.7492 0.426 7.41181
8 1200 200 0.3 2.610 8.3328 0.711 2.96261
9 1200 300 0.4 5.220 14.3534 0.598 4.46598

Fig. 8   S.N curve for MRR
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primary characteristic that displayed rank-1. Because from 
the investigation, the feed rate is affecting more on MRR 
followed by depth of cut (rank-2) and spindle speed (rank-3). 
To evaluated MRR, larger the method was followed and for 
Ra the method followed is smaller the better. Table 5 shows 
that the spindle speed is ranked first, with depth of cut and 
feed rate coming in at positions two and three, respectively, 
as the key factors influencing Ra.

ANOVA for MRR and Ra

From Tables 6 and 7, it was observed that the %contribution 
is more for feed rate (77.42%) followed by cutting depth 
(19.35%) and spindle speed (1.21%) for MRR but for Ra, the 
% contribution is more for spindle speed (69.78%) followed 
by feed rate (16.50%) and depth of cut (0.79%), respectively. 
The probability value for feed rate is almost zero, followed 
by depth of cut (0.001) and spindle speed (P > 0.144) for 
MRR. The function is deemed to be insignificant if the val-
ues surpass 0.10. As a result, there is a 0.01 per cent chance 
that noise will have little effect. Similarly, it was noticed 
that the P value is less for spindle speed (P < 0.003) fol-
lowed by feed rate (p < 0.053) and depth of cut (P < 0.605), 
respectively, for Ra. In case of MRR, feed rate and depth of 
cut are the two main important factors responsible for affect-
ing the output response. Here, spindle speed was found as 
insignificant parameters because it is not affecting on output 
characteristic (i.e. Ra). In case of Ra, both feed rate and spin-
dle speed are the main significant parameters affecting the 
Ra of Cu-Al-Mn SMAs. But this parameter (depth of cut) is 
showing least effect on Ra. However, it was considered as 
the insignificant parameter for Ra.

Surface Morphology of Milled Profile of CAM SMAs

Both MRR and Ra are highly sensitive to the machining con-
ditions, which can be altered by adjusting factors including 
feed rate, depth of cut, and spindle speed. SEM analysis was 
investigated for the samples machined under CNC Milling 
operation. Figure 10 represents the difference between up 
milling and down milling under CNC end milling process. 
The burr size can vary as a result of this type of milling pro-
cedure. It was observed that compared to down milling, the 
height of the burr obtained during the up-milling operation 
is short. The up-milling procedure is followed to produce 
burrs with decreased height and thickness. The height of 
the burr during the down-milling process is higher than up-
milling process, the burr thickness must be greater. In such 
constraint, the burr thickness in down milling is less. The 
volume of the material should remain the same during the 
deformation process, as recommended by the principles of 
plastic deformation. Therefore, in order to satisfy the crite-
rion of a constant burr volume, the burr thickness must be 
increased if, during the up-milling process, the burr height 
is lower than it was during the down-milling process. Under 
these circumstances, the burr thickness achieved through 
down milling is lower [49–55].

Figure 10a shows the milling profile of CAM-4 SMAs. 
Here the tool rotation direction up-milling side and down-
milling side, feed applied direction can be observed and ring 
type of profile formed at the milled slot of the alloy. From 
Fig. 10b, milling burrs, individual milling grooves, flank 
profile of milling groove, bottom of milling grooves after 
each trail of milling operation during dry machining condi-
tion were observed. The slot side is the side portion which is 
not machined and slot base is the base of the milled profile 
[56–60].

SEM pictures of the machined surfaces taken in dry con-
ditions, as shown in Fig. 10c, can be used to identify various 
surface flaws. It was clear that the ring-shaped grooves and 
smears spread over the machined surface throughout the dry 
machining process. It consists of smooth and rough surfaces 
during the operation, formation of voids and chips can also 
be observed at spindle speed—1200RPM, feed—100 mm/
rev, and depth of cut—0.5 mm, respectively.

First, because of the slower feed rate of 100 mm/rev, no 
feed marks are visible. The second observation is that there 
are no waves or ridges of any type on the surface. This is 
because there is less of a cutting force, which results in less 
plastic deformation and, as a result, a smoother surface. It 
is possible that the vibrations produced are responsible for 
the creation of waves on the surface, but it might also be the 
result of tool wear, which led the material to shift from a 
surface that was machined by one flute of the tool to a sur-
face machined by the second flute of the tool, respectively 
[61–65]. Regardless of the reason, the waves can be seen as 

Fig. 9   S/N curve for Ra
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an undesirable feature. In a similar fashion, there were found 
to be some micro-cracks observed over the machined sur-
face. Due to insufficient material removal from the surface, 
micro-cracks developed on the surface [66, 67].

Figure 10d shows the uneven sized burrs with vary-
ing height and thickness at the milled groove end. At the 

sidewalls of the channel, recast layer development was 
also seen. Because of maximum amount of heat generated 
between the rotating tool and workpiece interface melts the 
material rapidly responsible for the structure of cast layer. 
Figure 10e indicates initially when machining starts with 
rotating tool movement leads to the structure of tiny burrs, 

Fig. 10   a–e CNC milling profile of CAM-4 SMA under dry condition
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further movement of tool results in wider burrs of varied 
thickness and height, and finally, the forms short burrs with 
small thickness and height in each trail can be observed, 
respectively [68–71].

Conclusions

Below is a summary of the findings from the experimental 
research on Cu-Al-Mn SMAs, along with any inferences 
that may be made.

•	 Based on experimental findings of MRR and Ra, which 
are mostly connected to speed and feed rate followed 
by depth of cut, the approach employed in this work 
focuses on analysis of CNC milling parameters to 
achieve optimal values of the output parameters. The 
machining parameters have been optimised using Tagu-
chi design.

•	 By exhibiting relative contributions of 77.42%, 19.35%, 
and 1.21% in the ANOVA findings, spindle speed, 
depth of cut, and feed rate were identified as the param-
eters influencing MRR. When compared to the other 
two factors (such as depth of cut spindle speed), it was 
discovered that the feed rate’s percentage contribution 
has a greater impact on MRR. The rank values demon-
strate that the influence of feed rate on MRR is greater. 
Therefore, extending the depth of cut will result in the 
greatest amount of material (MRR).

•	 According to the analysis, the two primary factors most 
significantly determine surface roughness (Ra) relative 
to spindle speed, depth of cut, and feed rate. The ideal 
MRR and Ra values are achieved at the first level spin-
dle speed (400 rpm), third level depth of cut (0.5 mm), 
and third level feed rate (300 mm/min). Ra at spindle’s 
third level (1200 RPM), first level feed rate (100 mm/
Rev), and third level cut depth (0.5 mm). The smallest 
amount of roughness needed to provide a decent sur-
face finish can be obtained by lowering spindle speed.

•	 The profile was created via a CNC end milling opera-
tion, as seen by SEM pictures. The surface morphology 
of the machined produced changes according on the 
input parameter values used, as seen by images taken 
using a SEM. It has been discovered that the rotation 
and movement of the tool during the end milling pro-
cess causes the production of wavy burrs, short burrs, 
long burrs, and rings by rings kinds of burrs.

Table 4   Response table for MRR

Larger is better

Levels Spindle speed Feed rate Depth of cut

1 9.812 4.624 7.500
2 9.812 10.645 9.999
3 9.812 14.167 11.937
Delta 0.000 9.542 4.437
Rank 3 1 2

Table 5   Response data for Ra

Smaller is better

Levels Spindle speed Feed rate Depth of cut

1 − 0.442 4.2951 2.2005
2 2.6811 1.2826 2.5735
3 4.9468 1.6081 2.4118
Delta 5.3888 3.0125 0.373
Rank 1 2 3

Table 6   ANOVA for MRR Source DF Seq SS Adj SS Adj MS F value P value % contribution

Spindle speed 1 0.2838 0.2838 0.2838 3.00 0.144 1.21%
Feed rate 1 18.1656 18.1656 18.1656 192.00 0.000 77.42%
Depth of cut 1 4.5414 4.5414 4.5414 48.00 0.001 19.35%
Error 5 0.4731 0.4731 0.0946 2.02%
Total 8 23.4639 100.00%

Table 7   ANOVA for Ra Source DF Seq SS Adj SS Adj MS F value P value % contribution

Spindle speed 1 0.355267 0.355267 0.355267 26.99 0.003 69.78%
Feed rate 1 0.084017 0.084017 0.084017 6.68 0.053 16.50%
Depth of cut 1 0.004004 0.004004 0.004004 0.3 0.605 0.79%
Error 5 0.065816 0.065816 0.013163 12.93%
Total 8 0.509104 100%
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•	 From the entire analysis, it can be inferred that the brittle 
samples of CAM SMAs are not appropriate for the CNC 
end milling operation, which may be used to provide a 
higher surface finish for ductile SMAs. Brittle alloys are 
created as a result of the Cu-matrix’s increased Al con-
tent and decreased Mn concentration. As a result, the 
CAM-7 alloy (Cu—85.5%, Al—13%, and Mn—1.5%) 
displayed hard and brittle behaviour, and following 
milling, powdered sort rather than chips were produced. 
This specific composition has been shown to be poorly 
machinable and unsuitable for any machining operation.

•	 This end milling process is suitable where the smart 
materials component manufacturing takes place. For 
industrial sectors where batch production of component 
manufacturing takes place, it is primarily low cost and 
simple to manufacture with higher precision, which will 
be unquestionably advantageous both economically and 
commercially.
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