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Abstract Thermal spraying is a technique for applying 
coatings with thicknesses ranging from 10 µm to a few mm 
over mechanical components to improvise distinct and par-
ticular functional features, such as resistance to wear and 
corrosion, compatibility with human health and safety, as 
well as a wide range of friction coefficients, and so forth. An 
average particle viscous enthalpic jet may be created with a 
particle size range of 0.01 nm to some µm. Among different 
thermal coating processes, high-velocity oxy-fuel coating is 
new in this family and one of the most rapidly used coating 
techniques and this technique can provide a heavily dense 
coating with a porosity level of < 1%. Moreover, HVOF 
coating possesses considerable adhesion and hardness value 
and can extend the life of coated equipment by improving 
wear, erosion and corrosion resistance properties. The used 
particles in this process carry higher potential energy and 
that ultimately helps to form a high-quality coating. With 
careful control over the cooling rate, this coating technique 
can deposit coating with thickness up to 1.5 mm to reduce 
residual stress.

Keywords Coating · Thermal spraying · HVOF · Review 
article

Introduction

The thermal spraying technique is one of the type of coat-
ing processes in which material in molten or heated state 
is sprayed over the work piece surface [1–3]. In this pro-
cess, coating materials generally are metals, alloys, plastics, 
ceramics, etc., melted or heated by electrical (plasma or arc) 
or chemical (combustion flame) source. This type of coating 
techniques can provide coating on a large area with higher 
coating thickness compared to other deposition techniques 
(e.g. chemical vapour deposition (CVD), physical vapour 
deposition (PVD) and electroplating etc.). Coating materials 
generally used for this process are fed in the form of powder 
or wire in a molten or semi-molten state. These materials are 
then accelerated towards the substrate surface in the form 
of micrometre size particles. Among the several varieties 
of thermal spraying techniques, HVOF coating is one of the 
most prominent ones [4, 5]. The HVOF coating technique 
utilizes the combustion of hydrogen and natural gases or 
liquid fuel like kerosene and then particles of fuel along with 
oxygen particles mixed and atomizes within the combustion 
area under the condition that monitors the correct combus-
tion mode and pressure. Within the combustion chamber of 
the HVOF system, oxygen combusts with gaseous or liquid 
fuel to produce high kinetic energy under the controlled heat 
input. The coating materials are now introduced into the 
chamber and heated by the hot gas stream up to a molten 
or semi-molten state. After this, high-velocity gas stream 
propels the coating material particles near supersonic speed 
before impact on to the substrate’s surface [6–8]. The flame 
with the powder accelerated up to supersonic velocity due 
to its passing through the converging–diverging nozzle. 
Powder particles are fallen on the surface of the substrate 
with a very high velocity, which results in very high-quality 
coating (e.g. highly dense, 0.5–2% porosity, etc.) [4–8]. The 
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developed film is also less oxidized due to particles spending 
less time within the heat source as its speed is the very high 
and lower flame temperature (around 3000 °C) compared 
to other processes. So all together high particle velocity, 
low dwell time and uniform heating produce HVOF coating 
a very tightly bonded and dense coating process. Coating 
chemistries are very predictable, and coatings have fine, 
homogeneous microstructures. Coatings produced by the 
HVOF system have some outstanding properties. The HVOF 
coating has less than 2% porosity, and even some of the 
coating has 0.5% of porosity. Carbide coating sprayed with 
a HVOF system can exhibit bond strength up to 69 MPa. 
This is significantly higher than other coatings materials and 
coating processes. Micro-hardness: a typical micro-hardness 
within the range of 1100–1350 Diamond Pyramid Hardness 
(DPH) 300 can be achievable with the help of 12% Tungsten 
Carbide/Cobalt coating [5–7]. Factors like short dwell time 
and lower temperature of HVOF produce significant wear 
and impact-resistant coating. The HVOF produces higher 
coating thickness than combustion, plasma or wire coatings 
of the same materials. Because of the higher thickness, the 
stress relieving ’short peeing’ effect due to high-velocity 
particles is withstanding. Some of the Tungsten Carbide 
(WC) coatings can achieve a thickness higher than 6.4 mm 
[1,3,4–7]. Significant compressive residual stress and very 
low tensile stresses enhance the fatigue life of coated compo-
nents at the same time while reducing the chances of crack-
ing and permitting greater coating thickness. By choosing 
proper combination of process parameters and selecting suit-
able materials, this process can impart significant amount of 
wear, fretting, erosion and cavitation resistance properties 
[3–5]. The properties like higher density and bond strength 
make HVOF to create self-protection ability against acidic 
and alkaline solution. Additionally, due to have some sig-
nificant metallurgical properties HVOF coating can gener-
ate resistance against oxidation and corrosion. Superior-
ity in the surface finish makes HVOF coatings materials 

enable to use for different purposes. Even coatings can be 
machined, ground, lapped or honed to improve their surface 
finish [6–10]. Mainly there are two types of HVOF coatings, 
e.g. liquid and gas, and a comparison table is presented in 
Table 1.

Brief Historical Viewpoint

The evolution of the thermal spraying technique took place 
around 1900s when Dr. Max Ulrich Scoop of Zurich realized 
that coating can be developed with the help of a stream of 
molten particles impinging upon it. This is the time when 
engineers used to break the fine particles into super-fine 
particles or powders with the help of high-pressure gas. Dr. 
Schoop’s evolution ultimately helped to develop the thermal 
spraying technique [8, 9]. Then in the year 1910 Dr. Schoop 
along with some of his German associates developed one 
composed of equipment by which coating can be made from 
molten and powder metallic. In the year of 1912, Dr. Schoop 
and his associates used the metalizing principle to develop 
one instrument for spraying wire from solid metal [8, 10, 
11]. Nowadays, metalizing principle is known as oxy-fuel 
or flame spraying. At present, a wide range of oxy-fuel tech-
niques are available, e.g. ceramic powder, metallic powder, 
ceramic rod, HVOF etc. Different thermal spraying tech-
niques are highlighted below [11]. The schematic diagram 
of thermal spray coating is shown in Fig. 1.

Spray Guns and Coating Parameters

The typical operating pressure is in the range of 
0.3–0.6 MPa. Oxygen serves as the oxidizing gas and fuels 
such as hydrogen, propylene, propane, methane and acety-
lene may achieve nozzle exit velocities of up to 1600 m/s. 
Shock diamonds and oblique shock waves can be generated 

Table 1  Comparison between 
gas fuel and liquid fuel HVOF 
technology

Components Gas fuel HVOF Liquid fuel HVOF

General characteristics
Fuel options H2,  CH4,  C2H4,  C3H6,  C3H8 Kerosene
Combustion pressure 0.55 MPa (80 PSI) 0.55–0.83 MPa (80–120 PSI)
Gas velocity 1800–2100 m/s 2000–2200 m/s
Particle velocity 450–600 m/s 475–700 m/s
Powder injection Axial feed (Hotter zone) Radial feed (Cooler zone)
Powder injection pressure Higher Lower
Spray rate Up to 120 g/min Up to 200 g/min
Consumption comparison (per hour of operation)
Fuel 43,800 L  H2 or 5280 L  C3H6,  C3H8 28 Litters Kerosene
Oxygen 18,420 L 61,400 L
Water 600 L 2375 L
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by this flow. The jet is under-expanded since the flow is 
supersonic and the pressure is above atmospheric, as it 
has the barrel, pressure is reduced below atmospheric, 
and temperature decreases at a faster rate because of the 
increased velocity [12]. The water-cooled HVOF concept 
has evolved into the axial flow device depicted in Fig. 2b. 
Figure 2c depicts the last stage of development [13]. There 

are two ways in which powder is injected: either via throat 
of the barrel or through its diverging part. Low pressure is 
caused by an under-expansion situation downstream of the 
neck. Consequently, powders can be injected at this point 
to facilitate injection and containment and multiple-port 
powder injection is conceivable for more uniform loading 
of the exit stream and effective utilisation of the available 

Fig. 1  Thermal spray coating 
process [11]

Thermal Spraying Processes 

Flame Spray Electrical 

Molten Powder Wire Ceramic Detonation    HVOF    Non-Trans Arc  Wire Electric  RF Plasma  

 Metal                               Rod                                                Plasma           Arc        

Fig. 2  Design changes that are 
typical with HVOF: a the “Jet 
Kote principle”, b the combus-
tion chamber and axial injec-
tion, and c the axial powder 
injection chamber with radial 
chamber
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heat. As a rule, operational data show that radial injec-
tion can produce spray rates at least twice as high as axial 
injection per unit of energy. This design has also allowed 
for a rise in combustion gas pressure [14].

By using liquid petroleum instead of flammable gas 
and air in place of oxygen, J. W. Browning developed the 
high-velocity air fuel (HVAF) method [11]. Speeds up 
to 2000 m/s may be reached even at lower temperatures 
because of the high pressure in the chamber of combustion 
(above 0.8 MPa) and the amount of air (about 8–10  m3). 
Air cooling is another option for the gun. It was not long 
ago when kerosene was used as an alternative to flamma-
ble gases and oxygen was used in its place of air, which 
enabled extraordinarily high dissipated powers to be 
achieved (almost 300 kW). Components of the gun are 
subjected to high temperatures and oxidation, which need 
a precise water cooling design for the combustion chamber 
and nozzle [11,13–15].

Flow modelling has been the subject of several studies. 
The transition is from basic isentropic one-dimensional 
flow to three-dimensional supersonic flow [15–18]. In 
such hot flows, it is clear that it is important to figure out 
the temperature and speed of the particles. As a result of 
this, traditional equations, numerically influence the drag 
force on the particle [16–20]. For supersonic speeds, the 
coefficient of drag is recalculated. The MCrAlY particles 
smaller than 25 µm in MCrAlY are largely affected by 
shock diamonds and bow shocks produced near the sub-
strate [19]. Spray guns (Fig. 2b) used in this study pro-
duces stainless steel particles (mean diameter 28 µm) at 
almost same velocity regardless of injector position and 
this velocity increases linearly as the pressure within the 
chamber increases (0.5–0.95 MPa). As a result, the range 
of temperatures lies within the range of 1610–1750 K. But 
the position of the radial injector (Fig. 2c), which can be 
changed from upstream to downstream of the nozzle, has 
a huge effect on the temperature. For particles between 
1700 and 1800 K, the oxygen concentration in the coating 
ranges from 0.25 to 0.8%, depending on the particle tem-
perature. Oxidation occurs in the jet core [13] in the area 
of mixing air with the jet and finally in the production of 
oxidation products.

In a high-pressure chamber, it is the deflagration of a 
hydrocarbon molecule  (CxHy) with either oxygen or air 
as the oxidizer at a pressure between 0.24 and 0.82 MPa. 
When taking into consideration the local pressure and tem-
perature, the nozzle is capable of producing gas velocities 
up to 2000 m/s [13]. The reaction energy or enthalpy, in 
highly compressed explosive medium (about 2 MPa), sent 
out a shock wave that moved the hot particles [16]. Gas 
velocities above 2000 m/s are not uncommon. Instead of 
being fed continuously into the gun as in the previous two 

devices, this device cycles through flammable gases and 
powders at a frequency of 3–8 Hz [13, 15, 19, 20].

Geometrical Constraint

Regardless of the spraying method employed, it’s a line of 
sight approach. Only those areas that can be reached by the 
particle stream are coated. The spray pattern on the com-
ponent can be reduced up to 200 µm in size using rotating 
masks, but more work needs to be done. The smallest diam-
eter that can be covered sensibly during external spraying is 
approximately 1 mm [19]. When it comes to internal thermal 
spraying, the diameter of the cylinder that may be sprayed is 
around 30 mm. The height-to-diameter ratio is the limiting 
element in cavities (i.e. blind holes). A diameter of 8 mm 
is required for a ratio of around 1 [20]. Thermal spray guns 
are equipment used to feed, accelerate, heat and direct the 
spray pattern’s material flow. According to the method of 
energy production, they can be divided into three distinct 
groups [21].

Spray Material

Powders, wires, rods, and cords can be put into the enthal-
pic jet to change the speed and temperature distribution of 
the particles to match the materials being sprayed and the 
qualities of the coatings that are wanted. The size distribu-
tion (d10–d90) must match the spray gun melting capabilities 
(d50) of the material (mass enthalpy of the emitting jet and 
interaction time) [18]. The powder feeder device must also 
be able to handle the flow of the powder (several technolo-
gies exist). It is important to keep the feedstock moisture 
content and particle size distribution as low as possible 
before spraying to maximize flow ability. A minimum of 
24 min at temperatures ranging from 60 to 80 °C must be 
used to remove the moisture in the feedstock. When using 
agglomerated composite materials, the distribution of each 
particle’s components must be as consistent as feasible [20]. 
The powdered feedstock is commonly accelerated, heated 
and liquefied using spray gases. The usage of ductile materi-
als is implied by the use of wire. Cored wires can be made 
from non-ductile materials as well as ductile ones. Powdered 
metals or ceramics that don’t bend easily are surrounded by 
a coating of a material that does. Ceramics are the primary 
use for rods and cords [15,17–19]. The molten material is 
atomized and moved by auxiliary gas that is pumped into 
the spray gun. At the same time, the wires, rods, and cords 
are constantly moved forward at a speed that lets the jet that 
comes out of the spray gun under investigation melt the ends 
of the wires, rods, and cords [22].
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The d10 and d90 dia. (i.e. 10 percent volume of elements 
below d10 and 10 percent vol. percent of particles above d90) 
and the average diameter of the particle size distribution, 
d50, are used to describe powders (e.g. 22–45 m). Spools 
of ductile-material wires are offered for purchase. In terms 
of diameter, they measure between 1.20 and 4.76 mm. It is 
more difficult to feed larger, stiffer wires (d > 2 mm) due 
to the increased effort and strain required to uncoil them. 
There are a few millisecond spray times for ceramic rods 
with diameters of 3.16, 4.75, 6.35 and 7.94 mm [17, 21]. 
Cords are made by encasing ceramic particles in cellulose 
or polyester. In the processing of ceramic particles, either an 
organic binder is used, which begins to degrade at around 
250 °C and decomposes completely at around 400 °C or a 
mineral glue like “bohemite (Al(OH)3)”, which binds the 
ceramic particles together near their melting point tempera-
tures. Cords provided on spools have a 100 m length, allow-
ing for several hours of spraying, compared to rods. Between 
3.16 and 6.35 mm in diameter, they are the most common 
[15, 16, 21].

Coating Adhesion

Figure 3 depicts the fundamental design of the HVOF spray 
system using the diamond Jet gun as an illustration [22].  
HVOF process possesses higher bond strength, less poros-
ity compared to other thermal spray processes (e.g. plasma 
spraying, flame spraying, and electric arc spray etc.) as high 
velocity of particles creates more impact over the substrate 
surface [23–26].  Particle velocity, flame temperature, and 
spray atmosphere are the primary distinctions between 
spraying techniques. The coating procedure typically affects 
coating properties such as porosity, bond strength, and oxide 
content. Table 1 demonstrates the characteristics of tung-
sten carbide-cobalt (WC-Co) coatings sprayed using various 

techniques [27]. Figure 4 is a layout and distance diagram of 
a carbon dioxide nozzle.

As shown in the literature [29] a copper base, 25 s after 
the spray method began (Helium, 2 MPa 300 K), imme-
diately before the formation of the coating on the copper 
surface [30]. Particle concentration and velocity in the flow 
have a direct impact on the induction time. Plastic deforma-
tion occurs when the particle is subjected to a tension larger 
than its yield stress due to a collision with sufficient energy. 
In the area of the contact zone, high plastic strain rates are 
seen upon impact, leading to adiabatic heating and local-
ized material softening. It causes shear instabilities, which 
are responsible for the ejection of particle–substrate inter-
face solid-state jets of material [28, 31]. Allowing for direct 
metal-to-metal contact, the oxide layer has been partially 
eliminated. Low-velocity particles abrade the substrate, 
whereas high-velocity particles deposit and create a coating 
on the surface. This is shown schematically in Fig. 5 [32].

Fig. 3  Schematic cross section 
of HVOF gun [28]

Fig. 4  Schematic of carbon dioxide nozzle layout and distances used 
[28]
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Adhesion and elastic deformation energy created by 
particle impact may be compared using an easy-to-under-
stand model devised by B. R. Marple [33]. At first coat-
ing layer is formed when the adhesion energy exceeds the 
elastic deformation energy, and this has been researched. 

It has been discovered that the best spraying circumstances 
are dependent on the qualities of sprayed materials and 
surfaces as well as spray particle sizes and temperatures 
[28]. Various spray materials and substrates have had their 
critical velocities calculated. Gartner and colleagues [34] 
looked at the critical velocities of several spray materials 
on a copper substrate. Figure 6 sums up the findings.

A study by Gartner et al. [32] found that particle’s par-
ticular mass and temperature affect their critical veloci-
ties. The hitting particle will cause significant erosion if its 
velocity exceeds the range of hydrodynamic penetration. The 
erosion velocity (Verosion) was calculated by Schmidt et al. 
[35, 36]. It is faster than the device’s critical speed observed 
(Fig. 7).

Spray Specifications

When adhering a coating to the surface and forming the 
following layer, the most important impact factors are par-
ticle velocities and materials, together with the substrate’s 
material qualities. Gas stagnation pressure, temperature, 

Fig. 5  Particle velocity and deposition efficiency are shown to 
be correlated in the following diagram. The critical velocity, Vc, 
is defined by the transition between abrasion and deposition at low 
velocities

Fig. 6  Various spray material 
critical velocities were experi-
mentally determined. The error 
bar takes into consideration the 
wide range of powder purities 
that are accessible

Fig. 7  The erosive velocity of 
different metals was calculated 
for 25 m particles
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molecular weight, and particle shape and size all affect par-
ticle velocity [37, 38].

When injecting particles axially with a DJ-2700 gun, 
using a JP-5000 gun and injecting radially increases the oxy-
gen content of the coating only slightly (316L). As a result, 
while using JP-5000, where the particles are at a lower tem-
perature (about 800 K lower),  O2 in the flame cools them 
even further, lowering their oxidation content even further. 
A gas shroud attachment for commercial HVOFs has been 
developed by Ishikawa et al. [14] to minimize oxidation 
using a shroud gas, although at a considerably lower flow 
rate. WC–Co particle velocities rise from 760 to 850 m/s 
with the gas shroud arrangement, but particle temperatures 
fall from 1950 to 1830 °C due to a decreasing flame at a 
pressure of 0.72 MPa. The density rose, decomposition of 
WC was 6 to 2.5%, and corrosion resistance and good wear 
resistance greater than without a shroud were also achieved. 
High-density coatings with little oxidation and no carbide 
breakdown can be achieved by raising the particle veloc-
ity while reducing the temperature of the powders used 
in HVOF or HVAF. Because of this, Kawahita et al. [37] 
modified the pistol by including a mixing chamber between 
the combustion chamber and the nozzle. Nitrogen is added 
to the combustion gas in the combustion chamber to its 
lesser temperature. Operating parameters for the altered 
JP-5000 include kerosene consumption of 0.29–0.35 l/min, 
 N2 consumption of 0.5–2  Nm3/m, and  O2 consumption of 
0.55–0.73  Nm3/m. Thus, titanium (Ti) coatings with a high 
density that are resistant to corrosion were developed [38].

When it comes to HVOF gun development, researchers 
have concentrated on reducing particle temperature and 
boosting their velocity for more than two decades already. 
Up to 1 MPa chamber pressure can produce spray particle 
speeds of up to 650 m/s [39]. Hydrogen pilot flame (88 Litres 
/min, air 500 L/min) ignites combustion chamber fire when 
power rises up to 300 Kilo Watt (Kerosene 31 l/h,  O2 965 l/
min). For example, Trompetter et al. [40] used an HVAF 
gun to spray NiCr powder (melting point Tm = 1400 °C), 
which resulted in a particle velocity of 670 m/s. In com-
parison with hardness of NiCr, spraying soft surfaces pro-
duced mostly deeply penetrated solid splats, whereas spray-
ing hard substrates resulted in more heavily molten splats. 
They hypothesized that the quantity of plastic deformation 
owing to substrate hardness would explain this occurrence 
by converting particle kinetic energy into heat. Peening and 
persistent compressive stresses in coatings are the second 
results of high-velocity impacts [32, 41, 42]. Studies show 
that HVOF coatings have minimal surface residual stress and 
typically have tensile stress, but the stress within thin films 
is substantial and mostly in compression, according to the 
measurements. Pumping on a stainless steel substrate results 
in a 100-m-long hardening zone, which is why this peening 
effect is so important for metals like stainless steel.

The HVOF technique creates coatings with a high 
density because of the particles with high kinetic energy 
(400–650 m/s) [37] (porosity less than 3%). As a result, 
materials like WC may be deposited at temperatures below 
their melting point, minimizing oxidation and degradation. 
It is now possible to use spray guns to apply materials that 
lack the extraordinary copper’s ductility or aluminium and 
they are more vulnerable to oxidation, than Ti [40].

Influence of HVOF Process Parameters

The qualities of the coating, resistance to corrosion and 
erosion, and other factors are often improved by optimis-
ing the spraying parameters. The distance of spray, powder 
feed rate, oxygen flow rate, fuel flow rate and carrier gas 
used are few factors that affect coating qualities. Brezinová 
et al. [43] examined the impact of milling time (36 h) on 
the mechanical properties of SAE 1020 steel that had been 
sprayed with HVOF and coated with WC/Co and WC/
Co-CNT. The findings demonstrated that the inclusion of 
Carbon Nano Tube (CNT) enhanced the coating’s mechani-
cal properties, including hardness, fracture toughness, and 
apparent yield stress. The effects of heat treatment (using 
oxyacetylene flame) on the adhesion resistance, microstruc-
ture, micro-hardness and erosive wear of HVOF-sprayed 
NiCrBSiW coated plain carbon steel were studied by Rod-
riguez et al. [44]. After the post-spray heat treatment, the 
coating’s porosity was reduced. Additionally, better metal-
lurgical bonding was created after the post-spray heat treat-
ment, which improved the coating’s cohesion and adhesion 
strength. Using a factorial experimental approach, Gil et al. 
[45] investigated the effects of process factors on the adhe-
sion strength and microstructure of NiWCrBSi coatings 
formed by HVOF process. The coating’s adhesion strength 
and porosity are most significantly impacted by the spray 
distance and equivalency ratio. Table 2 makes it evident that 
 Cr2O3-4%CNT, NiCrBSi,  Cr3C2-NiCr and Ni-20Cr coatings 
are sprayed with HVOF and deposited under ideal conditions 
offer higher mechanical properties.

Effect of Residual Stresses in HVOF Coatings

The process of thermal spray coating encompasses a broad 
variety of other processes, some of which include wire-arc, 
HVOF, plasma spraying, and many others that are utilised in 
a variety of various applications. One of the most important 
things to think about when it comes to coating performance 
is how the stresses left over from the coating process affect 
the life and behaviour of the coating layer [56]. It could be 
very important to the evaluation process to measure these 
stresses. Because of this, a lot of research has been done on 
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how to measure and calculate the quantitative and qualitative 
residual stresses. During the coating process, most of the 
work was done using pure experimental methods to measure 
the residual stresses. Others get the stress values using a 
method that is a mix of experiments and math [57].

Sources of Residual Stresses

Residual stresses in coatings that are sprayed with heat come 
from two main places. The first is the sudden temperature 
decrease from the melting point to the substrate temperature 
experienced by the sprayed particles. This kind of stress is 
called intrinsic, quenching, or deposition, and it is tensile. 
The second source, which may be the most important, is that 
the coating and the substrate have different coefficients of 
thermal expansion (CTE). This happens when the average 
temperature of the coating system after the deposition pro-
cess starts to drop towards room temperature. This is called 
secondary cooling [57]. Then, the difference in how much 
the substrate and the coating shrink when heated leads to 

the residual stresses. Aside from the two main causes, there 
may be other things that indirectly cause residual stress. For 
example, the amount of residual stress left after deposition 
depends on how fast the coating particles are moving. This 
has to do with the speed of the coating and the size of the 
particles.

Literature shows that in HVOF coating systems, residual 
stresses come from [56, 57]

1. The process of coating deposition. When particles hit 
something, they freeze and shrink, which creates tensile 
stresses that are mostly relieved by the formation of tiny 
cracks in the coating.

2. Stress from the wrong materials. When the parts that 
have been coated cool down to room temperature.

3. Differences in the thermal expansion coefficients of the 
coating and the material underneath it.

Table 2  Process parameters of HVOF-sprayed coatings [46–55]

Sl. No Substrate Coating material Particle size (µm) Oxygen rate 
of flow (L/
min)

Fuel (propane/
LPG) flow rate
(L/min)

Air flow rate
(L/min)

SOD
(mm)

Powder feed rate
(g/min)

1 [46] SA 516 Ni–20 Cr 81% Ni 13.9 262 63 610 151 34–40
Ni–20Cr 73% Ni 12.0
Ni–20Cr 65% Ni 10.99

2 [47] T_91 Cr3C2–26%Ni Cr 14–46 262 64 640 20 60
3 [48] Alloy 80A Cr3C2–26Ni Cr 44/16 845 20 – 365 35

NiCrMoNb 53/20 840 365 40
4 [49] P-91 Stellite-6 _ 995 0.460 – 360 –

Cr3C2–25%NiCr −45 to + 15 872 0.453 380
Hastelloy C-276 −52 to 20 857 0.685 380

5 [50] T-22 Cr203 44 to 11 254 83 600 200 20
Cr203-1%CNT
Cr203-4%CNT

6 [51] AISI 316 
Stainless 
steel

Ferrous type amorphous 
powder

−55 to + 16 250 65 233 34
249 64 2340 40
260 66 234 37

7 [52] T_91 76  Cr3C2–24 Ni Cr −44 to + 16 249 61 610 180 –
8 [53] T-22 WC_ Cr C–Ni 17 to 43 249 66–70 549 178 23

MDN 310
SF 800H

9 [54] T-22 Cr3C2−34% Ni Cr + 6% Si –46 + 14 250 64–69 549 178 38
SF 800H
MDN 310

10 [55] T_91 66%Cr3  C2–34% (Ni–20 
Cr)

– 251 61 910 200 28

75%  Cr3C2–25% (Ni–20Cr)
80%  Cr3C2–20% (Ni–20Cr)
90%  Cr3C2–10% (Ni–20Cr)
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Parameters Affecting Residual Stresses

The generation of residual stresses is influenced by a number 
of process variables, including deposition speed, spray gun 
velocity, coating temperature, coating thickness, etc. How-
ever, these parameters cannot be improved purely based on 
residual stresses; it is also necessary to take the final coat-
ing’s quality into account.

Following is a broad breakdown of the processes in the 
coating process that have an impact on coating quality [58]:

Spray particle movement

 particle collision and deformation 

coating formation

 splat interactions

 pore formation 

coating build-up
 and final coating layer.

Importance of Residual Stresses Calculation

In general, compressive residual stresses are preferable, and 
unless they are present in relatively high quantities, their 
existence usually has no negative effects on the coating sys-
tem. Tensile residual stresses are typically more detrimental 
and cause numerous coating issues, including fatigue fail-
ure and the initiation and spread of cracks, which can result 
in interface delamination. Drilling holes is one of the most 
popular methods for evaluating residual stresses [59, 60]. 
Typically, drilling in this procedure is done subtly at the 
micro-level until the substrate is reached [57, 61, 62]. It is 
reasonable to infer that this procedure produces minimal 
stresses because it uses moderate feed rates, high cutting 
rates, and low drilling depths for each phase. A cooling time 
is also used in between every other drilling increment to 
ensure that there are no thermally induced stresses brought 
on by the drilling operation [62].

HVOF Wire Spraying

Due to the low impact velocities for the particles, wire 
flame spraying produces very porous coatings (over 10%). 
The high rate of wire flame spraying (up to 10 kg/h) makes 
it a major issue in terms of process economics, which is 
often the case. The automotive industry has been study-
ing the HVOF wire spraying technique since 1995. There 
has also been spraying of molybdenum. Compared to 
plasma spray coatings, wire flame-sprayed thin films have 
lower friction resistance but are tougher and more wear-
resistant [63]. Methane and oxygen were also sprayed on 
low-carbon steel. [64] Such thin films are also applied to 
nickel–chromium wires [65] and nickel–chromium alloys 
such as  Cr3C2-NiCr [66]. Those treated guns with a fuel-
oxygen had a strong resistance to heat corrosion, nota-
bly Ni-20Cr, with less than one percent porosity. As a 
last note, an HVOF/plasma jet gun and arc spray hybrid 
method [67] has been devised Table (3).

Mechanical Properties of HVOF Coating

Tribological Properties of HVOF Coating

The average coefficient of friction and volume lost by the 
coatings against various counter bodies are summarised in 
Table 4 [74]. It’s interesting to note that while sliding against 
the identical counterpart, HVOF coatings had a lower coef-
ficient of friction than other types of coatings. In comparison 
with other counter bodies, the volume lost by both coverings 
because of the  Al2O3 ball is significantly higher. In com-
parison with  Si3N4 and steel balls, the volume lost by coat-
ings due to  Al2O3 balls is precisely 2.7 and 20 times higher, 
respectively. Additionally, among the three counter bodies, 
the volume loss of the  Al2O3 ball is the least. As a result, the 
 Al2O3 ball was able to keep its initial curve throughout the 
test period. As a result, the  Al2O3 ball has effectively pierced 
both coating surfaces [74].

Comparative Analysis in Between Different Coating 
Processes

Innovations in different coating processes, thermal spraying, 
CVD, PVD and other processes mainly rely over the evo-
lution of their past developments. To deposit uniform thin 
film coating, many coating techniques are available in the 
market. Each techniques have their own pros and cons along 
with some important parameters. So utmost care should have 
been taken over key parameters during the process to get the 
desired coatings. In thermal spray process, by conveying gas 
stream, feed stock material will be heated, atomized and 
ultimately deposit over the prepared substrate surface [75]. 
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As the materials are in heated state, they will transform into 
plastic or molten state, they become atomized and confined 
before accelerated towards the substrate’s surface. Then the 
stroked particles over the substrate surface become flat and 
develop thin platelets. These flat particles then match up to 
the irregularities of the substrate surface. So it will provide 
considerable barrier protection over the surface. In PVD 
process, the developed exceptional properties in coating are 
due to the presence of highly ionized metallic vapours. In 
CVD process, it is possible to homogeneously coat 3D sam-
ples, whereas in physical vapour deposition PVD processes 
mainly have command over growth of coating. In Tables 2 
and 3, comparison between different thermal spraying tech-
niques and a comparison of HVOF with CVD and PVD have 
been highlighted [75–77] (Tables 5, 6, and 7).

Applications HVOF Process

Engineers use HVOF to coat technical components with cer-
met, metal, and some ceramic thin films that are generally 
100–300 µm in thickness, enabling them to operate under 
harsh circumstances. Aside from wear resistance, they’re 
being examined extensively for their higher corrosion and 
resistance to oxidation in comparison with different spray-
ing methods. They are widely used in a variety of industries, 
including maritime, aviation, and automobiles. With their 

help, a broad range of petrochemical system elements can 
be recovered.

Using HVOF, lower oxygen and fuel ratios allowed for 
the production of ultra-thin, pure aluminium films [105]. 
The HVOF process was used to spray iron-aluminide with 
7–15% oxide [106]. With gaseous or liquid fuel, Ni-20wt% 
Cr spray creates less oxide, lower porosity, and lower melt-
ing evidence [107]. HVAF spraying on aluminium substrates 
results in a strong connection between the substrate and the 
Ni Cr particles, but there is no chemical bonding [108]. 
Waste-to-energy boilers use protective Ni Cr or Ni Cr Si B 
coatings to avoid corrosion [109]. To avoid corrosion, Ni 
Cr Mo Nb can also be used [110]. The HVOF coating made 
of super alloys can also be used as thermal barrier bonds 
[111, 112].

For HVOF and HVAF procedures, substantial research 
has been done on cermet from the start [113–119]. Spray 
cermet most typically employs WC-Co and  Cr3C2NiCr. 

Table 3  Mechanical properties of different coating materials and substrates [47,68–73] 

Sl. No Substrate Coating material Micro hardness (HV) Porosity (%) Surface 
roughness 
(µm)

Fracture 
toughness 
(MPa  m1/2)

1 [47] ASME SA213 T-91 Cr3C2–25%NiCr 755 2.5–3 5.36 ± 1.5 2.43 ± 0.9
2 [68] 1Cr18Ni9Ti (a) 88WC-12Co 1181 0.99 4.49 4.57

(b) 83WC–12Co 1120 0.84 2.47 4.64
(c) Cobalt based alloy 553 – – 2.58

3 [69] Stainless steel (ss sus 400) WC-12Co 1288.63 0.0721 6.55 –
4 [70] AZ31 Magnesium alloy WC

CrC
7.5 ± 4
74 ± 31

3.7 ± 0.7
2.4 ± 0.5

3.8 ± 0.3
2.9 ± 0.2

3.6 ± 0.6
4 ± 1

5 [71] SS-304 TiB2–50Ni 766.1 2.3 2–3 –
6 [72] Ti6Al-4v 1. HVOF coating of conventional 

WC–Co
986 ± 111 2.6 ± 0.3 7.7 ± 0.4 4.2 ± 0.3

2. HVOF coating of nanostructured 
WC–Co

1094 ± 105 1.5 ± 0.2 6.4 ± 0.1 5.6 ± 0.7

3. HVOF coating of mixture of conven-
tional WC–Co &CNT

1273 ± 150 2.8 ± 0.4 7.1 ± 0.5 4.7

4. HVOF coating of nanostructured 
WC–Co &CNT

1396 ± 85 1.6 ± 0.3 6.6 ± 0.2 6.7 ± 0.2

7 [73] En32 (a) WC–12Co 1250 ± 90 1.3 1.53 –
(b) WC–10Co-4Cr 1140 ± 80 1.4 1.38
(c)  Cr3C2–25NiCr 830 ± 80 2.6 2.36

Table 4  Tribological properties for different counter bodies in 
HVOF process

Counter body Coating average
COF

Volume loss
by ball  (mm3)

Volume loss by
coating  (mm3)

Al2O3 HVOF 0.151 0.0269 1.4190
Si3N4 HVOF 0.135 0.0778 0.6631
AISI 52,100
Bearing ball

HVOF 0.148 0.1827 0.1317
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Avoiding or at least reducing carbide breakdown as much 
as feasible is a vital part of coatings quality. Because of their 
corrosion and wear resistance (especially those containing 
NiCr), these coatings are commonly employed. A variety 
of other materials, like MoB and CoCr [120], which pro-
tect against erosion with liquefied Al–Zn alloy, a variety of 
Nickel–Titanium–Carbon (Ni–Ti–C) [121], which contains 
Ni-rich solution, Ni-rich spraying Ti-in addition to Ni-rich 
solution, and a variety of silicon nitride-based coatings [117] 
all of which are sprayed.

When it comes to coatings made using HVOF or HVAF 
technology, high temperatures are less of a rarity than fast 
speeds. Propylene devices may easily melt Ti [122]. High 
Weibull modulus values and thick and homogenous coat-
ings, with rutile as the dominating phase, are achieved in 
contrast to previous spray processes. Chromium stabilizes 
the phase in most alumina [123]. Zirconia stabilized with 
yttria particles smaller than 10 m can be sprayed, and the 
production of adhesive and cohesive coatings may be influ-
enced by sintering [124].

Without ceramic doping, nylon 11 is the most widely 
used polymer [125–127]. Degradation is usually limited to 
a change in colour due to the HVOF residence time being 
short enough (1 m/s). Abrasion and fatigue wear may be 
taken into account without doping powders in these coat-
ings. Materials sprayed with a mixture of liquid fuel and 
oxygen are nearly identical to those sprayed with gaseous 
fuel. Higher velocities and lower temperatures are the pri-
mary distinctions.

When copper was heated to a temperature where it 
was highly deformable just below its melting point [128] 
extremely dense coatings could be produced. Coatings, on 
the other hand, were more durable than wrought iron [129].

Furthermore, the adhesion of Ni–Cr–9Cr–1Mo steel 
exceeded 70 MPa and had outstanding resistance to steam 
oxidation [127, 128]. With these HVOF process guns and a 
noble gas shroud, the thin film oxygen levels attained with 
vacuum plasma spraying (VPS) were almost equal [129]. A 

600 °C treatment of the CoMCrSi coatings increases hard-
ness and decreases friction against an alumina pin [130].

Abrasion resistance is better for WC-Co + CoMCrSi 
coatings in two-body sliding situations than for electrolytic 
hard chrome (EHC) coatings, but the mass loss in three-body 
abrasion conditions is equivalent to or even larger than that 
for EHC coatings [130]. A coating of WC-NiCrFeSiB is 
extremely resistant to oxidation and hot corrosion at tem-
peratures as high as 800 °C [131].

For example, iron sulphide can be sprayed with HVOF 
liquid fuel that contains lubricants [132]. Through spray-
ing  SiO2/Ni/Al–Si–Mg powder, resulting in  MgAl2O4 and 
 Mg2Si in an AlSi matrix, for HVOF process self-propagating 
high-temperature synthesis (SHS) may be achieved [133]. 
Flight and splat stacking are the two stages of the reaction. 
These materials are extremely strong [134–137].

Hydroxyapatite (HAp) Coatings

For a variety of applications, including total hip and knee 
replacement, thermally sprayed HAp coatings enable a 
natural fixation on metal implants. These coatings enhance 
patient biomechanics, prolong the life of the implant, and 
improve the patient’s quality of life [138]. The only methods 
for creating HAp coatings that have received FDA approval 
are thermal plasma spray techniques [139]. However, this 
group of operations can result in the development of sec-
ondary phases, including amorphous calcium phosphate 
(ACP), tricalcium phosphate (TCP), and tetracalcium phos-
phate (TTCP), among others [139] since HAp is unstable at 
high temperatures (i.e. T > 1500 °C). The formation of these 
phases implies that they will be more soluble than HAp in a 
physiological environment, which will compromise the coat-
ing’s long-term stability [140]. The HVOF thermal spray is 
an alternative method to generate bioactive coatings of a 
quality that is equivalent to or even superior to that obtained 
by plasma spray [139, 141]. The HVOF enables the creation 
of thick, crystalline, and adherent coatings by letting the 

Table 5  Comparison in 
between different thermal 
spraying techniques [78–80] 

Properties Arc spraying Flame spraying Plasma spraying HVOF

Thermal source Electric arc Gas  (O2 +  C2H2,  O2 +  H2) Arc of plasma Gas  (H2/C3H8/LPG)
Particle temperature Up to 5000 °C Up to 3000 °C Up to 16,000 °C Up to 3000 °C
Particle velocity 150–300 m/s 40–150 m/s 150–600 m/s 800–1000 m/s
Max spray rate Up to 150 kg/hr Up to 32 kg/h Up to 3000 kg/h 20 kg/h
Spray distance 15–25 cm 10–20 cm 14–20 cm 15–20 cm
Power input 5–10 kW 100–200 kW Up to 200 kW Up to 50 kW
Air flow rate Up to 60  m3/h Up to 70  m3/h Up to 5.4  m3/h Up to 3–4.2  m3/h
Type of material Powder Powder Powder Wire/powder
Bond strength High Excellent Medium Good
Hardness High Good Medium Excellent
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Table 6  Comparison in between HVOF and CVD PVD process [80–94]

Factors HVOF PVD CVD

Coating material Solid form Solid form Gaseous form
Method Oxygen and fuel are mixed together, 

fed into the combustion chamber 
and ignited

Atoms are transforming and deposit-
ing over the surface

Gaseous molecule will react or decom-
pose over the substrate

Deposition temperature Up to 3200 °C Very low (~ 500 °C) Up to 1500 °C
Cleaning requirement High High Low
Noise level High Low Low
Film thickness 0.1–2 mm  ~ 3 µm  ~ 8 µm
Film surface Fine and dense surface without any 

porosity
Surface finish is very high and 

provide metallic lustre without 
grinding

Surface finish is relatively low com-
pared to PVD

Crafting process Generally took place at open atmos-
phere but in confined place as it is 
very noisy

Generally took place in presence of 
low air pressure in the reactor

Generally took place within the reactor 
at vacuum state

Equipment cost Very expensive Expensive Cheap
Operating cost Low to high Moderate to high Moderate to low
Safety Less High Moderate
Adherence Excellent mechanical bond Moderate mechanical to good chemi-

cal bond
Good chemical to excellent diffusion 

bond
Coating materials Metals, cermet, ceramics and poly-

mers
Metals, ceramics and polymers Metals, ceramics and polymers

Applications Water, mining, petrochemicals, chem-
icals, aerospace, paper, engineering 
and manufacturing, gas, power, etc.

Solar panel, glass coating, aluminized 
PET film, snack bags, optical coat-
ings and filters, etc.

Tool insert, semi-conductor, Aerospace 
industry, automobile sector, etc.

Table 7  Applications of different materials coated by HVOF technique [95–104]

Author Coating material Substrate Coating 
thickness 
(μm)

Applications

Javed et al. [95] WC-18% hastealloy C and WC-
10wt%-5wt%Cr

Monel K500 150–200 Hydraulic rig

Priyana et al. [96] FeSiNi and FeBCr alloy powder Grey cast iron 400 Automotive
Bansal et al. [97] Ni20Cr2O3 SS202

SS304
Mild steel

123
142
156

Pipeline

Sahraoui et al. [98] Cr3C2–25%NiCr
WC–12%Co

AFNOR 25CD4 low-carbon steel 350 Replacement of EHC in gas turbine

Bansal et al. [99] Cr3  C2 NiCr
WC–CoCr

1Cr18Ni9Ti stainless steel 350 Hydro turbine

Vernhes et al. [100] (a)80/20  Cr3  C2 NiCr Forged Inconel 718PH 215 Metal-seated ball valve (steam 
lines in power plant)(b) HVOF 80/20  Cr3C2–NiCr 

coating, sprayed with C3H6
155 ± 35

Sidhu et al. [101] 93(WC–Cr3  C2)7Ni
75Cr3  C2–25Ni
83WC-17Wo
86WC-10Co-4Cr

ASME SA213T91 steel 200–250 Boiler

Singh et al. [102] WCO–CoCr + MO 2C SS-316 – Pump impeller
Mahade et al. [103] Cr3  C2 NiCr Carbon steel 300 Automotive break disc
Gui et al. [104] Kennametal stellite

JK120H powder
N almen strip 160–180 Landing gear
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powder to travel at greater speeds and lower temperatures 
[142]. A technique for enhancing the Osseo integration of 
metal implants [143]. Metal implants have a high mechani-
cal strength, but because they are bio-inert, they have a poor 
ability to connect to bone tissue. Based on the favourable 
bioactive characteristics of several bulk ceramic materials 
seen in physiological conditions, bioactive coatings have 
been created [144]. In particular, it has been shown that the 
mineral HAp,  Ca10(PO4)6(OH)2) stimulates bone formation. 
Due to its chemical resemblance to the mineral component 
of bone, which is composed of carbonated apatite, calcium-
deficient apatite, and ions such as potassium, magnesium, 
sodium, chloride, and fluoride, HAp has been successful as 
a biological material [145, 146].

Challenges and Merits of HVOF Thermal 
Coatings

Merits

1. As a coating material, a wide variety of substances 
(metal, ceramics, polymers, alloys, plastic, etc.) in dif-
ferent forms (powder, wire/rod) that melt without disin-
tegrating can be used.

2. Almost any material can be coated with thermal spray 
paint without considerably heating the base material.

3. A thermal spray method can be used to produce the 
distinctive surface characteristics, such as resistance to 
corrosion, wear, abrasion, and dimensional restoration.

4. Compared to other processes, the thermal spray process 
produces less coating material waste. Therefore, when 
using more expensive coating materials, it is preferable 
to use the thermal spray procedure.

5. Effective coating can lengthen the component’s lifespan.

Challenges

1. Use a line-of-sight technique.
2. During coating deposition, the material’s structure and 

composition change.
3. The surface of the coating is uneven; therefore, some 

surface finishing is required to improve the surface of 
things.

4. Fewer process approaches for thermal spray coatings 
necessitating more expensive equipment result in a 
higher initial setup cost.

5. In certain processes (such as wire arc spray), only elec-
trically conducting substances can be sprayed [147, 
148].

Conclusions

HVOF thermal spraying is a process in which powder mate-
rial is melted and propelled at high velocity towards a sur-
face using oxygen and fuel gas mixtures. In the combustion 
zone, the powdered material enters the flame and becomes 
molten or semi-molten, depending on the melting tempera-
ture and feed rate. It is the deflagration of a  CxHy using an 
oxidizing agent that is either  O2 or air at the pressure of 
between 0.24 and 0.82 MPa in a chamber at high veloc-
ity. Spray particle mass and temperature have a substantial 
influence on the critical velocities of sprayed materials and 
substrates, and the ideal spraying conditions have been iden-
tified based on these factors. The hitting particle will cause 
significant erosion if its velocity exceeds the range of hydro-
dynamic penetration. Compared to plasma spray coatings, 
wire flame-sprayed coatings have lower friction resistance 
but are tougher and more wear resistant. Lastly, it should be 
stated that a hybrid thermal spray process combining an arc 
spray process with an HVOF process/plasma jet process gun 
has been developed. In comparison with other coating pro-
cesses, such as CVD, PVD and electroplating, thermal spray 
processes are distinguished by their high coating rates. Other 
advantages of thermal spray processes include the ability 
to deposit thick coating sections and the simplification of 
waste disposal. Materials sprayed with a mixture of liquid 
fuel and oxygen are nearly identical to those sprayed with 
gaseous fuel. Spraying substances containing solid fluids, 
such as iron sulphide, is another application for HVOF liquid 
fuel. In HVOF process, SHS reactions may be generated 
by spraying SiO2/Nickel/Al-Silicon-Mg fine particles, aris-
ing in MgAl2O4, Mg2Si in AlSi matrix, as in the case of 
flame or gaseous fuel. Using thermal spray methods, you 
can work with alloys, ceramics, polymers, cermet, and com-
posite materials. It’s also possible to create coatings with a 
wide range of architectural features, from thick to porous to 
some micrometres or millimetres dense, as well as nano- or 
microscale architecture.
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