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Abstract The impact of cutting parameters on the SR of

machined work piece and tool flank wear during machin-

ing of AISI 420 martensitic stainless steel is studied in the

research study. PVD-CAE coated TiAlN, AlTiN, and

TiAlSiN cutting tool inserts were employed for machining.

The potential influence of cutting parameters was deter-

mined using analysis of variance. To optimise the process

parameters influencing roughness and tool wear, Taguchi

methodology based L9 orthogonal array was selected. A

multi-objective optimization strategy based on grey rela-

tion and fuzzy control had been employed in this investi-

gation. Grey relation analysis was used to improve the

process parameters, which were then fuzzified using the

Mamdani fuzzy engine. The parameter combination of

speed 120 m/min, CD - 1.5 mm, F - 0.1 mm/rev and

TiAlN coating was proven to be the best optimized setting.

Keywords Martensitic stainless steel � TiAlN � AlTiN �
TiAlSiN � Taguchi

Introduction

Martensitic stainless steels have a high strength-to-weight

ratio and are used in high-strength applications such as

medical instruments, shaving blades, and bearings. 420

grade martensitic stainless steel parades high resistance to

corrosion as similar to type 410 but it is stronger and

harder. In both the annealed and hardened states, it is

magnetic. Only completely cured or fully hardened and

stress relieved steels provide maximum corrosion resis-

tance. It is hardly used in the annealed state. The

microstructural composition and thickness of carburized

layer produced on AISI 420 MSS may be adjusted by

appropriately regulating the carburizing temperature.

Micro-structural analysis reveals that minimum tempera-

ture and limited duration of heat treatment enhance the

resistivity of carburized materials [1]. Because of the

process, characteristics and microstructure, martensitic

stainless steels deteriorate ploughing or abrasive wear. To

increase the wear and corrosion resistance of martensitic

stainless steels, surface treatment techniques and coatings

are recommended. The most likely surface treatment

method appears to be plasma nitride, which is an out-

standing solution for improving the wear resistance of dry

contacting surfaces [2]. Both industrial and theoretical

techniques, assessment of tool life have a more scientific

approach [3]. The surface integrity investigation of AISI

420 for various machining variables and machining con-

dition states that the machining variables such as velocity

of cutting, feed (F), nose radius and the tool are considered

for microhardness of the machined outcome. It also dis-

closes that the rate of tool feed is the most important output

responses [4]. Carbide tools coated using TiAIN alternating

layers outperformed uncoated tools in terms of tool flank

wear and mean roughness [5]. Chips have a considerable

impact on the machining process, especially the surface

quality. With all F, a greater number of chips were created

at low cutting (CS) [6]. In face turning, the consequences

of WR have a direct influence on the surface quality of the

machined product, whereas flank wear decreases somewhat

with increasing feed and CS and cutting depth (CD) [7].
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With a larger nose radius, the surface quality was notice-

ably improved. The results revealed that the CS is the most

influential parameter on surface roughness (SR) [8]. The

AM samples built at angular powder deposition against the

horizontal base improved the mechanical properties and

minimized the directionality challenges [9]. The results

indicate that the tools costs are insignificant and considers

cost effective with ecological machining condition [10].

The optimum machining setting for multi objective

statistical ANOVA confirmed that F has the strongest

influence on the SR [11–15]. The revolutionary changes in

machine were appropriate choice of tool attribution to the

development or invention of cemented carbide tools pos-

sessing superior properties [16, 17]. A researcher presented

a new parameter-free ANFIS construction approach called

KERNEL. It is capable of doing optimum architecture

estimation as well as optimal SSD in a timely and effective

manner. It can fine-tune the current knowledge base and in

the absence of domain experience, it can uncover the ideal

knowledge. A novel quick and flexible SSD approach

based on hypercube sampling (HC) is given to allow

optimal size determination [18].

In enterprises and academics, performing multi-objec-

tive optimization under uncertainty is a regular necessity.

For scattered and discontinuous data in uncertain domain, it

is difficult to get reliable data through robust optimization.

An author presented a data-driven technique in which a

unique fuzzy clustering process was employed alongside

boundary creation to transcribe the uncertain space in order

to identify particular locations of uncertainty. Following

that, samples are created in the mapped uncertain zones

using smart Sobol sampling [19]. A multi-objective opti-

mization formulation under uncertainty has been presented,

which can lead to simultaneous maximisation of produc-

tivity and reduction in energy consumption. Among the

different strategies for dealing with uncertainty, Chance

Constrained Programming (CCP) is thought to be the most

efficient. DDCCP (Data-Driven CCP) is a revolutionary

technique that combines machine learning algorithms with

CCP, making the approach data-driven. A unique fuzzy

clustering approach is applied to structure uncertain space

in such a way that particular regions of uncertainty are

precisely detected depending on the uncertain data for

more realistic sampling, ultimately influencing the best

solution accuracy [20].

The specimen cooled with chilled air has a higher

resistance to corrosion behaviour after a longer period of

time [21]. The tools with CVD coating presented a better

performance than the PVD for the cutting conditions used

[22, 23]. Undissolved carbides and tempering carbides

were discovered in the martensitic matrix by using optical

microscopy, scanning electron microscopy (SEM), and

atomic force microscopy (AFM). When the spindle speed

is increased, the SR decreases, which is important during

turning operation [24]. Texturing is thought to alter tribo-

logical activity in the sliding region, as the results showed

that the texture model that starts from a distance of 1 m

performed better [25]. Untreated coated tools display

obvious delamination of the coating, which has been suc-

cessfully limited by using microblasting [26].

The use of the desirability function (DF) for multi

objective performance parameter optimization reveals that

there is no single best solution [11, 27]. The optimal

combination of cutting speed, feed, cutting depth, and

cooling mechanism for decreasing SR and maximising

material removal rate (MRR) while maximizing tool life

was determined using Taguchi-based entropy weighted

grey relational analysis [28]. The machining characteristics

(SR, cutting force) are determined by changing the range of

cutting parameters [29]. Cold nitrogen gas and oil mist

conditions boost machining responses as compared to dry

machining. Avoiding emulsion cooling, lower waste costs,

and longer tool life minimize unit production costs as

compared to wet machining [30]. Abrasion and diffusion

were the dominant wear mechanisms in martensitic stain-

less steel machining, while attrition and abrasion were

dominant in super martensitic stainless steel machining

[31]. TiAlN-coated tool steel has a far higher hardness than

the uncoated tool steel [32]. As wear rate (WR) increases,

the roughness characteristics change. The mean and total

roughness metrics are essential for determining tool life

based on surface quality [33, 34]. This paper mainly

focuses on investigating the effect of TiAlN, AlTiN, and

TiAlSiN coated inserts on the performance of AISI 420

steel by varying CD, F and CS. This paper also identifies

the optimised process parameter which majorly influences

SR and WR.

Materials and Methods

In this experimental study, uncoated CNC inserts obtained

from Usman Tools, Coimbatore were utilized. The insert is

finished into 40 mm diamond bar with length of 1.2 cm

and nose radius 0.8 mm. The inserts with negative rake

angle are aligned to the specification of CNMG-120408.

Hard coatings such as titanium aluminium nitride (TiAlN),

aluminium titanium nitride (AlTiN) and titanium alu-

minium silicon nitride (TiAlSiN) were deposited on cutting

tool through PVD technique in Famex Coating Private

Limited at Coimbatore. The photographical images of

coated inserts are depicted in Fig. 1a–c.

The microhardness of all inserts were determined by

using (Model: Wilson400 series) by applying 1 kg load for
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10 s. For these tests, a diamond indenter was used. The

tests were conducted in accordance with ASTM E- 384–17.

The hardness was reported as an average of three mea-

surements to minimize the irregularity effects of coating.

The hardness of the work piece (AISI 420 martensitic

stainless steel) was determined using the Rockwell Hard-

ness Tester. The test was carried out in C-scale with a

diamond indenter and a 150 kg load.

AISI 420 martensitic stainless steels were utilized for

this research study. The steel rod was 36 mm in diameter.

The long rod was cut into 9 pieces of length 100 mm using

cutting machine and its ends were faced using manual

lathe. The JOBBER XL numerical controlled turning

centre was employed for the research experiments as

shown in Fig. 2. Table 1 indicates the different parameters

and their levels, which are used to carry out the

experiments.

With various combinations of input parameters, Taguchi

optimization was employed to produce better order of

machining sequence. This research experimentation used a

L9 orthogonal array as shown in Table 2. All nine exper-

iments were carried out with the different input setting. SR,

MRR and WR were calculated as output responses during

machining using an orthogonal array. For each trial, three

trails were completed, and the average value was recorded.

SR was found through surface tester with 1-inch travel

length in X-axis with the 0.5 mm/s as average run speed.

The mass variation of coated CNC tool inserts before and

after machining was used to calculate WR. The mass

variation of work piece before and after turning was used to

determine MRR. Coating, CS, F and CD were the variables

in this experiment. SR (Ra and Rz), WR and MRR were all

optimized using an optimization approach that included

GRA and fuzzy logic approach. Grey analysis and fuzzy

logic values were matched, and the best optimized result

was discovered.

Since the Taguchi design strategy is meant to optimize

just one solution characteristics, the GRA optimizes a

variety of outcomes. GRA was chosen based on literature

survey to optimize multiple responses: SR (Ra and Rz),

MRR and WR. The optimization process in GRA is divided

into three phases.

When the experimental data have minimum-the-better

characteristic, the measured data can be normalised by

using Eq. (1).

Xi pð Þ ¼ max xi pð Þ � xi pð Þ
max xi pð Þ �min xi pð Þ ð1Þ

where Xi(p) = normalized value.xi(p) = experimental out-

put value.max xi(p) = maximum of pth response.min xi(-

p) = minimum of pth response.

When the experimental data have higher-the-better

characteristic, the measured data can be normalised by

using Eq. (2).

Xi pð Þ ¼ yi pð Þ �min yi pð Þ
max yi pð Þ �min y pð Þ ð2Þ

Then, the grey relational coefficient can be calculated by

using Eq. (3)

Fig. 1 a TiAlN b AlTiN c TiAlSiN

Fig. 2 Turning of AISI 420

Stainless steel
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ni pð Þ ¼ DminþWDmax

D0i pð Þ þWDmax
ð3Þ

where ni(p) = grey relation coefficient.D0i(p) = kX0(p)-

Xi(p)kW = distinguishing coefficient (0.5).Dmin = mini-

mum of D0i.Dmax = maximum of D0i.

Databases are used to extract membership functions,

which are then used to generate fuzzy rules. The decision-

making unit is used to infer from the developed laws.

Based on the degree of matching, the fuzzification interface

translates the input into linguistic words. The fuzzy effects

are then converted into crisp production by the defuzzifi-

cation tool. Then, the obtained grades were fuzzified using

fuzzy approach.

Results and Discussion

TiAlN, AlTiN, TiAlSiN coating applied on the tungsten

carbide CNC insert had increased hardness as depicted in

Table 3. The hardness of TiAlN, AlTiN, TiAlSiN coated

inserts was determined and better hardness (1916 HV) was

apparent for AlTiN as compared to TiAlN and TiAlSiN

coated inserts. WR, SR, and MRR are the machining data

that were obtained from experimentation as listed in

Table 4.

The machined samples are shown in Fig. 3. Analysis of

variance has been performed for all the output responses

individually, and the data were depicted in Tables 5, 6, 7

and 8.

GRA has been selected in order to optimize numerous

responses. The output responses were normalized accord-

ing to a method based on the GRA technique and the

absolute values were recorded. The grey ratio coefficients

for the responses from the normalized values were calcu-

lated, and the values were described in Table 9. Weights

were allocated as 0.5 for each grey coefficient. The grey

relationship coefficients of the individual response were

computed from GRG average. The results were ranked

based on final GRG and the experiment number 1 (CS:

120 m/min, F: 0.1 mm/rev, CD: 0.5 mm and TiAlN coat-

ing) was ranked with highest grade.

The inputs to fuzzy logic system included CS, feed, CD,

and coating. Input parameters can be described for instance

in linguistic membership, which is low, medium and high.

The average grey grades of separate outputs have also been

determined as the input for fuzzy logic interface and the

attainment of relational grey grade is represented by very

small, very medium small, very small, very large, very

medium high and very high attributes. Table 10 shows the

interval of sorting. Depending on the technique, a combi-

nation of 9 fuzzy guidelines was allocated. By adjusting the

fuzzy logic, maximum – minimum combination action

provides results as shown in Fig. 4. Finally, the defuzzifier

changes predicted outputs to GFRG, as illustrated in Fig. 5,

by utilizing MATLAB (R2016b) fuzzy logic toolbox.

Table 6 summarizes the outcomes of the GFRG.

As described in Table 10 and Fig. 6, settings for

experiment number 1 were optimized: 120 m/min CS,

0.1 mm/rev F, 0.5 mm CD, coating: TiAlN). For all GRG

and associated GFRG trials, the relative assessment is

shown in Fig. 6. From Fig. 6, the highest values of GRA

Table 1 Machining parameters

Parameter Condition

CS in m/min 120, 160, 200

F in mm/rev 0.10, 0.15, 0.20

CD in mm 0.5, 1.0, 1.5

Tool TiAlN, AlTiN, TiAlSiN

Work piece AISI 420 martensitic stainless steel

(36 mm diameter, 100 mm length)

Coolant No coolant, dry cutting environment

Table 2 L9 orthogonal array

Exp

no

Coating CS

(m/min)

F

(mm/rev)

CD

(mm)

1 TiAlN 120 0.10 0.5

2 TiAlN 160 0.15 1.0

3 TiAlN 200 0.20 1.5

4 AlTiN 120 0.15 1.5

5 AlTiN 160 0.20 0.5

6 AlTiN 200 0.10 1.0

7 TiAlSiN 120 0.20 1.0

8 TiAlSiN 160 0.10 1.5

9 TiAlSiN 200 0.15 0.5

Table 3 Hardness values of different coated tools in HV

Sl. no TiAlN AlTiN TiAlSiN

1 1779 2302 1820

2 1716 1646 1796

3 1763 1799 1855

Avg 1753 1916 1824
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Table 4 Machining data

Tool coating CS m/min F mm/rev CD mm SR Ra, lm SR Rz, lm MRRkg/s WR m3/sec

TiAlN 120 0.10 0.5 0.185 1.062 3.79 E-06 3.57E-12

TiAlN 160 0.15 1.0 0.617 3.230 1.09 E-05 6.98 E-12

TiAlN 200 0.20 1.5 0.455 2.483 2.19 E-05 5.43 E-12

AlTiN 120 0.15 1.5 0.341 1.687 1.10 E-05 2.15 E-11

AlTiN 160 0.20 0.5 0.622 2.933 1.71 E-05 3.97 E-11

AlTiN 200 0.10 1.0 0.648 2.901 9.30 E-06 5.39 E-12

TiAlSiN 120 0.20 1.0 0.567 2.611 2.49 E-05 9.27 E-12

TiAlSiN 160 0.10 1.5 0.377 2.040 8.70 E-06 2.13 E-11

TiAlSiN 200 0.15 0.5 0.497 2.361 2.19 E-05 2.5 E-11

Fig. 3 Machined work pieces

Table 5 Analysis of variance for Ra

Source DF Adj SS Adj MS F-Value p-Value

Coating 2 0.05435 0.027175 16.53 0.002

CS 2 0.01971 0.009855 5.83 0.025

F 2 0.02382 0.011910 7.17 0.014

CD 2 0.32779 0.163895 49.78 0.001

Total 8 0.43146

Table 6 Analysis of variance for Rz

Source DF Adj SS Adj MS F-Value p-Value

Coating 2 0.09686 0.04843 11.54 0.008

CS 2 1.55340 0.77670 7.92 0.032

F 2 0.69813 0.34907 5.39 0.046

CD 2 1.34726 0.67363 2.48 0.082

Total 8 3.69566

Table 7 Analysis of Variance for WR

Source DF Adj SS Adj MS F-Value p-value

Coating 2 0.00034 0.00017 1.28 0.045

CS 2 0.00056 0.00028 1.99 0.034

F 2 0.00030 0.00015 1.18 0.044

CD 2 0.00013 0.00002 2.87 0.063

Total 8 0.00133

Table 8 Analysis of variance for MRR

Source DF Adj SS Adj MS F-Value p-value

Coating 2 0.27432 0.137108 34.21 0.028

CS 2 0.18440 0.092700 23.13 0.041

F 2 1.06843 0.533715 133.15 0.007

CD 2 0.00812 0.004008 1.89 0.053

Total 8 1.53507
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Table 9 Grey analysis results

Sl. no Ra,

grey coefficient e
‘
i (k)

Rz,

grey coefficient e
‘
i (k)

MRR,

grey coefficient

e
‘
i (k)

WR,

grey coefficient e
‘
i (k)

Grey relational grade e
‘

(xo, xi)

Grey rank

1 1.000 1.000 0.333 1.000 0.833 1

2 0.349 0.333 0.413 0.841 0.484 7

3 0.462 0.433 1.000 0.907 0.700 2

4 0.597 0.634 0.490 0.501 0.556 3

5 0.346 0.367 0.503 0.333 0.387 9

6 0.333 0.371 0.412 0.909 0.506 6

7 0.378 0.412 0.470 0.760 0.505 5

8 0.547 0.526 0.437 0.505 0.504 4

9 0.426 0.455 0.477 0.457 0.454 8

Table 10 Fuzzy analysis results

CS F CD Coating Grey analysis output Fuzzy logic analysis grade

Low Low Low Low Very very high 0.946

Medium Medium Medium Low Small 0.499

High High High Low Small 0.725

Low Medium High Medium Small 0.571

Medium High Low Medium Very very small 0.410

High Low Medium Medium Small 0.529

Low High Medium High Very small 0.523

Medium Low High High Small 0.519

High Medium Low High Very small 0.469

Fig. 4 Fuzzy logic designer
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and GFRG were observed for experiment 1 based on L9

orthogonal array. Hence, the experiment 1 was the final

optimized setting. The GFRG has higher grade than GRA.

It was improved by 2.4% compared with GRA.

After obtaining GFRG, the Taguchi method was used

for optimizing the results of GFRG. GFRG was considered

as output for 9 experiments. The optimized setting was

found to be Coating: TiAlN, CS: 120 m/min, F: 0.10 mm/

rev and CD: 1.5 mm for achieving higher GFRG as

depicted in Fig. 7. To validate the results of this opti-

mization technique, an experiment was performed with an

Fig. 5 Fuzzy logic designer rule viewer

Fig. 6 Comparison of GRA and GFRG
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optimized combination (A2B1C1D3) and the outputs were

measured and presented as shown in Table 11.

After machining, the tool inserts were examined through

microscope with magnification 100 X. The WR was

observed as shown in below Fig. 8 a–i.

During machining, the chip formations were observed.

The chip formation of various experiments is shown in

below Fig. 9 a–i. In general, Golden colour chips denotes

less WR, whereas blue burnt denotes more WR. The cre-

ation of the chip, which has a substantial effect on tool life,

has been largely affected by CS, CD and F. It can be

ascribed to changes in the material inertia among shear

planes during machining. By increasing CS, the cutting

force rises, and therefore the bending moment of the chip

increases. This chip might damage the tool further by

generating heat. The chip thickness has decreased for each

feed with decreasing CS. Though, the average chip thick-

ness similarly dropped with reduction of F. Hence, as the

CS, the F considerably impacts chip thickness.

Fig. 7 Optimized setting for

GFRG

Table 11 Confirmation experiment

Responses Optimal parameters

Predicted value

from GFRG

Optimized

experimental value

Difference in

values

A1B1C1D1 A2B1C1D3

Ra 0.185 0.172 0.013

Rz 1.062 1.023 0.039

MRR 3.79 E-6 1.10 E-5 0.000721

WR 3.57 E-12 9.87 E-12 6.3 E-12
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Fig. 8 a–i Microscopic images of tool for experiments 1–9
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Conclusions

TiAlN, AlTiN, TiAlSiN coated inserts were effectively

deposited on the outer surface of cutting tools. Experi-

mentation was planned based on L9 orthogonal array. CS,

F, CD and coating material were taken as the operating

parameters. All the machining tests were performed based

on run order and the output responses such as Ra, Rz, WR

and MRR were measured. These output responses have

been optimized simultaneously through grey fuzzy

optimization technique. Initially, the several responses

were normalized and converted into single grade through

GRA. Later, these grades were fuzzied using fuzzy logic

tool box. From the results of GRA and GFRG, experiment

number 1 was found to be the optimized setting (120 m/

min CS, 0.1 mm/rev F, 0.5 mm CD, and coating: TiAlN).

GFRG is then optimized through Taguchi experiment and

it was found that Coating: TiAlN, CS: 120 m/min, F:

0.10 mm/rev and CD: 1.5 mm were the optimized setting

for turning AISI 420 martensitic stainless steel.

Fig. 9 a–i Images of cutting chips for experiments 1–9
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