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Abstract Lightweight material such as aluminum-based

metal matrix composites (MMC) is extensively used in

automobile, aerospace, and some other precise engineering

applications. For such material, the processing is not sim-

ple due to the presence of some other material in the alu-

minum. To overcome this, wire electrical discharge

machining (WEDM) is projected for cutting of aluminum–

graphite (10%) metal matrix composite with variation in

process parameters. In present work, the technique for

order of preference by similarity to ideal solution (TOP-

SIS) and an adaptive neuro-fuzzy inference system

(ANFIS) is employed to assess the WEDM of AlGrCp10

MMC. Taguchi’s L27 orthogonal array was adopted for the

experimentation. The influence of process variables, pulse

on time (PON), pulse off time (POFF), the feed rate of wire

(WFR), and the tension in the wire (WT), is considered for

overall performance measure. The overall performance is

measured in terms of the responses such as material

removal rate (MRR), overcut (OVT), and surface rough-

ness (Ra). Analysis of variance, i.e., ANOVA, is performed

to find out the most influencing process parameters. TOP-

SIS-ANFIS predicted results are tested for the confirmation

tests which show an enhancement of overall closeness

coefficient increases from 0.656793 to 0.772138. The

optimum setting obtained for the overall performance is

pulse on time = 112 ls pulse off time = 56 ls, wire feed

rate = 12 m/min, and wire tension of 1.2 kg.

Keywords Al/GrCp10 MMC � ANFIS �
Multi-response optimization � TOPSIS � WEDM

Introduction

Nowadays, most of the metal cutting industries use

advanced machining processes for improving product

quality and the performance of an enterprise. Along with

advanced and latest precise machining processes, alu-

minum-based metal matrix composite is also drastically

increased in space, defense, and automobile industries.

Hence, the effort has been made to focus on measuring the

WEDM process’s performance, which will help find the

ease of machining aluminum with 10% graphite (by

weight) MMC. In WEDM, the material is cut with a wire

that follows a definite pathway to form the intricate and

complicated product. Worldwide, the research will find out

the new composites and their ease of machine process

parameters. The impact of various WEDM process

parameters during the machining of Nitinol alloy has been

performed using RSM, and multi-response optimization
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using desirability function has been effectively performed

(Chakala et al. 2018) [1]. Chia-Chi Sun used TOPSIS for

the optimization of the multiple process responses [2]. The

fuzzy analytic hierarchy process is coupled with the

TOPSIS technique used for analyzing the machining per-

formance. The model developed is based on an ambiguous

environment with a triangular fuzzy number. Goswami

et al. have used the Taguchi approach coupled with the

utility concept to optimize the WEDM process parameters

of Nimonic-80 materials [3]. Huu-Phan et al. analyzed the

impact of titanium powder mixed into the dielectric fluid in

EDM of copper and graphite-based materials using the

TOPSIS method [4]. Jenarthanani et al. investigated two

responses, i.e., MRR and Ra. The investigation was done to

know the optimum performance during WEDM of Inconel

600 material [5]. Kavimani et al. (2019) have examined the

process and used grey relational analysis to improve the

process’s performance [6]. Majumdar et al. have employed

multi-response techniques like general regression and ANN

to get the optimized value of surface roughness and micro-

hardness [7].

Numbers of experiments were conducted by considering

PON, POFF, and peak current as process parameters. A

comparative analysis between process parameters using

molybdenum brass and zinc–coated wires in WEDM has

been performed effectively to optimize WEDM process

parameters (Mevada et al. 2013) [8]. Taguchi approach was

used for the analysis and investigation. The optimization of

process parameters for the EDM process using low-fre-

quency vibrations for the response parameters such as

surface roughness and material removal rate has been

investigated. (Nguyen et al. 2020) [9]. Various soft com-

puting techniques such as an artificial neural network

(ANN), ANFIS, fuzzy grey approach during the analysis

(Phate et al. 2018–2020) [10–12]. Vikas et al. have ana-

lyzed the food quality using a soft computer vision system.

Computer vision systems such as ANFIS and ANN were

effectively used for the analysis [13, 14]. Rao et al. (2016)

investigated the influence of various parameters in WEDM

of aluminum alloy on the residual stresses generated on the

surface [15]. A comparative analysis of metaheuristic

optimization algorithms for optimal active control of

structures using soft computing techniques was performed

(Katebi et al. 2019 and Sefghi et al. 2017) [16]. Vinod

Kumar et al. (2015) worked on WEDM of Monel-400, i.e.,

nickel copper-base alloy [17]. ANOVA was performed for

investigation. The experimental results showed that current

(103 A), pulse on time (113 micro sec), pulse off time (37

micro sec), and the voltage (50 V) were the optimum

combination. Kolli et al. (2015) used the Taguchi method

to study the impact of dielectric fluid on WEDM of tita-

nium alloy [18]. The surface modifications of the die steel

using WEDM and the analysis of WEDM process

parameters such as wire speed and the servo speed have

been effectively examined over the recast layer formation

(Mussada et al. 2019) [19]. The authors reviewed the

machining of Al/SiC MMC. AHP-TOPSIS-based method

has been employed for multi-response optimization of the

EDM process during the machining of cobalt-bonded

tungsten carbide composite. The method was compared

with the other multi-response optimization. (Nadda et al.

2018) [20]. Fuzzy logic coupled with backpropagation

neural networks was adopted for the multi-response opti-

mization of the WEDM process. This was used to check the

relative importance and evaluate the performance of

WEDM of aeronautics superalloy Naina et al. [21]. Para-

metric analysis is adopted to know the optimal parameters

which minimize residual stresses on the components. A

method for multi-response optimization of EDM process

parameters for Al/SiC20% SiC MMC using TOPSIS has

been widely employed to know the best set of process

parameters (Satpathy et al. 2017) [22].WEDM process

performance is measured in MRR, Ra, and recast layer

thickness (RLT) effectiveness. Tamasang et al. (2015) used

an advanced technique, i.e., ANN integrated with the

response surface method (RSM), to improve performance

[23]. M. Phate et al. have effectively examined the EDM

process for the fabricated new Al-based alloy using soft

computing technique such as ANN and other modeling

techniques such as dimensional analysis and response

surface method (RSM) [24, 25].

Graphite is used due to its high thermal and electric

conductivity. It also has wide applications in engineering

such as nuclear, chemical, electrical, and mechanical

industries. From the literature review, it has been observed

that no researcher has tried the machining of aluminum

with more than 5% graphite. Aluminum with 10% graphite

MMCs is fabricated in the present work, and their ease of

machining is examined for this novel combination. The

novelty of the MMC is observed in terms of the graphite

percentage. From the literature review, it is cleared that the

addition of graphite beyond 8% would cause a decrease in

the fluidity of the composite. In the presented work, 10%

graphite is used for the preparation of the composite.

The experimental findings will help the industries to use

graphite with 10% in aluminum as a healthy alternative for

the various engineering applications in automobile, aero-

space, defense research, and manufacturing industries.

The present work aims to fabricate the MMC with a

novel combination of aluminum with 10% graphite and

cFig. 1 Methodology for WEDM analysis using ANFIS-based

TOPSIS technique
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their ease of machining to effectively be used for the var-

ious engineering applications. The present work aims to

find out the best set of process parameters for multi-re-

sponse optimization. From the literature review, it is

observed that higher percentage of graphite would cause

clustering issue. Also, it leads to increase in the viscosity in

the melts. Hence, preparation and machining of the com-

posite is really tough work. The basic objective of the work

is to prepare the MMC and then to provide the ease of

machining. This will help the manufacturing industry

effectively machine the novel composition to minimize the

surface roughness to 3.639 l, overcut at 0.3652 l, and

maximum material removal rate at 21.234 mm3/min. PON

(112 ls), POFF (54 ls), wire feed rate at 6 m/min, and the

wire tension at 0.8 kg, respectively, are observed.

Material and Method

Al/GrCp10 MMC Preparation

The experiments are conducted using EZEECUT NXG—

wire-cut EDM with 320 9 400 mm axis travel. Brass wire

(/ 0.25 mm) and workpiece of Al/GrCp10 (dimensions

200 9 75 9 10 mm) are used for investigation. A flow of

work in the presented research is as shown in Fig. 1. The

graphite has very high intensity, higher temperature resis-

tance, high thermal shock resistance property, very low

density, and admirable commitment against corrosion and

radiation performance. The sand casting process prepares

the Al/GrCp10 MMC. The chemical composition of the Al/

GrCp10 MMC is tabulated in Table 1.

Plan for Experimentation

Taguchi’s L27 OA using experiments (DOE) is adopted for

the experimentation considering four governing parameters

tabulated in Table 2. Table 2 demonstrates the different

levels of machining parameters and observed responses.

Figure 1 shows the flow of work or methodology adopted

during the analysis. The observations during the experi-

mentation are tabulated in Table 3.

TOPSIS Methodology This is the industrial most pre-

ferred method use in industries for multi-response opti-

mization. This method is working on the principle of

shortest route method. Alternatives or choices should have

the shortest distance from the ideal positive solution and

the longest distance from the perfect negative solution. The

basic methodology and TOPSIS are as publicized in Fig. 1.

The various steps involved in the TOPSIS are:

Step 1: This is the first step in TOPSIS. The aim of this

is to evaluate the 27 runs known as alternatives, and the

three attributes known as responses are MRR, overcut, and

surface roughness. MRR is considered as a beneficial sort

of feature (maximize), while Ra and OVT are considered

as non-beneficial (minimize). The general 27 9 3 decision

matrix is given by Eq. (1).

D ¼

Y11 Y12 Y13 . . .: Y1n

Y21 Y22 Y23 � � � Y2n

Y31 Y32
..
. . .

. ..
.

. . . . . .: . . .:: � � � . . .:
Ym1 Ym2 Ym3 . . . Ymn

2
666664

3
777775

ð1Þ

where ‘n’ is the number of the attributes, responses and ‘m’

is the number of alternatives.

Step 2: After constructing a 27 9 3 decision matrix, the

responses are normalized the decision matrix between the

range 0 – 1. The decision matrix is normalized by using the

following Eq. (2):

Table 1 Chemical contents of AlGr/Cp10 MMC

Component Weight (%) Component Weight (%)

Al 92.2–94.7 Mn 0.3–0.9

Cr Max 0.1 Si Max 0.2

Cu 3.8–4.9 Ti Max 0.15

Fe Max 0.3 Zn Max 0.25

Mg 1.2–1.8 Others Max 0.15

Table 2 List of parameters and their test points

S. no Parameter Symbol (Unit) Test points(levels)

Lower(1) Middle (2) Higher (3)

1 Pulse on time PON (ls) 108 110 112

2 Pulse off time POFF (ls) 52 54 56

3 Feed rate of wire WFR (mm/min) 6 9 12

4 Tension in wire WT (kg) 0.8 1 1.2
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Rij ¼
XijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 X

2
ij

q ð2Þ

where i = 1,2,3,……. m and j = 1,2,3…… n. Xij represents

the experimental value of the ith response to jth experi-

mental run and Rij represents the normalized value.

Step 3: After constructing the normalized matrix, the

next step is to assign weightage to all responses or attri-

butes as per the researcher’s priority. In the given case,

analytic hierarchy process (AHP) is adopted for deciding

the criterion weightage. The basic calculations are given

below (Tables 4 and 5). The 50% weightage assign to the

surface roughness, 30% weightage assign to the MRR, and

the remaining 20% weightage assign to overcut were

observed.

Let

1. Equal importance, 2. moderate importance, and 3.

strongly important

According to AHP

Step 4: After confirming the weightage, the next step is

to form the weighted normalized decision matrix. It is

obtained by multiplying the normalized decision matrix by

its associated weights. The weighted normalized decision

matrix was constructed as per Eq. (3).

Eij ¼ WTi�Rij ð3Þ

Step 5: After the construction of the weighted

normalized matrix, the step is to find out the positive

ideal solution (PIS) and the negative ideal solution (NIS)

by using Eq. (4).

EþðPISÞ ¼ MaximumðEþ
1 ;E

þ
2 ;E

þ
3 ; . . .;E

þ
n Þ;

E�(NISÞ ¼ MaximumðE�
1 ;E

�
2 ;E

�
3 ; . . .;E

�
n Þ

ð4Þ

Step 6: After deciding the ideal positive and ideal

negative solution for each response, the next step is to find

out the separation measure of each alternative from the

ideal positive and negative solution. The separation

measure is calculated by using Eq. (5).

Table 3 Plan for experimentation

Run PON POFF WFR WT MRR (mm3/s) Overcut (mm) Ra (micro mm)

1 108 52 6 0.8 12.696 0.3512 3.735

2 108 52 6 0.8 13.524 0.3865 3.523

3 108 52 6 0.8 13.254 0.3685 3.354

4 108 54 9 1 10.365 0.3045 2.935

5 108 54 9 1 9.635 0.3125 3.215

6 108 54 9 1 10.254 0.3102 3.365

7 108 56 12 1.2 14.325 0.3025 3.125

8 108 56 12 1.2 13.654 0.3125 3.254

9 108 56 12 1.2 12.365 0.3025 3.056

10 110 52 9 1.2 16.325 0.3201 3.524

11 110 52 9 1.2 15.868 0.3185 3.425

12 110 52 9 1.2 16.023 0.3251 3.325

13 110 54 12 0.8 12.854 0.2985 3.102

14 110 54 12 0.8 13.021 0.2925 3.012

15 110 54 12 0.8 12.854 0.3021 3.215

16 110 56 6 1 16.356 0.3562 3.452

17 110 56 6 1 15.985 0.3485 3.356

18 110 56 6 1 15.421 0.3525 3.452

19 112 52 12 1 19.524 0.3254 3.568

20 112 52 12 1 20.524 0.3365 3.689

21 112 52 12 1 19.568 0.3452 3.758

22 112 54 6 1.2 21.521 0.3651 3.875

23 112 54 6 1.2 20.652 0.3568 3.758

24 112 54 6 1.2 21.324 0.3652 3.689

25 112 56 9 0.8 17.635 0.2985 3.564

26 112 56 9 0.8 18.325 0.3025 3.658

27 112 56 9 0.8 18.458 0.3125 3.758
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Sþi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm
j¼1

Eij � Eþ
j

� �2

vuut

S�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm
j¼1

Eij � E�
j

� �2

vuut ð5Þ

Step 7: The last step is the TOPSIS algorithm. From

each calculated separation measure from ideal positive and

ideal negative solution, find out the closeness coefficient of

each alternatives using Eq. (6).

CCi ¼
S�i

Sþi þ S�i
ð6Þ

The first rank is assigned to the alternative which has the

highest value of closeness coefficient.

Results and Discussion

Optimization Using TOPSIS

The experimental data collected in the previous as per the

selected plan optimize with the help of the ANFIS-based

TOPSIS approach. There are three responses, i.e., MRR,

overcut, and Ra. These responses are normalized by using

Eq. (1), and tabulated in Table 7. Different priorities are

given to all responses. The weightage for the response

MRR, overcut, and the Ra is 0.3:0.2:0.5. The relative

weighted normalized matrix is constructed using selected

weightage. The weights are multiplied to get the normal-

ized weighted matrix using (2) as tabulated in Table 7. The

ideal positive and negative solution for all responses is as

published in Table 7.

The separation count of each alternative to the ideal

positive and negative solutions calculates using Eq. (4),

shown in Tables 4, 5, and 7. Finally, the relative closeness

coefficient (CCi) for each WEDM process alternative cal-

culates using (5). S/N ratio of closeness coefficient values is

as shown in Table 5. Table 5 shows that the impact of pulse

on time (PON) is the most influencing. The optimal levels

of all parameters, as in Fig. 2. The best sets of input

parameters for WEDM are at level 3 to maximize the MRR

and minimize the Ra and the overcut. ANOVA and the

impact of process parameters tabulate in Table 16. It

observes that the influence of pulse on-time is highest as

compared to the others. Figure 3 shows that the residuals

lie very close to a straight line, which implies the normal

distribution of error. Figure 4 shows the contribution of

each parameter.

ANFIS-Based TOPSIS Method

ANFIS is a mixed projecting model consisting of a neural

network and fuzzy logic to create a relationship between

various parameters. Combining fuzzy logic and neural

network gives an augment to the implementation of the

hybrid approach. The neural network can identify the

pattern and agree to match the changing surrounding. On

the other side, the fuzzy logic system uses human knowl-

edge and performs effective decision making [14]. In the

Table 4 Comparative weightage assign to the various criterion

Ra MRR OVT

Ra 1 2 3

MRR 0.5 1 2

OVT 0.33333333 0.5 1

Sum 1.83333333 3.5 6

Table 5 Calculation for criterion weightage using AHP

Ra MRR OVT Criterion weightage Final weightage

Ra 0.54555374 0.57142857 0.5 0.538994103 0.5

MRR 0.27277687 0.28571429 0.33333333 0.297274829 0.3

OVT 0.18166939 0.14285714 0.16666667 0.163731068 0.2

Table 6 Ideal positive & ideal negative solution for all the response variables

S. no Response Objectives Ideal Positive Ideal negative

1 MRR Beneficial (maximization) 0.07759 0.03474

2 OVT Non-beneficial (minimization) 0.03415 0.04512

3 Ra Non-beneficial (minimization) 0.08199 0.1082
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present work, the fuzzy inference system has four inputs

and one output. ANFIS structure consists of various layers,

and each layer consists of several nodes.

The rule sets used for the analysis are as shown in

Fig. 2. The surface viewer is used to know the influence of

various parameters on performance. The surface viewer

plot is as shown in Fig. 3.

Rules: Collection of If–then statements (Fig. 5).

In the present case, let us denote X1,X2 and X3 are the

response which is considered as an input to the ANFIS

network and one output, i.e., ANFIS TOPSIS CCI (Y). The

following set of rules is used for the analysis:

• Rule 1: If X1 is Low, X2 is Low, X3 is Low and X4 is

Low, then Y is very Low

• Rule 2: If X1 is Low, X2 is Low, X3 is Low and X4 is

Medium, then Y is Low

• Rule 3: If X1 is Low, X2 is Low, X3 is Low and X4 is

Low, then Y is medium

• Rule 4: If X1 is Low, X2 is Low, X3 is medium and X4 is

Low, then Y is high

• …………………………………………………………
………………………………

• ………………………………………………………
………………………………..

• …………………………………………………………
…………………………….

• …………………………………………………………
………………………………

• Rule 80: If X1 is high, X2 is high, X3 is high, and X4 is

medium, then Y is high

• Rule 81: If X1 is high, X2 is high, X3 is high, and X4 is

Lo high w, then Y is very high

In ANFIS, an artificial neural network (ANN) takes the

fuzzy rules from the input and the fuzzy membership

Table 7 TOPSIS calculation matrix

Run Normalized data Weighted normalized matrix

MRR OVT Ra MRR (0.3) OVT (0.2) Ra (0.5) Si ? Si- CCi S/N CCi

1 0.1525 0.205 0.208 0.0457 0.0410 0.1043 0.039 0.0124 0.2390 -12.43

2 0.1625 0.225 0.196 0.0487 0.0451 0.0984 0.034 0.0171 0.3287 -9.663

3 0.1593 0.215 0.187 0.0477 0.0430 0.0936 0.033 0.0196 0.3715 -8.598

4 0.1245 0.177 0.163 0.0373 0.0355 0.0819 0.040 0.0280 0.4109 -7.725

5 0.1158 0.182 0.179 0.0347 0.0364 0.0898 0.043 0.0203 0.3181 -9.946

6 0.1232 0.181 0.188 0.0369 0.0362 0.0940 0.042 0.0169 0.2854 -10.88

7 0.1721 0.176 0.174 0.0516 0.0353 0.0873 0.026 0.0286 0.5193 -5.690

8 0.1641 0.182 0.181 0.0492 0.0364 0.0909 0.029 0.0241 0.4478 -6.978

9 0.1486 0.176 0.170 0.0445 0.0353 0.0853 0.033 0.0267 0.4462 -7.007

10 0.1962 0.186 0.196 0.0588 0.0373 0.0984 0.025 0.0271 0.5190 -5.696

11 0.1907 0.185 0.191 0.0572 0.0371 0.0956 0.024 0.0269 0.5210 -5.662

12 0.1925 0.189 0.185 0.0577 0.0379 0.0928 0.022 0.0286 0.5546 -5.119

13 0.1544 0.174 0.173 0.0463 0.0348 0.0866 0.031 0.0265 0.4567 -6.805

14 0.1565 0.170 0.168 0.0469 0.0341 0.0841 0.030 0.0291 0.4869 -6.249

15 0.1544 0.176 0.179 0.0463 0.0352 0.0898 0.032 0.0239 0.4257 -7.415

16 0.1965 0.207 0.192 0.0589 0.0415 0.0964 0.024 0.0271 0.5235 -5.620

17 0.1921 0.203 0.187 0.0576 0.0406 0.0937 0.024 0.0274 0.5326 -5.471

18 0.1853 0.205 0.192 0.0556 0.0411 0.0964 0.027 0.0243 0.4713 -6.533

19 0.2346 0.189 0.199 0.0703 0.0379 0.0996 0.019 0.0373 0.6567 -3.651

20 0.2466 0.196 0.206 0.0740 0.0392 0.1030 0.022 0.0400 0.6450 -3.807

21 0.2351 0.201 0.209 0.0705 0.0403 0.1049 0.024 0.0362 0.5933 -4.533

22 0.2586 0.213 0.216 0.0775 0.0426 0.1082 0.027 0.0429 0.6083 -4.317

23 0.2482 0.208 0.209 0.0744 0.0416 0.1049 0.024 0.040 0.6208 -4.140

24 0.2562 0.213 0.206 0.0768 0.0426 0.1030 0.022 0.0425 0.6513 -3.723

25 0.2119 0.174 0.199 0.0635 0.0348 0.0995 0.022 0.0318 0.5855 -4.648

26 0.2202 0.176 0.204 0.0660 0.0353 0.1021 0.023 0.0333 0.5886 -4.602

27 0.2218 0.182 0.209 0.0665 0.0364 0.1049 0.025 0.033 0.5635 -4.982
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Fig. 2 ANFIS rule viewer

Fig. 3 (a–f) ANFIS surface viewer to know the impact of various process parameters on ‘CCi’
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a

b

Fig. 4 Comparison between

measured values and predicted

ANFIS CCI values for

a Training and b Testing Data

Fig. 5 Main effect plot for S/N

ratios for CCi
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function use during the analysis process. There are 551

nodes, 256 linear parameters, 32 nonlinear parameters,

total parameters 288, training data pairs 24, and 256 fuzzy

rules set was used during the ANFIS network training.

The fuzzy membership function is a technique to ana-

lyze real-life problems by experience than knowledge. This

is based on real experience; hence, it gives a very realistic

solution to the problem under investigation. The fuzzy

logic that can be used to define represents the fuzziness in

the issue. This fuzziness is mostly characterized by the

fuzzy membership function (MF). These are the represen-

tation of real nature in fuzzy logic. These functions are

employed in fuzzification and defuzzification. In the pre-

sent work, the Gaussian membership function is employed

in the ANFIS. FLS is work in the three segments such as:

• Fuzzification: Where the precise, realistic inputs con-

vert into fuzzy inputs. It converts crisp input into

linguistic inputs. This is achieved by assuming all the

crisps data as uncertain and nondeterministic. These

uncertainties might have due to certain vagueness and

imprecision in the data. These processes translate the

accurate, crisp input into linguistic variables that are

represented by the fuzzy sets.

Table 10 Results of confirmation test for CCi

Terms Initial Process Parameters

(PON-POFF-WFR-WT)

Optimum Process Parameters

(PON-POFF-WFR-WT)

Levels 3–1 to 3–2 3–2 to 1–3

MRR 19.524 20.637

OVT 0.3254 0.3126

Ra 3.568 3.365

CCi 0.6567 0.7721

Result: Closeness Coefficient (CCi) is improved by 0.115345

(i.e.,17.5574%)

Table 8 S/N ratio for all process parameters

S. no Parameter Mean S/N ratio Delta Rank

Level 1 Level 2 Level 3

1 PON -8.952 -6.084 -4.277 4.675 1

2 POFF -6.686 -6.876 -5.750 1.127 3

3 WFR -6.837 -6.653 -5.822 1.015 4

4 WT -7.380 -6.542 -5.390 1.991 2

Total S/N ratio = -4.27755625

Table 9 ANOVA table for CCi

S.no Source DOF Statistical terms

Squ. SS Adj. SS Squ. MS % Contribution

1 PON 2 0.2560 0.2560 0.128033 74.676364

2 POFF 2 0.0096 0.0096 0.004832 2.8185977

3 WFR 2 0.0081 0.0081 0.004058 2.366863

4 WT 2 0.0394 0.0394 0.019728 11.506528

5 Error 18 0.0295 0.0295 0.001644 8.6319374

6 Total 26 0.2560 0.2560 0.128033 100.00%

S = 0.0405510R -Sq = 91.37% R-Sq(adj) = 87.53%

Fig. 6 Percentage contribution of each parameter in CCi analysis
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• Inference Engine: This is also known as a fuzzy rule

base system. It contains a rule base consists of ‘if–then’

rules set. It also includes a database consists of various

membership functions used in fuzzy rule. So the part of

these is to convert given inputs into the targeted output.

This process involves membership functions, set of if–

then rules, and various fuzzy logic operators.

• Defuzzification: It converts fuzzy outputs into crisp

numerical production. It is a process of mapping which

creates a non-fuzzy control action. It can convert a

fuzzy set into a crisp background. The centroid method

mostly use in this process.

The ANOVA table for the overall response measured in

the form of closeness coefficient (CCi) given in.

Table 9 Form the ANOVA results; observes that ‘PON’

and ‘WT’ have a considerable impact on the overall

response compared to the other terms. Similarly, the signal/

noise ratio is calculated for the general performance

parameter (CCi). According to their influence on the

overall performance, the process parameter’s rank is tab-

ulated (Table 8). Table 8 shows that the parameter, such as

‘PON’ and the ‘WT,’ significantly influences parameters

compared to the other two parameters. The ranks are given

as per their influence on overall performance.

The surface plots showing the impact of various process

input parameters on the overall response (CCi) (consider-

ing two parameters at a time and hold other parameters at

their mean value) are as shown in Fig. (3a–f). Figure 3a–f

observes that with an increase in the value of ‘PON’ and

‘WT,’ there is an improvement in the overall performance

(CCi). This may be due to the change in spark energy

which causes the rise in temperature and results in the

melting of materials. Figure 4a and b shows the compar-

ison between actual calculated ‘CCi’ and the ANFIS-based

‘CCi. The main effect plot showing the influence and

contribution to the overall performance’s overall perfor-

mance is shown in Figs. 5 and 6.

After identifying the best set of input parameters of

WEDM, the final step is to check performance improve-

ment. Table 10 demonstrates a comparison of initial CCi

with optimal CCi. The enhancement of the ‘CCi’ value of

the initial level to the optimal is 0.115345. From the

experimental data, following observation has been made

(Table 11):

When PON increases from 108 to 110 ls, OVT reduces

by 1.25038%, MRR, Ra, and CCi increases by 22.40392,

1.0045, and 33.37787%, respectively. Similarly, when the

PON increases from 110 to 112 ls, OVT increases by

3.211859%, MRR, Ra, and CCi increase by 31.79693,

11.57324, and 22.74093%, respectively. When POFF

increases from 52 to 54 ls, OVT reduces by 5.52793%,

MRR, Ra, and CCi reduces by 10.0794%, 5.44429&, and

3.71876%, respectively. Similarly, POFF increases from 54

to 56 ls, OVT increases by 0.60015%, MRR, Ra, and CCi

increase by 7.607696, 1.670644, and 9.729844%,

respectively.

When WFR increases from 6 to 9 m/min, OVT reduces

by 13.732%, MRR, Ra reduce by 11.8209 and 4.411711%,

and there is no change in the closeness coefficient (CCi).

Similarly, when WFR increases from 9 to 12 m/min, Ra

Fig. 7 Probability plot for closeness coefficient (CCi)

Table 11 Experimental findings

S. no Input parameters Initial value Final value Response

MRR Ra OVT CCi

1 PON 108 110 22.40392: 1.0045: 1.25038; 33.37787:

110 112 31.7969: 11.57324: 3.21185: 22.74093:

2 POFF 52 54 10.0794; 5.4442; 5.52793; 3.71876;

54 56 7.60769: 1.67064; 0.60015: 9.72984:

3 WFR 6 9 11.8209; 4.4117; 13.7320; No change

9 12 4.33310: 3.21732; 0.481386: 7.6190:

4 WT 0.8 1 3.73134: 0.43655; 2.719407: 9.65253:

1 1.2 10.5297: 0.78924; 0.78299; 10.1825:
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reduces by 3.21732%, and MRR, OVT, and CCi increase

by 4.333108, 0.481386, and 7.619048%, respectively.

When WT increases from 0.8 to 1 kg, Ra reduces by

0.43655%, MRR, OVT, and the CCi increase by 3.731343,

2.719407, and 9.652530%, respectively. Similarly, When

WT increases from 1 to 1.2 kg, OVT reduces by 0.78229%,

MRR, Ra, and CCi increase by 10.52976, 0.789243, and

10.18256, respectively. The Al/Gr/CP10 MMC is used in

various automotive valves to control low-pressure pneu-

matic bladders in the car seat, aerospace, defense research,

and manufacturing industries. This work presents the

effective use of ANFIS-based TOPSIS method to find out

the optimistic process parameters, which will provide the

ease of machining.

Conclusions

In this study, an attempt was made to investigate the impact

of various EDM process parameters on the Al/GrCp10

MMC using ANFIS-based TOPSIS method. The following

conclusions are made from the above study.

1. ANFIS-based TOPSIS method is very effectively used

for multi-response optimization and for improving the

process parameters’ overall performance.

2. ANOVA results indicate the effect of process param-

eters like ‘PON’ and the ‘WT’ found to be more

significant compared to the other two parameters,

‘POFF’ and ‘WFR,’ on the overall performance

parameter (CCi).

The analysis observed that the ‘PON’ and the ‘WT’

significantly affect CCi. The most important parameters are

‘PON’ with a 74.68% contribution, followed by the wire

tension ‘WT’ with a contribution of 8.63%. The parameters

such as ‘POFF’ and.

1. ‘WFR’ shows the most negligible impact on the

overall performance.

2. The use of ANFIS-based TOPSIS method enhance-

ment of closeness coefficient (CCi) from initial level

combination 3–1 to 3–1 to the optimal 3–2 to 1–3 is

0.115345. It provided the optimal values for input

parameters PON (112 ls)-POFF(54 ls)-WFR (6 m/

min)- WT ( 1.2 kg), respectively, that enhance the

overall performance of the WEDM process.

3. The novelty of the MMC is observed in terms of the

graphite percentage. The addition of graphite beyond

8% would cause a decrease in the fluidity of the

composite. In the presented work, 10% graphite is used

for the preparation of the composite. Experimental

findings provide the ease of machining, which will

help worldwide researchers to optimize the use of

graphite in various industrial applications.
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