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Abstract In the recent years, new techniques such as;

Artificial Neural Network (ANN) were employed for de-

veloping of the predictive models to estimate the needed

parameters. Soft computing techniques are now being used

as alternate statistical tool. In this study, ANN models were

developed to predict rock properties of sedimentary rock,

by using penetration and sound level produced during

percussive drilling. The data generated in the laboratory

investigation was utilized for the development of ANN

models for predicting rock properties like, uniaxial com-

pressive strength, abrasivity, tensile strength, and Schmidt

rebound number using air pressure, thrust, bit diameter,

penetration rate and sound level. Further, ANN models

were also developed for predicting penetration rate and

sound level using air pressure, thrust, bit diameter and rock

properties as input parameters. The constructed models

were checked using various prediction performance indi-

ces. ANN models were more acceptable for predicting rock

properties.

Keywords Sound level � Penetration rate �
Drill bit types and diameter �Uniaxial compressive strength �
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Introduction

Neural network is a powerful technique to solve many real-

world problems. Neural networks may be used as a direct

substitute for auto correlation, linear regression, trigono-

metric, multivariable regression and other statistical ana-

lyses and techniques [1]. Neural networks, with their

remarkable ability to derive meaning from complicated or

imprecise data, can be used to extract patterns and detect

trends that are too complex to be noticed by either humans or

other computer techniques [2]. Rumelhart and McClelland

[3] reported that the main characteristics of ANN include

large-scale parallel distributed processing, continuous non-

linear dynamics, collective computation, high fault-toler-

ance, self-organization, self-learning, and real-time

treatment. The particular network can be defined using three

fundamental components: transfer function, network archi-

tecture and learning law [4]. It is essential to define these

components to solve the problem satisfactorily.

Artificial neural networks (ANNs), or shortly, neural

networks (NN) have been used for finding out the structure

and functionality of biological, nature of human brain.

Therefore, ANN is found to be more flexible and suitable

than othermodelingmethods [5]. ANN is based on the neural

architectures of the human brain [6], and is described as

group of simple processing units, known as neurons (nodes),

which are arranged in parallel layers that are connected, to

each other by weighted connections. By virtue of hidden

layers of neurons that lie between the input and output layers

of the network and the nonlinear activation functions that are

used to translate nodal input into output, ANN provides

linear and nonlinear modeling without the requirement of

preliminary information and assumption as to the relation-

ship between input and output variables. This provides ANN

an advantage over other statistical and conventional
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predictionmethods such as logistic regression and numerical

methods, in which nonlinear interactions among variables

must be modeled in explicit functional form [7]. ANN

trained with feed-forward back-propagation algorithm has

been studied extensively and applied successfully in various

areas, such as automotives [8], banking [9], electronics [10],

finance [11], industry [12], oil and gas [13], and robotics

[14]. Most of the ANNs contain three layers: input, output

and hidden layer. Generally, there are various types of ANN

techniques for example feed forward network, radial basis

network, generalized regression network and recurrent

neural network.

Multi Layer Perceptron (MLP) network models are the

popular network architectures used in most of the research

applications in medicine, engineering, mathematical mod-

eling, etc. In MLP, the weighted sum of the inputs and bias

term are passed to activation level through a transfer

function to produce the output and the units are arranged in

a layered feed-forward topology called Feed Forward

Neural Network [15].

In view of the above, it is felt that investigation using

percussive drilling machine which is widely used in the

mining and mineral industries in production operations can

help in estimating rock properties also. An attempt has

been made in this investigation to determine the rock

properties vis-à-vis sound level using a fabricated pneu-

matic drill set-up on the laboratory scale. Also, developing

various models for the prediction of UCS, abrasivity, ten-

sile strength (TS) and Schmidt rebound number (SRN) for

rocks were considered using penetration rate and sound

level produced during percussive drilling and prediction of

penetration rate and sound level for a given air pressure,

thrust and bit-rock combination. In this study, artificial

neural network models were also developed to predict the

rock properties of sedimentary rocks, by using penetration

rate and sound level produced during drilling and predic-

tion of penetration rate and sound level for a given air

pressure, thrust and bit-rock combination. The developed

models were checked using various prediction performance

indices and compared with the ANN.

Laboratory Investigation

In this investigation, different types of sedimentary rocks

(shale, dolomite, sandstone, limestone, and hematite), were

collected from different locations of India taking care of

variety of strength. During sample collection, each block

was inspected for macroscopic defects so that it provides

test specimens free of fractures and joints. Sound level

measurement on pneumatic drill set up was carried out for

five different rock samples. The size of the rock blocks was

approximately 30 9 20 9 20 cm.

Equipment/Instrumentation

Drilling Machine

A jackhammer drill is a compressed air operated machine.

The drill weighs 10–30 kg and is hand held. It can drill

holes with diameter varying from 25 to 40 mm. It can be

used to drill both vertical and horizontal holes up to 3 m

depth. Drilling with the pneumatic drill consists essentially

in the drill delivering blows against the bottom of the holes

and lifting the rock cuttings. In the laboratory, all the sound

level measurements were conducted on a commercially

used jackhammer drill machine (Atlas Copco, RH658L)

operated by compressed air with suitable arrangement

made to measure applied thrust and air pressure. The im-

portant specifications of the jackhammer drill used were:

• Weight of the jackhammer drill machine (28 kgs).

• Number of blows per minute—2200.

• Type of drill rod—Integral drill steel and Threaded

(R22) type with tungsten carbide drill bit.

• Recommended maximum air pressure—589.96 kPa.

• Bit geometry—Chisel and Cross.

.

Equivalent Sound Level Measuring Instrument

Sound pressure levels were measured with a CENTER

make Model 320, IEC 651 Type II sound level meter. The

instrument was equipped with a CENTER make wind-

screen for minimizing the sound effect produced from

wind, � inch electret condenser microphone, digital dis-

play, time weighting and level ranges. The microphone and

the pre-amplifier assembly were mounted directly on the

sound level meter. The sound level meter was calibrated

before taking up any measurement using an acoustic

calibrator available in the institute. For all measurements,

the sound level meter was kept hand-held. The instrument

was set to measure A- weighted sound levels in the range

of 30 dB (A) to 130 dB (A).

Methodology

Determination of Rock Properties

Compressive strength is one of the most important me-

chanical properties of rock material, used in blast hole

design. To determine the UCS of the rock samples, 54 mm

diameter NX size core specimens, having a length-to-di-

ameter ratio of 2.5:1 were prepared as suggested by ISRM

standards [16]. Each block was represented by at least three

core specimens. The oven dried and NX size core speci-

mens were tested by using a microcontroller compression
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testing machine. The average results of uniaxial compres-

sive strength (UCS) values of different rocks were arrived

from the set of three measurements.

The abrasivity of rock samples was also determined in

accordance with the International Society of Rock Me-

chanics (ISRM) suggested methods. For this purpose, Los

Angeles abrasion apparatus was used.

Abrasion resistance or Abrasivity�
¼ Loss in weight of the samples/original weight

of the samples i.e. 5000� 20gÞ 100 %

ð1Þ

Tensile strength (TS) of rock was obtained from

Brazilian test. To determine the TS of the rock samples,

54 mm diameter NX-size core specimens, having a length

less than 27 mm were prepared as suggested by ISRM

standards (Brown, 1981). The cylindrical surfaces were

made free of any irregularities across the thickness. End

faces were made flat to within 0.25 mm and parallel to

within 0.25�. The specimen was wrapped around its

periphery with one layer of masking tape and loaded into

the Brazilian tensile test apparatus across its diameter.

Load was applied continuously at a constant rate so that

failure occurred within 15–30 s. Three specimens of the

same sample were tested and the average results of

Brazilian TS of different rocks were obtained.

Collected different rock block samples of sedimenta-

ry rocks from different locations of India were used to

determine the Schmidt hardness. The rock samples having

an approximate dimension of 30 9 20 9 20 cm were

prepared, and the test surfaces of all specimens were

smoothened and polished. Schmidt hammer hardness test

were carried out in the laboratory according to the ISRM

suggested method. Schmidt hammer was held vertically

and five impacts were carried out at each point, and peak

rebound value was recorded. The test was repeated at least

two times on any rock type and average value was recorded

as rebound number. The hammer orientation was chosen in

the same direction of stress application in UCS tests.

Determination of A-weighted Equivalent Sound Level

The rock samples were kept on the base plate and clamped

properly with bolt and nut so that rock block does not move

while drilling. The drill rod attached to the chuck of the

drill machine and the bit tip is made to touch the rock block

(Fig. 1). Initially collaring was done before starting drilling

a hole in the rock. Air pressure was varied from 392, 441,

490, 539 and 588 kPa and for each air pressure, thrust is

varied from 100 to 1000 N with an increment of 100 N on

each rock sample. Noise measurements were carried out in

open space (outdoor location) to reduce the effect of re-

flecting noise. In this laboratory investigation, three

integral steel chisel bits with 30, 34, and 40 mm diameter

and 42, 43, and 62 cm length were used. These bits were

selected from among the available sizes.

For each air pressure and thrust combination holes were

drilled in each rock and sound level measurements were

carried out. For each air pressure and thrust mentioned

above, the A-weighted equivalent continuous sound level

was measured (30 s each at all the measurement locations

and for a particular bit-rock combination) by holding the

sound level meter at a distance of 15 cm from the drill rod,

drill bit, exhaust, and operator’s position. Similarly, the

A-weighted equivalent continuous sound level was mea-

sured at the operator’s position refers to the position of the

operator’s ear, which was at a height of 1.7 m from the

ground level and 0.75 m from the center of the ex-

perimental set up. Depth of the hole drilled was measured

after the drilling operation in each rock block using vernier

scale. The duration of drilling was recorded using a stop-

watch and thereafter the penetration rate was determined

from the depth of the hole drilled (mm) and the duration of

drilling (s).

ANN Modeling

Artificial neural network model is developed by using the

experimental data based on MLP. In order to develop a best

possible MLP architecture based on good generalization

ability and a compact structure, different training algo-

rithms were compared. Detailed procedure used for de-

veloping the optimized MLP model for sedimentary rock

type is given. Similar procedure is employed and results

were obtained also for other types of rock.

Steady state experimental data were used for ANN

modeling. Out of 750 data, approximately 70 % (525 data)

were used in the training and remaining 225 data were

employed for testing the models. Air pressure, bit diameter,

Fig. 1 Jackhammer drill setup for drilling vertical holes in rock

samples
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thrust, penetration rate and A-weighted equivalent sound

level were used as the input parameters. These input pa-

rameters cover the entire problem domain under study and

are effective in their prediction. Rock properties such as

UCS, Abrasivity, SRN, and TS, were the output parameters

for the model. A schematic representation of the ANN

model is shown in Fig. 2. Similarly, air pressure, thrust, bit

diameter, and rock properties were used as the input pa-

rameters. Sound level and penetration rate, were the output

parameters for the model. The architecture of the neural

network model is shown in Fig. 3.

To ensure that each input provides an equal contribution

in the ANN, the inputs to the model were pre-processed

and scaled into a common numeric range (0, 1). A network

with three hidden layer was used with a sigmoid activation

function in the hidden layer and output layer.

The number of empirical equations obtained from

the conventional statistical techniques for assessing the rock

properties. The major demerit of statistical relations (e.g. re-

gression analysis) is the prediction of mean values only.

Consequently, low experimental values are overestimated,

while high experimental values are underestimated. A neural

network does not force the predicted value to be amean value,

thus preserving and using the existing variance of the mea-

sured data. Because of ANN’s ability to learn and generalize

interactions among many variables, ANN’s technology has

been reported to be very useful in modeling the rock material

behaviour. Study indicated that ANN technology is more

powerful than conventional statistical techniques in predict-

ing penetration rate, sound level and rock properties.

One of the most important aspects of NN is the learning

process. Learning cycle in ANN model is as shown in

Fig. 4. In this study, feed forward networks namely MLP

have been used to develop the prediction model of rock

properties and penetration rate and sound level.

The multilayer feed-forward network is the most com-

monly used network architecture with the back propagation

algorithm. Back propagation networks, and multilayered

perceptrons, in general, are feed forward networks with

distinct input, output, and hidden layers. The units function

basically like perceptrons, except that the transition (out-

put) rule and the weight update (learning) mechanism are

more complex.

Back Propagation

Back-propagation Neural Network (BPNN) algorithm is

widely used in solving many practical problems. The

BPNN learns by calculating the errors of the output layer to

find the errors in the hidden layers. Due to this ability of

back-propagation, it is highly suitable for problems in

which no relationship is found between the output and

inputs. Due to its flexibility and learning capabilities, it has

been successfully implemented in wide range of applica-

tions. A Back-propagation Network consists of at least

three layers of units: an input layer, at least one interme-

diate hidden layer, and an output layer. Typically, units are

connected in a feed-forward fashion with input units fully

Fig. 2 Neural network

architecture of five input

neurons and four output neurons

with three hidden layers

Fig. 3 Neural network

architecture of four input

neurons and two output neurons

with three hidden layers

Fig. 4 Learning cycle in ANN model
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connected to units in the hidden layer and hidden units

fully connected to units in the output layer.

The input pattern is presented to the input layer of the net-

work. These inputs are propagated through the network until

they reach the output units. This forward pass produces the

actual or predicted output pattern. BecauseBack propagation is

a supervised learning algorithm, the desired outputs are given

as part of the training vector. The actual network outputs are

subtracted from the desired outputs and an error signal is pro-

duced. This error signal then serves as the basis for the back

propagation step, whereby the errors are passed back through

the neural network by computing the contribution of each

hidden processing unit and deriving the corresponding adjust-

ment needed to produce the correct output. The connection

weights are then adjusted and the neural network has just

‘‘learned’’ from an experience. Once the network is trained, it

will provide the desired output for any of the input patterns.

Steps of the Back Propagation Algorithm

Table 1 Statistical values of rock properties and range of A-weighted equivalent sound level values obtained during drilling

Shale Dolomite Sand stone Lime stone Hematite

Uniaxial compressive strength

Min 30.3 38.4 62.9 67.6

Max 31.2 39.3 64.1 68.8 74.1

SD 0.458 0.458 0.624 0.624 0.700

Mean 30.8 38.9 63.6 68.1 73.6

Abrasivity

Min 14.9 16.4 16.9 18.5 19.2

Max 15.6 17.1 17.8 19.2 19.9

SD 15.2 16.7 17.3 18.8 19.5

Mean 0.361 0.361 0.458 0.361 0.361

Tensile strength

Min 4.27 4.73 5.65 6.15 6.70

Max 4.52 4.91 5.89 6.62 6.96

SD 4.37 4.83 5.76 6.39 6.84

Mean 0.109 0.072 0.107 0.207 0.113

Schmidt hardness number

Min 557 593 595 635 670

Max 579 613 666 742 753

SD 8.49 8.92 27.7 44.9 35.7

Mean 570 602 621 667 703

Penetration rate (mm/s)

Min 0.64 0.6 0.56 0.49 0.45

Max 2.15 2.03 0.93 1.83 1.61

Sound level dB(A)

Min 116.1 116.3 116.6 117.0 117.3

Max 117.1 117.3 117.5 117.8 118.2

Step 1: Obtain a set of training patterns.
Step 2: Set up neural network model: No. of I/P neurons, hidden neurons, & O/P neurons 
Step 3: Set learning rate η and momentum rate α
Step 4: Initialize all connection Wji, Wkj and bias weights θj θk to random values.
Step 5: Set minimum error, Emin
Step 6: Start training by applying input patterns one at a time and propagate through

the layers and then calculate the total error.
Step 7: Back propagate error through output and hidden layer and adapt weights.
Step 8: Back propagate error through hidden and input layer and adapt weights.
Step 9: Check it Error < Emin

If not repeat Steps 6-9. If yes stop training.
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The MLP network was implemented using MATLAB

Neural Network Toolbox. The network was trained using

four different back-propagation training algorithms name-

ly, Resilient Back-propagation algorithm (trainrp), Scaled

Conjugate Gradient algorithm (trainscg), Gradient descent

with adaptive learning back-propagation algorithm

(traingda) and Levenberg–Marquardt algorithm (trainlm).

The output of the network was compared with the desired

output at each presentation and the error was computed.

This error was then back-propagated to the network and

used for adjusting the weights in such a way that the error

decreased with iteration. Mean square errors (MSE) of

1.0e-5, a minimum gradient of 1.0e-5 and maximum

number of epochs of 2000 were used. The training process

would stop if any of these conditions is met. For each of the

training algorithms, a number of trials were conducted

initially to fix the number of neurons in the hidden layer.

The number of neurons for which MSE is minimum, was

selected as the optimum number of neurons in the hidden

layer.

Results and Analysis

Results obtained from the laboratory tests and their basic

statistical evaluations such as minimum, maximum, aver-

age values and standard deviations of different parameters

Table 2 Performance of different training algorithm for sedimentary

rock using integral drill bit

Training

algorithm

Network

architecture

Number

of epochs

Time taken for

convergence (s)

Mean

square

error

trainrp 5,13,10,7,4 94 03 0.00000982

trainlm 5,13,10,7,4 11 01 0.00000969

trainscg 5,13,10,7,4 2000 48 0.0000126

traingda 5,13,10,7,4 20,000 27 0.0530

Fig. 5 Performance indices of: a RMSE, b VAF and c MAPE of ANN for sedimentary rock using integral drill bit

Fig. 6 Variation of sound level

with various rock properties of

sedimentary rocks using integral

drill bit diameters of 30, 34 and

40 mm
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and range (minimum and maximum) of A-weighted

equivalent sound level and penetration rate (mm/sec)

recorded during drilling of different rocks are given in

Table 1. For collected rock types, the variation of

penetration rate (0.64–2.15 mm/s) and equivalent sound

level (Leq) with mechanical properties of rocks using

integral drill bit diameter of 30, 34 and 40 mm for

sedimentary rocks are shown in Fig. 5a–c. Experimental

mean values and ANN predicted mean values using trainlm

algorithm for sedimentary rocks using integral drill bit

diameters of 30, 34 and 40 mm are shown in Fig. 6a–d.

The modeling of penetration rate and sound level pro-

duced during drilling is influenced bymany factors. Artificial

neural networks are widely used as one of the ways to tackle

complex and ill defined problems. They are nonlinear in-

formation processing systems, which are built from inter-

connected elementary processing device called neurons [6].

ANNs can accommodate input variables to predict multiple

output variables. A commonly used ANN model is a feed

forward network with supervised learning which contains an

input layer, some hidden layers and an output layer.

The architecture and performances of the network using

different training algorithms are given in Table 2. It is clear

from Table 2; that, trainlm converges faster than all other

training algorithms as the number of epochs as well as the

time taken for convergence is less. The variation of MSE

with the number of neurons in the hidden layer for trainlm

algorithm is shown in Fig. 7. From the Fig. 7, it can be

Fig. 7 Variation of MSE with

the number of neurons in the

hidden layer for trainlm

algorithm

Fig. 8 Training results based on the 5–3–4 configuration

Fig. 9 Training results based on the 5–3–4 configuration

Fig. 10 Training data error of sedimentary rock
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observed that for the performance model, when the number

of neurons in the hidden layer was increased (13,10,7) the

error was 0.0001 and it decreased as the number of neurons in

the hidden layer (7, 4, 2) was decreased and reached max-

imum of 0.000132 and on increasing the number of neurons

further, MSE gradually increased. Training results based on

the 5–3–4 configuration, training and testing data error of

sedimentary rock is shown in Figs. 8–11. Performance of the

developed model of ANN for sedimentary rocks using in-

tegral drill bit is as shown in Figs. 5–6, 12–13.

Performance Prediction of the Model

Trained networks were tested for performance. The per-

formances of the networks were evaluated using ValuesFig. 11 Testing data error of sedimentary rock

Fig. 13 Experimental mean values and ANN predicted mean values using trainlm algorithm for sedimentary rock using integral drill bit

Fig. 12 Performance indices of: a RMSE, b VAF and c MAPE of ANN for sedimentary rock using integral drill bit

100 J. Inst. Eng. India Ser. D (July–December 2015) 96(2):93–103

123



Account For (VAF) and Root Mean Square Error (RMSE)

indices [2, 17–20]. VAF, RMSE and MAPE can be com-

puted using Eqs. (2, 3 and 4) respectively.

VAF ¼ 1 � varðy� y0Þ
varðyÞ

� �
� 100 ð2Þ

RMSE ¼
ffiffiffiffi
1

N

r XN
i¼1

ðy� y0Þ2 ð3Þ

where y and y0 are the experimental value and ANN

predicted value respectively. The calculated indices are

given in Tables 3 and 4. If the VAF is 100 and RMSE is 0,

then the model will be excellent. Mean absolute percentage

error (MAPE) which is a measure of accuracy in a fitted

series value in statistics was also used to check the

prediction performances of the models. MAPE usually

expresses accuracy as a percentage (Eq. 3).

MAPE ¼ 1

N

Ai � Pi

Ai

� �
� 100 ð4Þ

where Ai is the experimental value and Pi is the ANN

predicted value. Lower value of MAPE shows that there is

a better correlation between predicted values and ex-

perimental results. The obtained values of RMSE, VAF and

MAPE, are given in Tables 3 and 4.

The network performance for different training algo-

rithms is shown in Table 5. It is clear from the table, VAF

values are maximum; RMSE and MAPE values are mini-

mum for the network using train algorithm when compared

to the other models for both training and testing data. VAF

values were 95.576, 94.284, 96.215 and 93.317 % for UCS,

Abrasivity, TS and SRN respectively, whereas for the test

data these values were 90.567, 91.324, 92.253 and

89.137 % respectively. Further, the RMSE values were

0.1530, 0.0316, 0.0172 and 1.689 for UCS, Abrasivity, TS

and SRN respectively for the training data, whereas for the

test data these values were 0.1813, 0.0349, 0.0199 and

5.043 respectively for the test data. MAPE values for the

training data were 4.424, 5.216, 3.785 and 6.683 % for

UCS, Abrasivity, TS and SRN respectively, whereas, the

corresponding values for the testing data were 9.433, 8.676,

7.468 and 10.629 %. Hence, the MLP model with trainlm

algorithm can be effectively used as a predictor of rock

Table 3 Comparison of performance of the developed model of

MRA and ANN for sedimentry rock using integral drill bit (rock

properties)

Rock property RMSE VAF MAPE

ANN Uniaxial compressive strength 0.1530 95.576 4.424

Abrasivity 0.0316 94.284 5.216

Tensile strength 0.0172 96.215 3.785

Schmidt rebound number 1.689 93.317 6.683

Table 4 Comparison of performance of the developed model of

MRA and ANN for Sedimentary rock using integral drill bit (sound

level and penetration rate)

RMSE VAF MAPE

ANN

Sound level 0.0191 95.687 4.313

Penetration rate 0.0382 94.379 5.621

Table 5 Performance prediction indices of different training algo-

rithms for sedimentary rock using integral drill bit (rock properties)

UCS Abrasivity Tensile strength SRN

traingda

Training data

VAF 85.169 84.219 87.627 81.985

RMSE 4.85 2.191 2.374 3.2

MAPE 14.831 15.781 12.373 18.015

Testing data

VAF 83.625 82.605 84.567 79.578

RMSE 6.314 3.498 4.634 5.678

MAPE 16.375 17.395 15.433 20.422

trainrp

Training data

VAF 87.782 86.329 88.769 83.856

RMSE 0.2325 0.0611 0.0233 2.22

MAPE 12.218 13.671 11.231 16.144

Testing data

VAF 86.918 84.932 87.098 81.547

RMSE 0.4348 0.1919 0.0458 5.33

MAPE 13.082 15.068 12.902 18.453

trainscg

Training data

VAF 88.675 89.524 89.635 84.957

RMSE 0.2392 0.0615 0.0289 2.2156

MAPE 11.325 10.476 10.365 15.043

Testing data

VAF 87.427 87.873 88.618 82.043

RMSE 0.4833 0.0956 0.0529 5.69

MAPE 12.573 12.127 11.382 17.957

trainlm

Training data

VAF 95.576 94.284 96.215 93.317

RMSE 0.1530 0.0316 0.0172 1.689

MAPE 4.424 5.216 3.785 6.683

Testing data

VAF 90.567 91.324 92.253 89.137

RMSE 0.1813 0.0349 0.0199 5.043

MAPE 9.433 8.676 7.468 10.629
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properties based on sound level produced during drilling.

Also, performance prediction indices of different training

algorithm for mechanical properties of sedimentary rocks

using integral drill bit is given in Tables 6 and 7, and

performance of different training algorithm for sound level

and penetration rate of sedimentary rocks using integral

drill bit is given in Tables 6 and 7.

Conclusions

This paper discusses the use of ANN for the prediction of

rock properties such as UCS, abrasivity, TS, and SRN.

Penetration rate andA-weighted equivalent sound level were

measured during the drilling of rock. The experiments were

carried out using parameters like air pressure, thrust, bit di-

ameter, penetration rate and sound level. These were used as

input features for a feed forward type ANN, namely, MLP.

Different training algorithmswere tested in order to study the

generalization performance of the network. The perfor-

mance comparison showed that trainlm algorithm gave the

best generalization performance, with an accuracy of around

89–95 % (VAF) on the test (unseen) data, with minimum

training epochs. Hence, this work establishes the effective-

ness of ANN for prediction of rock properties using

penetration rate and sound level produced during drilling.
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