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Abstract  Existing approaches for determining wind speed 
distribution usually fit a single Weibull distribution to the 
entire measured data or fit multiple Weibull distributions 
to the data segregated by months. However, wind speed 
varies not only monthly or seasonally but also hourly. The 
present study captures monthly and diurnal variability by 
fitting a Weibull distribution to data measured at four loca-
tions in the central-western part of India. Two methods, 
a maximum likelihood (MLE) method and an empirical 
method, were used to estimate the Weibull parameters with 
several goodness-of-fit tests including R2, root mean square 
error (RMSE), average power density error, and average 
energy output error. The findings demonstrated a marginal 
improvement in fitting accuracy with the implementation 
of monthly–hourly bin segmentation and fitting calculating 
Weibull parameters for each dataset.

Keywords  Weibull distribution · Data fitting · Maximum 
likelihood (MLE) · Wind distribution

Introduction

Background

Due to natural variability in the availability of wind 
resources, the knowledge of wind speed distribution is 
important for assessing economic viability of wind energy 
systems at any location. A two-parameter Weibull distri-
bution is often used to represent wind speeds at a given 
location. Some studies used a single Weibull distribution 
to describe wind speeds at a particular location by treating 
all of the measured data as one group [1–7]. Since a single 
Weibull distribution fails to capture intra-annual variability 
of wind speed, some studies have segregated the measured 
wind data into various groups according to months of the 
year [2, 8–15], seasons [8, 13, 16], or hours of the day [13] 
to account for variations in wind speeds and estimate the 
Weibull parameters more accurately.

However, existing approaches to fitting a Weibull distri-
bution to the observed wind data have ignored the fact that 
wind speed varies with hour of the day as well as month of 
the year and thus might result in poor fitting. The diurnal 
variations are not the same for each month as some months 
have higher daily wind speed than others. For example, the 
hourly profiles of wind speed for each month at selected 
locations in India are shown in Fig. 1. At these locations, 
diurnal profile of wind speed depends on the month. Mon-
soon months, from June to September, usually have higher 
wind speed as compared to other months for each hour of 
day.

The present study explored how segregating the data 
into different temporal resolutions affected the accuracy 
of representing wind speed. The study calculated the wind 
energy potential from the observed data and compared 
that with the potential estimated from a fitted Weibull 
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distribution for the following four groupings of observed 
data: (i) A single Weibull distribution was used to rep-
resent the entire data. (ii) Twelve Weibull distributions 
were each fitted separately to the data for each month. 
(iii) Twenty-four Weibull distributions were each fitted 
separately to the data for each hour of a day. (iv) For each 
hour of the month, 288 (24 X 12) Weibull distributions 
were fitted separately to the data.

Knowledge Contribution

Existing studies on fitting Weibull distribution capture 
either monthly or diurnal variation but not both, lower-
ing the accuracies of estimated Weibull parameters. This 
study addresses this research gap and captures diurnal 
variability for each month to help better assess availability 
of wind resources. The present study showed that fitting 
Weibull parameters for wind data on much more granular 
scale improves the accuracy of the fitting process. Such 
improvements may have significant impacts on the choice 
of suitable locations for installing wind turbines.

Method and Data

The overview of methodological steps is shown in Fig. 2 ([2, 
7]). The following subsections describe the methodology 
used in the present work:

Parameter Estimation

A Weibull distribution describes observed wind speed data 
reasonably well [17–21]. Equation (1) expresses the prob-
ability density function of wind speed v as described by a 
two-parameter Weibull distribution at a particular location 
[18]:

where k = shape parameter (higher k means higher Vmax 
but lower power density), and c = scale parameter (in m/s).

Several methods have been used to estimate k and 
c parameters from observed wind speed data [1, 4, 8, 
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Fig. 1   Monthly and diurnal variations of mean wind speeds at four sample locations in India
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22–24]. These methods can be broadly classified into 
iterative and non-iterative methods. Non-iterative meth-
ods present closed-form solutions, while iterative methods 
require mathematical iterations to arrive at a final esti-
mated value of parameters. Nonetheless, most methods fit 
a Weibull distribution to the observed wind data well, and 
no rule exists for choosing the best method, with “best” 
being defined based on goodness-of-fit criteria [21]. In the 
present work, a maximum likelihood (MLE) method and 
an empirical method were used for parameter estimation. 
The empirical method proposed by [22] presents a closed-
form formula and requires only mean and standard devia-
tion of wind speeds to determine the Weibull parameters, 
as expressed in Eqs. (2) and (3). As a scale parameter uses 
a somewhat complicated gamma function, several vari-
ants of this method have been proposed to approximate the 
value of the scale parameter [25, 26]. These variants use 
the same formula for k but use an approximated formula 
for c.

The MLE proposed by [27] (cited in Seguro and Lam-
bert, 2000) is an iterative process and perhaps the most 
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widely used method for estimating Weibull parameters 
[1, 15]. The parameters can be estimated using Eqs. (4) 
and (5).

The values of k and c were estimated using the two 
methods explained above. The fitting steps were carried 
out for four cases: In the first case, a Weibull distribu-
tion was fit to the whole data, and a single pair of (k, c) 
was estimated. In the second case, the data were separated 
according to the months of a year, and subsequently, a 
Weibull distribution was separately fitted to get monthly 
estimates of parameters. In this case, a total of 12 pairs 
of Weibull parameters were obtained. Similarly, for the 
third case involving fitting a Weibull function to the data, 
the data were segregated by hour of the day, resulting in 
24 estimated pairs of Weibull parameters for all the data. 
Lastly, in the fourth case, the data were segregated accord-
ing to the hour of the day for each month, and a Weibull 
distribution was fit to 288 segregated datasets, resulting in 
a total of 288 pairs of estimated parameters.
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Fig. 2   Methodological framework used in the present work. Note: MCS refers to Monte Carlo simulation
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Goodness‑of‑Fit

Different statistical tests have been used for assessing how 
well estimated distribution describes the observed data [28]. 
Some tests (e.g., Chi-square test or Kolmogorov–Smirnov 
statistics) should be avoided because they are susceptible to 
small sample size and fewer number of bins [4, 29]. There-
fore, these tests were not included in this study.

Root Mean Square Error

Root mean square error (RMSE) is computed using Eq. (6) 
[1, 12]. Equation (6) shows the modified RMSE formula 
to account for fitting multiple Weibull distributions to the 
observed data. A smaller value of RMSE indicated a better 
fit.

where yi : observed frequency;
xi : expected frequency (from the fitted Weibull 

distribution);
n : number of bins of data of a group g;
G: segregated groups for a particular case (e.g., January 

to December for monthly group, 1 to 24 for
the hourly group); and
N : total number of data points in all groups.

R‑Squared

The coefficient of determination ( R2 ) is calculated using Eq. 
(7) [4, 30]. Similar to Eq. (6), Eq. (7) is modified to account 
for the goodness-of-fit of multiple Weibull distributions 
to the observed data. R2 explained how well variations in 
the data were explained by the fitted model. R2 usually lies 
between zero and one, with one considered the best fit.

where y is the global mean of observed frequency (mean 
frequency of the entire data).

Average Power Density Error

Average power density error (APDE) is defined as the dif-
ference between the average power density calculated from 
the fitted Weibull distribution and power density calculated 
from the observed data. It can be denoted by Eq. (8) [16, 
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18]. This method has several advantages, such as simple 
mathematical expressions, freedom from binning errors, and 
better prediction accuracies [13, 30].

Average Energy Output Error

For modeling wind energy systems, Eqs. (6) to (8) may not 
be suitable measures of goodness-of-fit. These tests give 
equal weight to each wind speed, irrespective of its magni-
tude, but wind turbines do not always produce power. The 
output is zero when wind speed is below cut-in or above cut-
out threshold of the wind turbines. Any fit might on average 
describe wind speed of certain magnitudes more accurately 
than other wind speeds, but it may be considered a poor fit 
if it fails to describe wind speeds at which turbines actually 
produce power [10, 31]. If the purpose of obtaining wind 
speed distribution at any location is to eventually predict 
wind power generation, suitable wind speed distribution 
must be able to predict wind power generation reasonably 
well [4, 10, 16].

Therefore, in this study, average energy output error 
(AEOE) was also used as an indicator of goodness-of-fit. 
It was computed as the difference between the estimated 
energy and the actual energy. The relevant mathematical 
expression is shown using Eq. (9). The power curve of a 
generic turbine was used to map wind speed to a particular 
power output of a wind turbine. The data interval was taken 
to be one hour. For a turbine of MW rating, the output of f(x) 
was in MWh, depending upon the turbine rating.

where f(x): wind power output of a given turbine, and x: 
wind speed.

Equation (5) requires as many estimated wind data points 
in each group as there are points in the corresponding group 
of observed data. Monte Carlo simulation (MCS) was used 
to generate data from estimated parameters to match the 
numbers in observed data. MCS is useful for capturing 
uncertainties such as natural variabilities in wind speed and 
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obtaining a probability distribution of the goodness-of-fit 
metric [11, 23]. For each group, a random sample of n data 
points was drawn from the estimated Weibull distribution 
associated with that group. The procedure was repeated for 
500 trials to account for natural variability of wind, result-
ing in 500 values of error for each group in each case. The 
advantage of this approach over other similar indicators, 
such as expected energy/power output (EEO) used by [4, 
10, 23, 25], is that it produces a distribution of errors rather 
than a single value of error.

Data

The National Institute of Wind Energy (NIWE) maintains 
hourly wind speed data for various locations across India 
and makes the data freely available at http://​niwe.​res.​in:​
8080/​NIWE_​WRA_​DATA/). Based on the meta-data of 
wind monitoring stations mentioned in the Wind Atlas of 
India [32], the top four sites in central India, where data were 
observed for the longest time period, were selected for this 
study. A script was written in Python (www.​python.​org) for 
simulation and estimation. The linearized power curve of a 
commercial turbine of size 2 MW was used in the study [33].

Results and Discussion

Wind Data Summary

Wind speed data of four locations in the central region of 
India were analyzed. The meta-data are shown in Table 1.

The wind statistics at these locations are summarized in 
Table 2. Hourly and monthly variations in wind speed curves 
are shown in Fig. 1. Using the formula expressed by Eq. 
(10), the data were rescaled to estimate the speed values 
at the height of 100 m, the height at which wind energy 
potential is usually estimated in India [34]. The value of α 
(terrain factor) at these locations was assumed to be equal to 
0.2 [26].1 The parameters were estimated using wind speeds 
at 20 m.

Table 3 shows how much wind speed varied within a day 
for different months. The range for a particular month is 
the difference between the maximum and minimum aver-
age hourly wind speeds. This range shows how much wind 
varies throughout the day, and a higher value indicates wide 
diurnal variations in wind speed. The range was similar for 
three of the locations, but for location D, the range was much 
smaller, indicating that diurnal variabilities in wind speed 
were smaller at this location.

Estimation of Parameters

The results are presented in Table 4. The findings showed 
that fitting a Weibull distribution to the data segregated by 
the hours of each month resulted in a better fit as compared 

(10)V100 = V20

(
h2

h1

)�

Table 1   Summary of information about four sites chosen for the study

i. Temporal resolution of data for all sites was 1 h. ii. Air density: 1.225 kg/m3 for all locations

Station ID Latitude (degrees) Longitude (degrees) Mast height 
(m)

Collection period No. of data points

JAMGODRANI (A) 22.9858 76.1656 20 1992–03-12—1995–04-19 25,716
KHEDA (B) 22.6036 75.63 20 1992–03-10—1995–04-18 27,108
KUKRU (C) 21.4931 77.4772 20 1994–08-16—1997–08-27 24,837
MIRZAPUR (D) 23.0192 76.6397 20 1992–03-12—1995–04-20 22,873

Table 2   Wind statistics 
summary

Station ID V
20

mean
(m/s) V

med
 (m/s) � (m/s) Power 

density (W/
m2)

Hub height (m) V
100

mean
(m/s) Power 

density 
(W/m2)

A 5.02 4.81 2.33 130 100 6.92 341
B 5.06 5.03 2.17 125 100 6.98 328
C 5.12 4.69 2.66 159 100 7.06 416
D 4.41 4.36 1.83 80 100 6.08 211

1  The Center for Wind Energy Technology is now known as the 
National Institute of Wind Energy (NIWE).

http://niwe.res.in:8080/NIWE_WRA_DATA/
http://niwe.res.in:8080/NIWE_WRA_DATA/
http://www.python.org


612	 J. Inst. Eng. India Ser. C (June 2024) 105(3):607–615

1 3

to estimating Weibull parameters from more aggregated 
datasets. The findings were consistent across all four loca-
tions and for all goodness-of-fit metrics except APDE. At 
location D, Case II was a better fit than Case IV. This 
could be due to overfitting, as the observed diurnal daily 
variations were small, or it could possibly be due to the 
small sample size.

RMSE found in this study was higher that reported in 
other studies, e.g., [2], perhaps due to smaller sample size 
or lower wind speeds. Studies have found that an iterative 

Weibull method fits better than a two-parameter Weibull 
method if wind data are skewed toward values close to zero 
[1]. Further, this study’s findings did not agree with findings 
of [10] that indicated that statistical measures might not be 
suitable for goodness-of-fit. Moreover, this study compli-
mented the findings of [35], suggesting temporal variations 
for wind energy assessment.

Figures 3 and 4 show a range of estimated parameters for 
different months. For each month, the top and bottom of the 
bar represent the minimum and maximum values among 24 
hourly values of the parameter. With both figures, diurnal 
variabilities in wind speed are significant. Estimated values 
for each of the 24 h of the day varied considerably for many 
months. This variability was not captured when the data 
were only segregated by months to obtain a single monthly 
value of the shape and scale parameters. Using multiple 
Weibull distributions increased the complexity of the fitting 
process and required computational resources [36]. How-
ever, since the costs of computational power and data storage 
have become affordable, the complexity of the fitting process 
may not be an issue, even if the commercial implications of 
improving the accuracies were considerable.

Conclusion

Many studies represented wind speed using a single 
Weibull distribution. As wind resources at any location 
constantly vary daily or monthly, researchers captured 

Table 3   Monthly range of diurnal variations in wind speed

Month V
max

− V
min

(m/s)

A B C D

January 1.41 1.84 0.93 0.86
February 1.59 1.34 1.4 1.26
March 2.07 1.56 1.59 1.03
April 2.83 2.08 2.29 1.3
May 2.47 2.3 2.92 1.54
June 1.53 1.33 3.39 1.22
July 1.39 1.75 2.42 1.57
August 2.01 2.0 1.08 1.7
September 1.28 1.19 1.13 1.16
October 1.0 0.89 1.24 1.18
November 1.45 1.9 1.34 1.27
December 1.53 2.62 1.45 1.68
Avg. 1.71 1.73 1.76 1.31

Table 4   Test results of fitting 
of Weibull distribution

Station ID Cases Method and goodness-of-fit metric

Empirical MLE

RMSE R2 APDE (%) AEOE (%) RMSE R2 APDE (%) AEOE (%)

A I 6.40 0.81 0.03 −2.10 6.38 0.81 1.99 −1.94
II 2.34 0.97 0.45 −1.35 2.39 0.97 1.58 −1.21
III 1.68 0.98 0.23 −1.84 1.69 0.98 1.98 −2.27
IV 1.09 0.99 0.41 −1.29 1.10 0.99 3.2 −1.17

B I 6.49 0.83 −0.01 −0.42 6.69 0.83 1.42 −1.02
II 2.24 0.98 0.06 0.11 2.31 0.98 2.51 0.45
III 1.71 0.988 0.17 −0.58 1.77 0.99 1.48 −1.24
IV 1.09 0.996 0.11 −0.14 1.10 0.995 7.33 0.39

C I 6.04 0.83 −2.82 2.49 6.11 0.82 -0.78 2.78
II 2.15 0.98 −0.94 0.53 2.18 0.98 0.59 0.8
III 1.66 0.987 −2.59 1.7 1.68 0.987 -0.60 1.73
IV 1.08 0.995 −0.70 −0.13 1.08 0.994 2.00 0.30

D I 6.76 0.84 −0.36 0.88 7.06 0.82 0.94 1.18
II 2.39 0.98 0.33 0.81 2.50 0.98 4.62 2.27
III 1.76 0.989 −0.12 0.40 1.84 0.988 1.39 0.97
IV 1.10 0.996 0.52 0.41 1.13 0.996 11.72 2.90
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Fig. 3   Maximum and minimum values of k for each month

Fig. 4   Maximum and minimum values of c for each month
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monthly/seasonal variations to better represent wind 
speeds. However, diurnal variabilities in wind speed can 
be significant. Using different Weibull distributions for 
each hour of each month provides a better fit, since R2 for 
location I varies between 0.81 and 0.84. Similarly, other 
locations also have higher R2 value, indicating a better fit. 
Although the improvement may be small, capturing such 
variability is important for making preliminary assess-
ments of wind energy potential and optimally sizing and 
modeling renewable systems.

Furthermore, in energy modeling, better fit usually 
implies accurate estimations of energy yield, suggesting 
that energy-based indicators might be appropriate criteria for 
evaluating how well the distribution fits the observed data. 
Nevertheless, the results of this investigation indicated that 
conventional statistical tests offer a comparable level of pre-
cision to an energy yield indicator for adjusted parameters. 
Future research may explore advanced modeling techniques 
such as non-stationary modeling of wind [37] and multi-
instrument observations [38] for wind energy measurement.
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