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Abstract  For computer numerically controlled (CNC) 
machines to handle online monitoring and adjustment of 
machining parameters (MPs) for optimum machining perfor-
mance, and to achieve high productivity and improve surface 
quality, online prediction of surface roughness (SR) must be 
adopted by researchers as an important issue. Studying the 
MPs’ effects on both vibration signal (VS) and SR for alu-
minum alloy material (AA5083) in a CNC milling machine 
and developing three models to predict VS and SR based on 
the artificial neural network (ANN) technique is the aim of 
this work. The first ANN model was developed to predict 
vibration frequency and amplitude based on MPs, feed rate 
“f”, depth of cut “a”, and cutting speed “N”. The second 
model of ANN was developed to predict SR using MPs as 
well. The third model of ANN was developed to predict 
SR using both the MPs and vibration frequency and ampli-
tude. The experiments involved fifteen test specimens. The 
vibration measurement was performed in the cutting feed 
direction using the sensor accelerometer that was fixed on 
the machine tool holder. The readings were recorded online 
in the MATLAB program, and SR was measured offline. 
The results showed that the feed rate and depth of cut were 
the most significant elements that affected the VS, as the 
VS increased as they increased. The minimum VS and SR 
values were obtained for the MPs’ combinations (N = 23 m/
min, a = 1.5 mm, and the feed rate values were f = 150, 200, 
and 250 mm/min). The ANN models developed have a feed-
forward architecture and supervised learning technique using 
the algorithm of backpropagation Levenberg–Marquardt and 

sigmoid activation function. They are structured into three 
layers, with the hidden one having eight or ten neurons. The 
experimental and expected values were very close, and the 
proposed ANN models have a high correlation factor of 
R = 0.97–1 for the prediction of VS and SR values. The third 
ANN model gave better results in predicting SR. Hence, tak-
ing the VS into account improves the capability of the ANN 
in predicting the SR.

Keywords  Vibration signal · ANN model · Surface 
roughness · Aluminum alloy (AA5083) milling · CNC 
machine · Sensor accelerometer

Introduction

Manufacturers need automation growth as a method to get 
higher productivity and improve quality. Computer numeri-
cally controlled (CNC) machines have been employed in 
totally automated machines throughout the earlier eras. 
Cost, time, and precision are factors considered while 
selecting a manufacturing process. Dimensional accuracy, 
surface roughness, and surface performance are often the 
three factors that determine surface precision [1]. Surface 
quality contributes significantly to machining performance 
because a well-machined part’s surface enhances corrosion 
resistance, fatigue strength, creep life [2], strength, and 
wear [1]. The surface’s imperfections, particularly valleys 
and grooves, create stress concentrations that allow material 
plastification and cracks to propagate [1].

The surface integrity concept, presented in the litera-
ture [3], can be characterized as a collection of differ-
ent surface-and subsurface-level characteristics of an 
engineering surface that influence how well the surface 
performs.  Surface roughness, texture, profile, fatigue, 
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corrosion, wear resistance, adhesion, and properties of 
diffusion are a few of these characteristics. Other ser-
vice characteristics like optical attributes, absorptivity, 
adsorption, bonding ability, emissivity, flatness, frictional 
resistance, score strength, stain resistance, surface tem-
perature, surface tension, thermal emissivity, washabil-
ity, wettability, and biological and chemical properties 
should be taken into account as well, when appropriate. 
Geometrical parameters (such as surface finish, texture, 
and bearing curve parameters), physical parameters (such 
as micro-hardness, residual stresses, and microstructure), 
chemical parameters (such as affinity oxidation, adsorp-
tion, chemisorption, surface electrical polarization, and 
surface chemical reactions), and biological parameters are 
different types of surface integrity parameters (e.g., cell 
proliferation and cell attachment).

Surface roughness (SR) represents the main property 
of surface integrity. SR influences numerous practical 
features, for example, the friction of surfaces induced by 
contact, wear, light reflection, heat transfer, a lubricant’s 
capability to be distributed and held, fatigue resistance, or 
coating. Henceforth, the targeted surface finish is stated 
and a suitable processes are nominated to get the desired 
quality [2].

Numerous issues may influence the SR in a CNC mill-
ing operation. The SR is the sum of the ideal SR result-
ing from the geometry of the tool and feed rate (FR) “f”, 
and the natural SR resulting from the abnormalities in the 
cutting process [4]. Additional factors that can affect SR 
are the machining parameters (MPs) (depth of cut (DC) 
“a”, FR, cutting speed (CS) “N”, cooling fluid, process 
kinematics, step over, and tool angle), cutting tool proper-
ties (tool material, tool shape, nose radius, and run out), 
work piece properties (diameter, length, and hardness), 
and cutting phenomena (friction, acceleration, chip for-
mation, and cutting force variation) [5]. CS, FR, and DC 
can be tuned beforehand, while the tool and properties of 
the workpiece material are unadjustable [6]. SR prediction 
methods should be developed for products before mill-
ing to estimate the suitability of the MPs for achieving 
the required SR and increasing the quality of the product. 
These prediction techniques should be reliable, accurate, 
non-destructive, and low-cost.

The texture of a surface is the outline of the surface 
that diverges from a nominal reference. The divergence 
could be recurring or unintended, and it could be brought 
on by defects, roughness, and waviness [5]. So, the sum of 
waviness, roughness, and fault form represents the true 
surface shape. A well-known definition of SR is a sparse, 
irregular deviation on a scale under waviness. Figure 1 
shows the standard terms and symbols for the SR [7]. In 
machining, SR is usually stated mathematically using the 
average deviation from the mean:

where L is the sampling interval and Y is the profile cur-
vature’s coordinate, and Ra is the sum of the absolute 
contour height over the evaluation length, or the region in 
between the roughness contour and its mean line in l m, 
which needs to be optimized [5, 8].

Regarding SR measurement technologies, there are four 
types of measurement techniques to assess surface geom-
etry and texture: scanning probe microscopy, electronic-type 
measurement, optical-type measurement, visual-type meas-
urement, and tactile-type measurement. They are reviewed 
in [3], which provides further details.

Statistical methods and soft computing techniques were 
used in the modeling and optimization of machining pro-
cesses. More specifically, the factorial design method, the 
Taguchi method, response surface methodology, analysis of 
variance, grey relational analysis, statistical regression meth-
ods, artificial neural networks (ANN), fuzzy logic, genetic 
algorithms (GA), ant colony optimization, expert systems, 
particle swarm optimization, simulated annealing, various 
swarm intelligence, adaptive neuro-fuzzy inference systems, 
and Bayesian networks, which are reviewed for the improve-
ment of machining processes, where these methods have 
proven to be very powerful and reliable tools, especially in 
machining [9]. Intelligent machining was also introduced 
in [1], as various computational techniques are described, 
such as ANN, fuzzy set theory, and neuro-fuzzy modeling. 
Moreover, various modeling techniques using the combina-
tion of fuzzy logic and GA to construct a model of a physical 
process, including manufacturing processes, were presented 
in [10].

SR modeling, optimization, and prediction techniques are 
categorized into three classes: analytical models, investiga-
tional models, and models based on artificial intelligence 
(AI). Analytical and experimental models are established by 
means of traditional methods such as statistical regression 
techniques [2, 11], and linear regression models [12–15]. 

(1)Ra =
1

L

L

∫
0

|Y(x)|dx,

Fig. 1   SR definition terminology, reproduced from [7]
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Instead, models based on AI are developed using nontradi-
tional methods such as ANN [16–20], fuzzy logic, GA [21], 
and hybrid or mixed systems [22–25]. Researches [8, 20] 
introduce reviews of the several practices and techniques 
that are being applied for the prediction of SR.

ANN has been used in SR prediction in milling; Tsai 
et al. 1999 [26] offered a Ra surface recognition system for 
end milling while processing. Many ANN structures were 
applied. The three MPs (DC, CS, and FR) and the aver-
age vibration per revolution were chosen as independent 
variables to guess the Ra. The ANN model showed a good 
accuracy rate of 96–99% while predicting Ra in compari-
son to the statistical regression model results. Benardos and 
Vosniakos [27] constructed a feed-forward ANN to predict 
Ra in a CNC milling process. Many features were chosen 
as inputs: the three MPs, the cutting tool engagement, wear 
of the machining tool, and machining forces. A (5 by 3 by 
1) structured ANN can expect the SR with a mean-squared 
error of 1.86%. Topal [19] studied the estimation of SR 
where a feed-forward ANN was used in the milling process 
with three layers. It was trained using the backpropagation 
method. The inputs are the three MPs and the step-over 
ratio. The average predicted error was 0.04. Oktem et al. [23] 
suggested an ANN model in addition to the GA approach. 
The error predicted was no more than 0.0534. Colak et al. 
[13] suggested a gene formula programming technique built 
on MPs in CNC milling machines, but there was no quan-
tification for error. Azlan Mohd Zain et al. [28] presented 
an ANN model for SR prediction in the milling operation. 
The toolbox of ANN in MATLAB is utilized. Feed-forward 
backpropagation is the algorithm selected by learngdx, 
traingdx, logsigm, and MSE, which are the learning, train-
ing, transfer functions, and performance, respectively. The 
(3 by 1 by 1) network structure gave the best ANN model 
for predicting the SR value. The layers’ and nodes’ numbers 
in the layers of the ANN structure could be modified on 
behalf of improvement. They suggested high CS with a low 
FR and radial rake angle to get the best SR. Patel et al. [29] 
decreased the SR through optimizing the numerous MPs of 
the milling operation. ANN has been implemented. SR was 
influenced by FR, then CS, and finally DC. Chen et al. [30], 
a backpropagation ANN was suggested to predict the SR of 
the workpiece. An analysis of variance was used to inves-
tigate the effects of the three MPs and milling length. The 
mean square error gained through using the backpropagation 
ANN is much smaller than that gained via the conventional 
linear regression technique.

Various neuro-fuzzy inference systems (FISs) have also 
been applied to get the SR in machining processes. The 
structure of the if–then rules was extracted via the obtainable 
in–out data. With knowledge of fuzzy rules’ number and 
structure, ANN and GA’s optimization methods are applied 
to modify the shape of the membership function of the fuzzy 

variables and the parameters of the fuzzy rule base. Lo [24] 
considered the application of an adaptive FISs (ANFIS) to 
forecast the workpiece SR afterward the milling operation. 
Two dissimilar membership functions, trapezoidal and tri-
angular, were assumed throughout the training operation of 
ANFISs to correlate the accurateness of SR prediction by 
both networks. The triangular membership function gave a 
higher accuracy in prediction. Abdel Badie Sharkawy [31] 
presented an end milling process SR model. Several intel-
ligent networks have been used: radial basis functions neural 
networks (RBFNs), ANFISs, and genetic FIS. The three MPs 
have been utilized as inputs to model the SR with the highest 
accuracy. Experimental data was used to train the networks. 
It is determined that ANFIS has a local minima issue, and 
perfect optimality cannot be insured by Genetic FISs unless 
using appropriate parameters such as (number of genera-
tions, population size, etc.). The RBFN model gave the best 
performance. Vallejo et al. [32] established an online SR 
forecast module for peripheral end milling. An ANN model 
using five MPs and one variable signal was developed. High 
correlations with the SR in the workpiece were shown by the 
vibration signal (VS). Wu and Lei [5] examined the possibil-
ity of using the VS features measured and the MPs in the 
milling operation to predict the SR of S45C steel. The VS’s 
features are taken out by the envelope investigation and sta-
tistical calculation, as kurtosis, root mean square, multi-scale 
entropy, skewness, and frequency normalization. The MPs’ 
and the VS’s features were used to improve the accuracy of 
SR prediction through the milling operation.

Built on the preceding studies [33–40], the capabilities of 
ANN for machining process modeling can address the next 
issues: ANN can deal with nonlinear modeling where the 
input data is mapped to the output data. Compared to con-
ventional techniques, ANN has advantages such as speed, 
simplicity, and a high capacity for learning from available 
data sets. It does not need much experimental data, and no 
initial assumptions are needed. Experimental results’ behav-
ior can be improved easily and in a small duration. The per-
formance of the ANN prediction model can be enhanced 
by using trial-and-error approaches and frequent training 
simulations. Further, ANN has some limitations in machin-
ing operation modeling, such as experimental practices are 
essential in building a realistic network. It may be time-con-
suming and cost a lot. Training repeatability for an enhanced 
model is not certain. Using the ANN, the greatest prediction 
model for SR can be reached by using a trial-and-error tech-
nique with adjusting the ANN model structure. Furthermore, 
the workpiece’s SR is attributed to both the MPs’ effect and 
the machine vibrations’ effect in the milling operation.

Gaining a good surface finish is a vital issue in every 
engineering part’s design and manufacturing. Consequently, 
measurement, characterization, and prediction of SR play an 
important role in the assignment of machining performance. 
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This work focuses on an experimental study of the effect of 
MPs on VS and SR results in the aluminum alloy AA5083 
end milling process and developing three ANN models for 
potential use in the online prediction of VS and SR in a CNC 
milling machine. The first model will be developed to pre-
dict the VS amplitude and frequency related to the selected 
MPs set. Another ANN model will be developed to predict 
the average SR value against the selected MPs values. The 
last ANN model will be developed to predict the average 
SR value against the combination of the selected MPs set 
and the VS amplitude and frequency. These ANN models 
will represent an experimental guide for workers to select 
optimum MPs of aluminum alloy AA5083 milling that guar-
antee an optimum material removal rate without unwanted 
vibrations and with a good surface finish. Milling experi-
ments are accomplished with different sets of machining 
conditions: CS, FR, DC, and with the use of a coolant. The 
results will be utilized in inferring the relationship between 
the selected machining conditions and the measured VS and 
SR during the milling process.

Artificial Neural Network Modeling Technique

AI techniques such as ANN and fuzzy logic have been 
widely used in the development of predictive models [41, 
42]. ANNs are widely utilized in a variety of fields, con-
taining mathematics, economics, engineering, and medicine. 
For different purposes, ANNs are used in data compression, 
optimization, forecasting, pattern and voice recognition, 
classification, and vision systems. Currently, ANNs are 
capable of recognizing sophisticated problems that present 
a challenge to the old-style techniques [43, 44]. ANNs have 
been considered to resolve issues concerning missing or 
inaccurate data [45]. The benefits of ANNs are flexibility, 
speed, and the ability to learn from examples as compared to 
classical methods. Hence, engineering work in these fields 
can be decreased. ANNs can deal with nonlinear problems 
and show robustness and fault tolerance, but they cannot 
deal with problems demanding great precision and exact-
ness, as in arithmetic and logic problems [44].

The ANN methodology simply allows a computer to simu-
late human brain neurons’ attitudes. It is commonly structured 
into layers; each layer comprises a number of neurons. An 
ANN is trained by employing a set of input and output data. 
During training, the model’s structure automatically adapts to 
the data, and the resulting model can be used to make predic-
tions. The training method is clearly described as a process 
that involves controlling a network’s weights and biases in 
order to reduce the error of the chosen function between the 
desired and actual outputs [46]. Backpropagation is the most 

widely used and extensively researched supervised learning 
training algorithm. The mean-squared error of the difference 
between the network outputs and the targets in the training 
set is minimized using a gradient-descent approach [45]. The 
basic steps for network training are completed by doing the fol-
lowing actions: calculations of the related output value using 
the ANN after applying the input data. Find the incorrect value 
by comparing the output to the desired result. To change each 
weight for error reduction, consider the changes and the ori-
entation (positive or negative) of the weights. Determine the 
new weights’ values. Apply the weight modifications. With 
each training input–output data set, repeat the previous stages 
until the error is at a desirable level. The output of the layers 
is passed through activation functions by the ANNs. These 
activation processes scale the ANN’s output into the appro-
priate ranges. The sigmoid function used for activation is the 
standard option for the feed-forward layer:

where x is the input value.
The classic neuron is composed of a linear activator and 

a nonlinear constraining function. The linear activator func-
tion of the classic neuron produces the sums of the weighted 
inputs together with an additional independent term known 
as bias [47].

The hidden layer employs a sigmoid-type transference 
function:

The last layer (output layer) utilizes a linear function:

where xi is the input value number i, n the total number of 
input–output data sets, w the weight value, i the number of 
input–output data set, and b the bias value.

Experimental Work

Experimental Setup

Aluminum alloy (AA 5083) material has been selected 
for the end milling operations. Tables 1 and 2 contain 
specific information on the AA 5083 alloy’s chemical 
content and mechanical characteristics. The CNC milling 
machine used for the investigation is the Intelys C3000 
CNC milling machine, a three-axis, high-speed machine. 
Machine mechanical and physical properties are attached 

(2)f (x)1 =
1

1 + e−x
,

(3)f (x)2 =
1

1 + e(−b−
∑

wixi)
,

(4)Output =

(
n−1∑

i=0

wixi

)
+ bn,
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in Table 3. In Fig. 2, the experimental setup is displayed. 
The machining operations were performed using a high-
speed steel end mill tool with a parallel shank, 4 flutes, 
a 6 mm diameter, and a 40 mm length. An emulsified 
coolant was used.

Vibration Measurement and Analysis Techniques

An accelerometer sensor was used in measuring the VS. The 
accelerometer model is (333B32 Model Array), a ceramic 
shear ICP® accelerometer with 100 mV/g, 0.5–3 kHz, and a 
10–32 side connector. Its operation is based on the deforma-
tion of the sensing element, which results from the internal 
force of the mass element due to its acceleration. This defor-
mation change leads to a change in the resistance of the ele-
ment and hence the electric output of the accelerometer. The 

accelerometer was fixed to the tool holder. It was calibrated 
by employing a double-ended reference (comparison) accel-
erometer, which is a convenient way to conclude the sensi-
tivity and frequency response characteristics of indefinite 
displacement, velocity, and acceleration sensors. A vibra-
tion laboratory equipped with an electrodynamics shaker 
and control system that can simply employ the reference 
accelerometer to achieve in-house calibrations is used. The 
shaker detrain PCB was used to calibrate the accelerometer.

The data acquisition system used in the experiments was 
the LMS Pimento instrument system. This was used in data 
acquisition and signal processing. The accelerometer data 
was acquired as a time domain acceleration signal (measured 
raw signal) to be sent to the computer, with the measured 
signal band width set to 0: 25 kHz and the sampling time set 
to 0.00002 s. Table 4 summarizes the specifications of the 
data acquisition system. Measuring raw signals were trans-
formed into the frequency domain using fast Fourier trans-
form (FFT) in MATLAB software, and the vibration ampli-
tude and frequency were assigned. A schematic diagram of 
the system is displayed in Fig. 3a, and the data acquisition 
system is shown in Fig. 3b.

Experiments Plan

The MPs proposed in this work to machine AA 5083 alu-
minum alloy are selected and displayed in Table 5. Then, 
in order to study the effect of MPs on VS and SR, different 
combinations of the selected cutting conditions are made to 
find the effect of each parameter independently.

Five experiments have been performed at different surface 
CSs to study the CS effect. These are 19, 21, 23, 25, and 

Table 1   AA5083 alloy’s 
chemical composition [48]

Mn Fe Cu Mg Si Zn Cr Ti Al

0.40–1 0.40 0.10 4–4.90 0.40 0.25 0.05–0.25 0.15 Balance

Table 2   Mechanical properties of the AA5083 alloy [48]

Hardness 
Vickers

Shear 
strength

Elongation Tensile 
strength

Proof stress

75 HV 175 MPa 23% 300 MPa 145 MPa

Table 3   Intelys C3000 physical and mechanical properties

Property Value

Max chuck speed (r/min) 3000
Min chuck speed (r/min) 100
Processor frequency (Hz) 2,000,000
Max FR (mm/min) 700

Fig. 2   Experimental setup
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27 m/min, whereas keeping the FR and DC values constant 
at f = 250 mm/min and a = 1.5 mm, as shown in Table 6. 
Moreover, to study the DC effect, an additional five experi-
ments have been performed at different DC values. These 
are 0.7, 1, 1.5, 2, and 2.3 mm, while keeping the CS and 
FR values constant at N = 23 m/min and f = 250 mm/min, 
as presented in Table 7. Additionally, in order to study the 
FR influence, another five experiments have been performed 
at different FR values. These are 150, 200, 250, 300, and 
350 mm/min while keeping the CS and DC values constant 
at N = 23 m/min and a = 1.5 mm, as shown in Table 8.

Fif teen test  specimens were prepared with 
60 × 40 × 15 mm dimensions. A total of 125,000 reads per 
sample were taken at each experiment for 25 s through 5 
reading sections, where each reading section duration was 
5 s. The recorded VSs during milling were analyzed and 
studied in the frequency domain.

After the measurement of the VS for all test samples, 
the SR (Ra; the surface roughness arithmetic mean) of 
each sample was measured offline by a mobile roughness 
measurement device (model: Mitutoyo SJ-210) as shown 
in Fig. 4. Three SR values, Ra, were taken for each sam-
ple at different places. Then the average SR value was 
calculated.

Table 4   Data acquisition system specifications

Property Value

Model Asp 424
Number of input channel 4
Number of output channel 1
Interface to computer IEEE1394A Fire wire
Power DC power input

Fig. 3   a Schematic diagram of 
the experimental setup system, 
and b Data acquisition system

Table 5   The selected cutting conditions

Cutting condition Selected values

CS (m/min) “N” 19, 21, 23, 25 and 27
FR (mm/min) “f” 150, 200, 250, 300 and 350
DC(mm) “a” 0.7, 1, 1.5, 2, and 2.3

Table 6   MPs combinations to study CS effect on VS and SR

Experiment no. Machining parameters’ combinations

N (m/min) f (mm/min) a (mm)

1 19 250 1.5
2 21 250 1.5
3 23 250 1.5
4 25 250 1.5
5 27 250 1.5

Table 7   MPs combinations to study DC effect on VS and SR

Experiment no. Machining parameters’ combinations

N (m/min) f (mm/min) a (mm)

6 23 250 0.7
7 23 250 1
8 23 250 1.5
9 23 250 2
10 23 250 2.3

Table 8   MPs combinations to study FR effect on VS and SR

Experiment no. Machining parameters’ combinations

N (m/min) f (mm/min) a (mm)

11 23 150 1.5
12 23 200 1.5
13 23 250 1.5
14 23 300 1.5
15 23 350 1.5
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Results

With respect to MPs’ effects on VS and SR values, Figs. 5, 
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19 show the 
time-domain VSs in the cutting feed direction (raw signal), 
and the signal frequency analysis in the frequency domain 
for different MPs’ combinations. The highest vibration 
amplitudes in the cutting feed direction and their related 
frequency values were assigned for interpretation. Table 9 
shows the average SR values related to different MPs’ com-
binations in each experiment. And Table 10 illustrates the 

maximum six values of amplitude in both frequency and 
time domains and their related time and frequency values for 
the 15 experiments. X is the time, and Y is the amplitude in 
the time domain. X1 and Y1 are the frequency and amplitude 
values in the frequency domain. Adding to that, Figs. 20, 
21, 22, 23, 24 and 25 show the relationship between the 
VS amplitude and frequency and the different MPs’ com-
binations, while Figs. 26, 27 and 28 show the relationship 
between the SR and the different MPs’ combinations.

Considering the CS effect, Figs. 5, 6, 7, 8 and 9 express 
the CS effect on VS. The highest signal amplitude values 
ranged from 3200 decibels (dB) to 28,570 dB, and the 
related frequency values were 50, 100, 200, and 300 Hz. 
The highest amplitude values were observed at frequen-
cies of 50 and 100 Hz. Excluding these frequency values, 
steady machining was achieved throughout the frequency 
range up to 25,000 Hz. The maximum amplitude value in 
the time domain was 14.5 mm/s2 for experiment 5 (N = 27 m/
min, f = 250 mm/min, a = 1.5 mm). Figures 20 and 21 illus-
trate the relationship between VS amplitude and frequency 
and the CS. In Fig. 20, the highest amplitude value is at 
N = 27 m/min, and the lowest value is at N = 25 m/min, 
while N = 19 and 23 m/min gave the mean amplitude val-
ues. In Fig. 21, the highest frequency value is at N = 23 m/
min and the lowest value is at N = 25 m/min. Further, the 
highest SR value was Ra = 3.068 µm at N = 19 m/min and 

Fig. 4   Surface roughness measurement device

Fig. 5   Raw signal and frequency analysis at (N = 19 m/min, f = 250 mm/min, and a = 1.5 mm), experiment 1
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Fig. 6   Raw signal and frequency analysis at N = 21 m/min, f = 250 mm/min and a = 1.5 mm, experiment 2

Fig. 7   Raw signal and frequency analysis at N = 23 m/min, f = 250 mm/min and a = 1.5 mm, experiment 3
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Fig. 8   Raw signal and frequency analysis at N = 25 m/min, f = 250 mm/min, and a = 1.5 mm, experiment 4

Fig. 9   Raw signal and frequency analysis at N = 27 m/min, f = 250 mm/min and a = 1.5 mm, experiment 5
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Fig. 10   Raw signal and frequency analysis at N = 23 m/min, f = 250 mm/min and a = 0.7 mm, experiment 6

Fig. 11   Raw signal and frequency analysis at N = 23 m/min, f = 250 mm/min and a = 1 mm, experiment 7
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Fig. 12   Raw signal and frequency analysis at N = 23 m/min, f = 250 mm/min and a = 1.5 mm, experiment 8

Fig. 13   Raw signal and frequency analysis at N = 23 m/min, f = 250 mm/min and a = 2 mm, experiment 9
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Fig. 14   Raw signal and frequency analysis at N = 23 m/min, f = 250 mm/min and a = 2.3 mm, experiment 10

Fig. 15   Raw signal and frequency analysis at N = 23 m/min, f = 150 mm/min and a = 1.5 mm, experiment 11
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Fig. 16   Raw signal and frequency analysis at N = 23 m/min, f = 200 mm/min and a = 1.5 mm, experiment 12

Fig. 17   Raw signal and frequency analysis at N = 23 m/min, f = 250 mm/min and a = 1.5 mm, experiment 13
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Fig. 18   Raw signal and frequency analysis at N = 23 m/min, f = 300 mm/min and a = 1.5 mm, experiment 14

Fig. 19   Raw signal and frequency analysis at N = 23 m/min, f = 350 mm/min and a = 1.5 mm, experiment 15
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the minimum value was Ra = 1.619 µm at N = 21 m/min, as 
shown in Fig. 26.

As for the DC effect, Figs. 10, 11, 12, 13 and 14 express 
the DC effect on VS. The highest values of amplitude ranged 
from 5859 to 43,940 dB, and the related frequency values 
were 50, 100, and 200 Hz. Apart from these frequency 
values, steady machining was achieved throughout the fre-
quency range up to 25,000 Hz. The maximum amplitude 
values in the time domain were 13.5 mm/s2 for a = 0.7, 1, 
1.5, and 2 mm (experiments 6, 7, 8, and 9), then increased 
to 21.68 mm/s2at a = 2.3 mm (experiment 10). Figures 22 
and 23 illustrate the relationship between VS amplitude and 
frequency and the DC. In Fig. 22, the highest value of the 
amplitude is at a = 2.3 mm. In Fig. 23, all the DC values 
gave a frequency range from 50 to 100 to 200 Hz. As shown 
in Fig. 27, the maximum SR value was Ra = 2.4838 µm at 
a = 1 ~ 2.3 mm, and the minimum value was Ra = 1.317 µm 
at a = 0.7 mm.

However, for the FR effect, Figs. 15, 16, 17, 18 and 19 
express the FR effect on the VS. The high amplitude values 
range from 584 to 41,000 dB, and the related frequency values 
start from 50 Hz up to 1187 Hz. The highest amplitude val-
ues appeared at 50, 100, and 150 Hz frequencies. By exclud-
ing these frequency values, steady machining was achieved 
throughout the frequency range up to 25,000 Hz. The maxi-
mum amplitude values in the time domain were 0.7767 mm/s2 
and 0.7056 mm/s2 for f = 150 and 200 mm/min, respectively, 
2.787 mm/s2 for f = 250 mm/min, 13.14 mm/s2 for f = 300 mm/
min, and 21.67 mm/s2 for f = 350 mm/min, while N and a were 
kept constant at values (N = 27 m/min, a = 1.5 mm). Figures 24 
and 25 illustrate the relationship between VS amplitude and 

frequency and the FR. In Fig. 24, the amplitude values at 
f = 150, 200, and 250 mm/min are much lower than the values 
at f = 300 and 350 mm/min. In Fig. 25, at f = 300 and 350, the 
lower frequency values appeared (50–100 and 200 Hz), while 
other f values gave frequency values from 500 to 1300 Hz. The 
highest SR value was Ra = 3.120 µm at f = 350 mm/min, and 
the minimum value was Ra = 1.047 µm at f = 150 mm/min, as 
shown in Fig. 28.

Generally, the minimum VS amplitude values in both 
frequency and time domains were obtained at MPs’ com-
binations related to experiments 11, 12, and 13. In these 
experiments, both N and a were kept at the values N = 23 m/
min, and a = 1.5 mm, and the FR values were 150, 200, or 
250 mm/min. These MPs’ combinations resulted in the mini-
mum SR values as well. Ra = 1.047 µm, and Ra = 1.229 µm 
which are related to experiments 11 and 12, while the MPs 
related to experiment 13 resulted in a mean SR value of 
Ra = 2.710 µm, as explained in Table 9.

While the maximum VS amplitude values were obtained 
for MPs’ combinations of (N = 23 m/min, f = 250 mm/min, 
and a = 2.3  mm), and (N = 23  m/min, f = 350  mm/min, 
and a = 1.5 mm). The first MPs’ combination was related 
to experiment 10, where N and f were kept at their values 
(N = 23 m/min and f = 250 mm/min), and the DC was at the 
highest proposed value a = 2.3 mm. The second MPs com-
bination was related to experiment 15, where N and a were 
kept at their values (N = 23 m/min, and a = 2.3 mm), and the 
FR was at the highest proposed value f = 350 mm/min. Fur-
ther, the maximum SR value (Ra = 3.120 µm) was obtained 
at the MPs’ combination of experiment 15 (N = 23 m/min, 
f = 350 mm/min, and a = 1.5 mm), which was related to the 
maximum VS values. Experiment 10 resulted in a mean 
SR value (Ra = 2.430 µm), which was related to maximum 
VS values too. Furthermore, experiments 1, 4, 7, and 13 
had high SR values, with Ra = 3.068 m, Ra = 3.042 m, 
Ra = 2.483 m, and Ra = 2.710 m, respectively.

Discussion

SR measurement, characterization, and online prediction 
present a vital role in the enhancement of machining per-
formance and the increase of machine automation. In order 
to ensure a machining process free of unwanted vibrations 
and with a good surface finish, this work focuses on an 
experimental investigation of the MPs’ influence on VS and 
SR in the aluminum alloy AA5083 end milling operation. 
It also develops three ANN models for potential use in the 
online prediction of SR in a CNC milling machine. Differ-
ent combination sets of the MPs (CS, DC, and FR) were 
used to assess each cutting parameter’s effect individually 
on both the VS and SR. The results showed a significant 

Table 9   Average surface roughness measurements

Experiment 
no.

MPs Average surface 
roughness value

N (m/min) f (mm/min) a (mm) Ra (µm)

1 19 250 1.5 3.068
2 21 250 1.5 1.619
3 23 250 1.5 2.132
4 25 250 1.5 3.042
5 27 250 1.5 2.663
6 23 250 0.7 1.317
7 23 250 1 2.483
8 23 250 1.5 2.093
9 23 250 2 2.028
10 23 250 2.3 2.430
11 23 150 1.5 1.047
12 23 200 1.5 1.229
13 23 250 1.5 2.710
14 23 300 1.5 2.391
15 23 350 1.5 3.120
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Table 10   Maximum amplitude 
values in both time and 
frequency domains and their 
related time and frequency 
values

Experiment 
no.

Property Maximum amplitude values in both time and frequency domains and 
its related time and frequency values

1 X [time] 12.06 12.39 12.55 12.63 12.71 12.99
Y [Amplitude] 14.18 13.47 13.89 13.38 13.59 13.25
X1 [frequency] 100 100.6 50 100.8 99.2 94.19
Y1 [Amplitude] 3206 13,240 11,140 7866 7778 7404

2 X [time] 12.12 12.30 12.48 12.68 12.84 12.96
Y [Amplitude] 12.72 12.63 13.03 12.75 12.60 11.71
X1 [frequency] 100 100.6 101 50 200 100.6
Y1 [Amplitude] 27,360 15,150 7542 6129 3435 15,400

3 X [time] 12.18 12.26 12.49 12.86 12.92 12.98
Y [Amplitude] 13.77 13.36 13.82 12.67 13.63 12.32
X1 [frequency] 100 100.7 50 200 50.26 300
Y1 [Amplitude] 28,740 12,000 7749 4640 5856 3678

4 X [time] 12.08 12.22 12.54 12.72 12.84 12.96
Y [Amplitude] 13.43 13.75 13.84 12.55 13.66 12.61
X1 [frequency] 100 100.8 50 50.51 100.9 50.22
Y1 [Amplitude] 29,650 11,400 10,610 5722 9405 8505

5 X [time] 12.1 12.38 12.50 12.58 12.84 12.96
Y [Amplitude] 14.11 14.14 13.75 14.57 12.98 12.44
X1 [frequency] 100 100.7 101 100.9 50 50.29
Y1 [Amplitude] 28,570 15,010 8689 5100 10,860 8139

6 X [time] 12 12.2 12.46 12.70 12.98 12.70
Y [Amplitude] 13.18 13.47 13.62 12.53 12.72 12.53
X1 [frequency] 100 50 100.82 100.85 100.88 100.85
Y1 [Amplitude] 28,830 9575 8337 8077 7015 8077

7 X [time] 12.21 12.37 12.53 12.77 12.83 12.93
Y [Amplitude] 13.77 13 13.19 12.84 12.60 13.68
X1 [frequency] 100 100.7 50 100.8 200 50.4
Y1 [Amplitude] 28,850 11,340 9186 6422 4642 5324

8 X [time] 12.16 12.26 12.43 12.7 12.82 12.98
Y [Amplitude] 13.5 12.44 12.52 12.65 12.88 12.54
X1 [frequency] 100 99.33 50 99.17 100.8 50.36
Y1 [Amplitude] 26,480 10,970 8805 7260 7787 5859

9 X [time] 12.17 12.22 12.42 12.48 12.68 12.76
Y [Amplitude] 13.69 12.32 12.42 12.3 12.84 12.45
X1 [frequency] 100 50 100.9 100.8 49.66 50.4
Y1 [Amplitude] 25,240 9068 7324 8180 6214 5699

10 X [time] 12.09 12.23 12.39 12.56 12.86 12.98
Y [Amplitude] 21.06 21.27 21.31 21.59 21.6 20.68
X1 [frequency] 50 49.5 50.67 100 50.66 50.89
Y1 [Amplitude] 29,420 15,880 10,740 42,800 11,000 43,940

11 X [time] 12.18 12.52 12.83 12.87 12.48 13
Y [Amplitude] 0.6655 0.7205 0.6087 0.7767 0.5364 0.7265
X1 [frequency] 822 1055 616 1187 1040 791
Y1 [Amplitude] 1145 1078 856 629 672 629

12 X [time] 12.05 12.14 12.33 12.66 12.79 12.95
Y [Amplitude] 0.6781 0.6662 0.7056 0.6457 0.6323 0.6218
X1 [frequency] 822 616 791 1055 1187 511
Y1 [Amplitude] 1346 1077 1069 942 786 584
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relationship between both VS and SR, and the FR, then the 
DC, and finally the CS.

Increasing the CS while keeping the FR and DC constant 
at the selected mean values kept the VS amplitude values 
high through the proposed range (experiments 1, 2, 3, 4, 

and 5). Further, SR values were high and nearly the same 
throughout the proposed range of CSs and experienced a 
slight decrease in experiment 5. The high VS and SR values 
may refer to the mean selected values for FR and DC used 
in these experiments (the interaction effect of the MPs). 

Table 10   (continued) Experiment 
no.

Property Maximum amplitude values in both time and frequency domains and 
its related time and frequency values

13 X [time] 12.12 12.16 12.24 12.48 12.53 12.66

Y [Amplitude] 2.795 2.349 2.471 2.26 2.787 2.766

X1 [frequency] 412 504 823 206 490 642

Y1 [Amplitude] 5482 4794 4463 3684 2502 2472
14 X [time] 12.09 12.33 12.45 12.55 12.61 12.94

Y [Amplitude] 11.76 12.2 12.28 12.26 12.51 13.14
X1 [frequency] 100 50 100.7 200 51 300
Y1 [Amplitude] 26,180 9313 8463 4701 4065 3786

15 X [time] 12.06 12.24 12.5 12.66 12.88 12.94
Y [Amplitude] 20.52 21.67 21.66 21.01 20.45 21.14
X1 [frequency] 50 50.47 50.64 100 100.5 150
Y1 [Amplitude] 27,200 15,880 10,930 41,000 22,030 19,730

Fig. 20   Relation between 
CS and vibration amplitude. 
a = 1.5 mm, f = 250 mm/min, 
N = 19, 21, 23, 25, 27 (m/min)

a = 1.5 mm, f = 250 mm/min, N = 19, 21, 23, 25, 27 (m/min) 
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Fig. 21   Relation between 
CS and vibration frequency. 
a = 1.5 mm, f = 250 mm/min, 
N = 19, 21, 23, 25, 27 (m/min)
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Fig. 22   Relation between 
DC and vibration amplitude. 
N = 23 m/min, f = 250 mm/min, 
a = 0.7, 1, 1.5, 2, 2.3 (mm)

N = 23m/min, f = 250 mm/min, a = 0.7, 1, 1.5, 2, 2.3 (mm) 
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Fig. 23   Relation between 
DC and vibration frequency. 
N = 23 m/min, f = 250 mm/min, 
a = 0.7, 1, 1.5, 2, 2.3 (mm)

N = 23m/min, f = 250 mm/min, a = 0.7, 1, 1.5, 2, 2.3 (mm) 
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Fig. 24   Relation between 
FR and vibration amplitude. 
N = 23 m/min, a = 1.5 mm, 
F = 150, 200, 250, 300, 350 
(mm/min)

N = 23m/min, a= 1.5 mm, F = 150, 200, 250, 300, 350 (mm/min) 
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As seen in experiments 6 through 10, the increase in the 
DC had a substantial influence on the VS amplitude values 
and SR values. Increasing DC while keeping FR and CS at 
mean values resulted in a continuous increase in VS and SR 
until they reached their maximum values when DC was at 
its maximum value. In addition, increasing the FR values 
had a significant effect on the VS amplitude values and SR 

values, as in experiments 11, 12, 13, 14, and 15. The mini-
mum FR values associated with experiments 11, 12, and 13 
yielded the minimum VS amplitude in the time domain and 
frequency domain values as well as the minimum SR values. 
While the maximum VS amplitude values and SR values 
were obtained in experiments 10 and 15, the DC and FR 
were at their highest proposed values. Hence, both FR and 

Fig. 25   Relation between 
FR and vibration frequency. 
N = 23 m/min, a = 1.5 mm, 
F = 150, 200, 250, 300, 350 
(mm/min)

N = 23m/min, a= 1.5 mm, F = 150, 200, 250, 300, 350 (mm/min) 
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Fig. 26   Effect of CS on 
surface roughness. a = 1.5 mm, 
f = 250 mm/min, N = 19, 21, 23, 
25, 27 m/min

a = 1.5 mm, f = 250 mm/min, N = 19, 21, 23, 25, 27 m/min 

0

0.5

1

1.5

2

2.5

3

3.5

18 19 20 21 22 23 24 25 26 27 28

Su
rf

ac
e 

R
ou

gh
ne

ss
 R

a 
(µ

m
)

Cutting speed N (m/min) 

Fig. 27   Effect of DC on surface 
roughness. N = 23 m/min, 
f = 250 mm/min, a = 0.7, 1, 1.5, 
2, 2.3 mm

N = 23 m/min, f = 250 mm/min, a = 0.7, 1, 1.5, 2, 2.3 mm 
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DC had a more substantial influence on VS and SR values 
than spindle CS in the proposed range, as changing each 
one of them though keeping the other two MPs constant led 
to a significant change in VS values and SR values. In gen-
eral, the rise in DC and FR results in a rise in VS amplitude 
values and SR values, while the increase in CS led to an 
increase in VS amplitude values and a decrease in SR values.

This is similar to what has been found in previous inves-
tigations presented by numerous researchers: using a mul-
tiple regression model, Lou et al. estimated the SR in alu-
minum 6061 milling with a four flute high-speed steel cutter 
tool in [2]. They claimed that by using CS, FR, DC, and 
their interactions, the SR is accurately expected. The FR 
was the highest important MP for SR prediction. Response 
surface modeling was used by Arokiadass et al. in [11] to 
study SR in the milling of Al/SiCp metal matrix compos-
ites by carbide-based tool. They found that the SR will 
significantly decrease with the increase in CS, and the SR 
will increase with the FR increase. A slight increase in SR 
resulted from increasing the DC. High CS, low DC, and 
low FR will achieve the best SR. In the literature [49], Ravi 
kumar D. Patel et al. predicted the SR in the CNC milling 
of Aluminum using HSS CNC milling cutters and modi-
fied the MPs using ANN. They found that the SR is influ-
enced mostly by the FR, then the CS, and lastly the DC. This 
arrangement of parameter significance disagrees with this 
study (FR, then DC, and lastly CS). This can be referred to 
the different Aluminum material alloys used, the different 
cutting tool used, or the different cutting conditions range 
used, or taking all parameters interaction into consideration 
by them.

Other researchers reported further notes while turning 
different steel alloys; for the steel 9SMnPb28K (DIN) turn-
ing utilizing carbide inserts TPUN 160,308 P10 (ISO), 
Davin in the investigations [50] examined the influence of 

cutting condition on SR using multiple linear regression. 
He indicated that CS, followed by FR, and then the interac-
tion of both CS and FR had a substantial influence on SR. 
Whereas the DC, the interaction of both CS/DC and FR/DC, 
had no substantial influence on SR. The disagreement could 
be due to a change in material, the machining operation used 
(turning and milling are different), or the interaction effect of 
the MPs. Davim and Figueira in the literature [51] compared 
the machining forces, SR, and tool wear of traditional and 
wiper ceramic tools when turning AISI D2 steel. They came 
to the conclusion that FR had the greatest statistical impact 
on SR and that SR grows with cutting time and primarily 
with FR. For this range of MPs, the relationship of SR with 
CS is unclear. In the researches [52], Ibraheem et al. used 
ANN to forecast tool wear for cold-drawn plain carbon steel 
turning with a square carbide insert tool (grade P25). They 
claimed that the VS amplitude was significantly affected by 
the DC and tool wear. The VS amplitude increases some-
what as the DC increases, and the vibration frequency is not 
significantly affected by the change in DC. As CS rises, VS 
amplitude rises as well. The VS frequency changes are not 
influenced by the state of the flank wear or the cutting condi-
tions, but rather by the tool holder’s natural frequency, and 
the FR has a negligible impact on the VS amplitude. When 
turning free machining steel using a carbide tool, Gaitonde 
et al. [53] used the Taguchi technique and utility concepts 
to enhance the MPs with the goal of minimizing SR and 
maximizing the metal removal rate. According to their find-
ings, CS and DC are the two MPs that have the most impact 
on the optimization of multiple performance criteria. And 
in order to concurrently reduce SR and increase the material 
removal rate, a group of greater levels of CS, DC, and FR at 
the middle level is essential. However, the SR rises with a 
rise in FR, as the SR is proportionate to the FR square. The 

Fig. 28   Effect of FR on surface 
roughness. N = 23 m/min, 
a = 1.5 mm, f = 150, 200, 250, 
300, 350 mm/min
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disagreement may come up from studying the optimization 
of multiple criteria and cutting parameter interactions.

There are some limitations to this study, such as, it con-
centrated on Aluminum AA5083 alloy end milling, and a 
proposed range of MPs was used. Experimental measure-
ments were applied in the feed direction only. The machining 
operation used in the experiments is milling only. The study 
also concentrated on the SR performance criteria based on 
MPs and VS measurements. The effect of each parameter 
was studied individually, keeping the other two parameters 
constant at mean values. Parameter interactions were not 
studied in depth. Optimization of multiple criteria was not 
taken into account.

The implication and significance of the study are that 
although many investigations have been done to predict SR 
based on MPs, a small number of investigations have taken 
VS into account. Hence, SR could be predicted based on 
the MPs and VS measurements and save a lot of effort to get 
a good surface finish without unwanted vibration and with 
good machining criteria.

Development and Validation of ANN Models 
of Vibration Signal Measurement and Surface 
Roughness

In this research, three models of ANN were established to 
properly infer VS level and SR related to MPs’ conditions 
during milling operations and led to stable machining and 
good surface quality. The first ANN model was developed 
and optimized with the CS, FR, and DC as inputs and the 
frequency and amplitude of the VS as outputs. The second 
ANN model was developed with the CS, FR, and DC as 
inputs and the SR value as the output. The third ANN model 
was established with the CS, FR, and DC, the frequency and 
amplitude of VS as inputs, and the SR value as the output. 
ANN models were established and trained by applying the 
MATLAB 2018a software package, with a feed-forward 
architecture and the supervised learning technique of the 
backpropagation Levenberg Marquardt algorithm, with a 
sigmoid activation function. Three layers; input, output, 
and hidden were proposed, with 8 (in the first ANN model) 
or 10 (in the second and third ANN models) neurons in the 
hidden layers. Figure 29a–c shows the structure diagrams 
of the ANN models proposed to predict VS, SR (when the 
MPs are used as inputs), and SR (when the MPs, vibration 
frequency, and amplitude are used as inputs).

The measured data are separated into three groups: the 
training data set (70%), the validation data set (15%), and 
the testing data set (15%). All the training set of data is 
introduced to the ANN for learning, and the weights are 
updated after each epoch of the presentation of the data. In 
general, the training does not stop until a training error is 
reached or a certain number of iterations are finished. The 
network performance evaluation is carried out at this step by 
the comparison between the expected outputs related to the 
presented inputs with the experimentally measured values.

The network performance has been tested irregularly, 
at one thousand iterations, against the testing set. When 
generalization stops improving, the training automatically 
ends, as demonstrated by an increase in the validation data 
mean-squared error. Numerous architectures of ANN have 
been checked to get the best performance. In the different 
training runs, initial weights were taken as random numbers 
ranging from − 1 to + 1. The training took place on a PC for 
several minutes.

Figure 30 shows the ANN training using the nntrain tool 
in the three developed ANN models. In Fig. 31, the ANNs 
regression for training, validating, and testing the model 
is illustrated. The solid line denotes the ideal fit, whereas 
the broken line denotes the best line fit (output equals tar-
gets). Because the experimental and predicted values are so 

Fig. 29   Structure diagram of: a The first ANN model (vibration sig-
nal), b The second ANN model (SR), c The third ANN model (SR)
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Fig. 30   ANN training: a The first ANN model (vibration signal), b The second ANN model (SR), c The third ANN model (SR)
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Fig. 31   Regression plot: a The 
first ANN model (vibration 
signal), b The second ANN 
model (SR), c The third ANN 
model (SR)
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similar, the suggested ANN models have a strong correlation 
factor for VS and SR prediction.

The performance plot is presented in Fig. 32 for the 
training, validation, and test sets, expressed in terms of 
mean-squared error and shown on a log scale. The first 
ANN model reached its best performance of 0.27433 at 726 
epochs. While the second ANN model reached 0.018899 at 6 
epochs, the third ANN model reached 0.018487 at 9 epochs.

The developed ANN models are validated and tested, 
and the results are displayed in Figs. 33, 34, 35 and 36. 
The measured data is compared to the output data of the 
trained ANNs for the same inputs. Figures 33 and 34 show 
the measured vibration amplitude and frequency compared 
to the output vibration amplitude and frequency of the 
trained first ANN to the same inputs (MPs’ combinations) 
from experiments 1–15. Figure 35 shows the measured 
SR compared to the ANN output SR of the trained sec-
ond ANN for the same inputs (MPs’ combinations) from 
experiments 1–15. Figure 36 shows the measured SR com-
pared to the output SR of the trained third ANN for the 
same inputs (MPs’ combinations and vibration amplitude 

and frequency) from experiments 1–15. The trained results 
are close to the measured results in the three ANN models. 
The results of the training show that the ANN is capa-
ble of reproducing the experimental data with acceptable 
accuracy. The third ANN presented better results than the 
second ANN, indicating that using the VS in combination 
with the MPs enhances the modeling and prediction of 
SR using ANN.

Similar observations were reported by different research-
ers; in the literature [32], Antonio Vallejo used ANN to 
forecast the SR in peripheral milling; all ANN architectures 
had extremely low prediction errors and good performance 
when it came to machining various aluminum alloys and 
cutting tools. The wiper ceramic and traditional inserts in 
the turning of AISI D2 cold-worked steel through ANN were 
compared by Vinayak Gaitonde et al. [54]. It was shown 
that ANN models can be used to evaluate the performance 
of both ceramic inserts in terms of machinability and to 
analyze the effects of cutting conditions effectively. In the 
researches [28], Azlan Mohd Zain et al. predicted the SR of 
the Ti-6A1-4 V alloy in end milling machining using ANN. 

Fig. 31   (continued)
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They concluded that the SR model could be enhanced by 
changing the layers and nodes’ numbers in the hidden lay-
ers, which carried out an accurate performance evaluation 
by small training data samples. In the literature [31], Abdel 
Badie Sharkawy used three different forms of artificial net-
works to estimate the SR of end milling aluminum 6061 
alloy. It has been determined that the radial basis function 
network model provides the highest prediction accuracy. 
Monitoring tool wear by investigating the tool’s vibration 
amplitude was carried out using a multilayer ANN system 
created by Ibraheem et al. [52]. The number of iterations, the 
error level, the learning rate, and the momentum parameter 
of several ANN topologies have been tested. The training 
results demonstrate that the ANN can satisfactorily rep-
licate the experimental data. In the literature [5], Wu and 
Lei used VS analysis and ANN to forecast the SR of S45C 

steel during the milling process. They discovered that the 
vibration performance throughout the milling operation, in 
addition to the MPs, has an impact on the SR. As a result, 
the characteristics of VS are used to improve the accuracy 
of SR predictions.

Conclusions

The vibration signal and surface roughness of AA5083 
alloy end milling were studied using 15 experiments under 
the proposed machining parameters’ combinations. The 
influence of each machining parameter on both vibration 
signal values and surface roughness were studied sepa-
rately, whereas the other parameters were kept constant at a 

Fig. 32   Performance plot: a The first ANN model (vibration signal), b The second ANN model (SR), c The third ANN model (SR)
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selected value. Artificial neural network technique is used 
in the modeling and prediction of both surface roughness 
and vibration signal.

 The findings support that the rise in cutting speed, depth 
of cut, and feed rate led to a rise in vibration signal level 
values. Also, surface roughness values get higher with the 

rise in depth of cut and feed rate, and get lower with the rise 
in cutting speed. Both feed rate and depth of cut had a more 
substantial influence on vibration values and surface rough-
ness values than cutting speed.

Cutting Parameters’ combinations related to minimum 
and maximum vibration levels and surface roughness were 

Fig. 33   Measured and trained 
results of vibration amplitude 
using the first ANN model: a In 
experiments 1–5, b In experi-
ments 6–10, c In experiments 
11–15
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assigned. The cutting parameters that result in low vibra-
tion levels are a cutting speed of 23 m/min, depth of cut 
of 1.5 mm, and feed rate values of 150, 200, or 250 mm/
min, which lead to a low surface roughness of 1.047 µm. 
While the maximum vibration values were obtained at 
(N = 23  m/min, f = 250  mm/min, and a = 2.3  mm) and 
(N = 23 m/min, f = 350 mm/min, and a = 1.5 mm) machin-
ing parameter combinations, the maximum surface 
roughness value (Ra = 3.120 µm) was obtained at cutting 

parameter combinations (N = 23 m/min, f = 350 mm/min, 
and a = 1.5 mm), which was related to the maximum vibra-
tion values.

Three artificial neural networks with one hidden layer 
that consists of eight or ten neurons were successfully 
used to predict the vibration signal and surface roughness. 
The artificial neural network models showed a reason-
able agreement with the experimental results. Vibration 
levels and surface roughness can be controlled using the 

Fig. 34   Measured and trained 
results of vibration frequency 
using the first ANN model: a In 
experiments 1–5, b In experi-
ments 6–10, c In experiments 
11–15
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developed artificial neural network models that represent 
a guide for operators in selecting the proper cutting speed, 
feed rate, and depth of cut that guarantees stable cutting 
with acceptable surface quality. Taking the vibration sig-
nal into account enhances the ability of the artificial neural 
network to infer the surface roughness for different cutting 
conditions.

However, these findings may be related to certain machin-
ing operations, specific materials, cutting tools, and pro-
posed cutting parameter ranges. In future research work, 

different neural network types, such as adaptive neuro-fuzzy 
inference systems, genetic-based fuzzy inference systems, 
radial basis neural networks, or other artificial intelligence 
techniques could be used in surface roughness and vibration 
level model prediction. The developed models may be used 
to build an adaptive control system for online monitoring, 
prediction, and control of both surface roughness and vibra-
tion level. Optimization of multiple criteria (such as surface 
roughness, material removal rate, etc.) and cutting param-
eters’ interactions may be taken into account.

Fig. 35   Measured and trained 
results of SR using the second 
ANN model: a In experiments 
1–5, b In experiments 6–10, c 
In experiments 11–15
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