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Abstract This work discusses the supercritical technology

that has been instrumental in reducing pollution levels and

quick load response from the thermal plant. Various

operating parameters such as main steam pressure and

temperature; reheat steam pressure and temperature; excess

air ratio for a given fuel, feedwater heater bleed steam

pressure and temperature are listed. The influence of their

optimization is analyzed to reduce the pollution levels to a

certain extent. Primarily, this study deals with utilizing

artificial intelligence with the existing plant to predict the

optimum thermal plant performance. The input parameters

that are used in the artificial neural network (ANN) are

evaluated to find the energy input through a mixture of coal

and air. The ANN algorithm computes different parameters

that initiate the optimization, resulting in the least energy

input to the plant, as an algorithm fitness function. The

built model could also use online optimization in addition

to optimizing the design parameters when further modifi-

cations are made. This model is used to determine the

effect of various excess air ratios and different types of

fuels on the performance of the plant. The different boiler

losses of boiler from different coal samples and exergy and

exergy losses were analyzed at a particular excess air ratio.

Finally, this paper predicts that by using ANN tool opti-

mization, around 30% of coal savings are achieved which

is equivalent to CO2 pollution reduction, less reduction of

NOx and SOx pollutions, and an increase in plant effi-

ciency by 1.3%.

Keywords Energy efficiency � Turbine extractions �
Excess air ratio � Coal analysis �
Various operating parameters � Diverse pollutants levels

Abbreviations

CO2 Carbon dioxide

SOx Sulfur oxide

NOx Nitrogen oxide

ANN Artificial neural network

MW Megawatt

GA Genetic algorithm

PWR Pressurized water reactor

HPH High-pressure heater

HPT High-pressure turbine

IPT Intermediate pressure turbine

LPH Low-pressure heater

LPT Low-pressure turbine

TTD Terminal temperature difference

DCA Drain cool approach

FWHs Feed water heaters

BFP Boiler feed pump

CEP Condensate extraction pump

List of symbols

% Percentage

U Heat transfer coefficient

A Surface area

�C Celsius

i Inlet

o Outlet

B Boiler

C Condenser
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D Deaerator

G Generator

I First case

II Second case

III Third case

IV Fourth case

V Fifth case

D Design case

Introduction

Electricity demand is going to increase day-to-day life, and

this demand is one of the most important factors to measure

a country’s development. Out of all fossil fuels like coal,

diesel, and natural gas, coal has one of the profuse

resources used for electrical power generation. India has

about 8.4% of the coal reserves of the world. Coal demand

has been on the rise irrespective of the pollution it causes to

the environment. Coal-based steam power plants are gen-

erating nearly 70% of total power generation than other

fuels like oil and natural gas. Coal-fired power plants in

India work on subcritical steam pressure and temperatures,

and these plants give less performance and environmental

pollution, whereas supercritical once-through units give

maximum performance and generate fewer pollutants. Coal

combustion in a boiler generates diverse environmental

pollutants like carbon dioxide, carbon monoxide, nitrogen

oxide, sulfur oxide, and particular matter. Generation of

1 MW of electric power needed 0.59–0.62 tons of specific

coal consumption, which may lead to generating 0.59–0.62

tons of carbon dioxide and other pollutants. Increasing CO2

pollution leads to global warming. Due to the great envi-

ronmental concern, several researchers were doing their

work on coal-fired power plants. By changing the design

and operation of the plant, one may increase the perfor-

mance of the plant and reduce the CO2 emission to the

maximum extent. Several technologies have been devel-

oped to reduce the emission of CO2.

The ultra-supercritical and supercritical once-through

units give maximum cycle performance, minimize the cost

of power generation, and reduce pollution levels to a cer-

tain extent. The widely varying grid frequency in some

countries due to broad supply–demand imbalances often

forces generators to reduce/increase their station loads too

much below/high their defined capacities, resulting in

unreliable plant efficiencies. Supercritical once-through

drum-less units are very useful for part load generation

(Fig. 1).

As a normal practice power, plant efficiencies depend on

proximate analysis, ultimate analysis and also on the high

heating value of fuel like received basis and dry basis. The

detailed coal proximate and elemental analysis is given in

Tables 1 and 2. The power plant performance also depends

on different parameters like stoichiometric air ratio, and

heater bleeds pressure and temperatures, primary steam

pressure and temperatures, re-heater steam pressures, and

temperatures. The Artificial Intelligence tools are proven to

be good to get maximum plant performance by different

parameters (nonlinear and complex) a challenging task.

Ceyhun Yilmaz et al. [2] have done design calculation

of geothermal power plant on ANN toll, compared those

design parameters with the operation parameters, and

studied the different reasons for not providing design val-

ues from operating values. Finally, they have concluded

that as the temperature is increased the exergy efficiency of

geothermal power plant also increased. Also, when the

plant is operated with the optimized parameters, exergy

efficiency of the plant is increased and the plant operating

cost is decreased. ANN-based multilayer geothermal power

plant has given the best results than numerical optimization

techniques as per their analysis. Guotian Yang et al. [3]

have studied the application of long short-term memory

(LSTM) ANN modeling, which deals relation between

operating parameters and NOx pollution and principal

component analysis (PCA) in a 660 MW supercritical

boiler. They have concluded that the LSTM model gives

better results than the PCA model under the same operating

parameters and structure model. Chunlong Liu et al. [4]

have studied the excess air ratio in a pulverized coal

800 MW boiler. They have concluded that at excess air low

case, coal resident time inside the furnace increases during

the low PA velocity; this is beneficial to the bituminous

coal combustion inside the boiler and releases a high

amount of heat from the furnace. Sahar Safarian et al. [5]

have studied the power generation output from the different

biomass fuels under various atmospheric conditions.

Finally, they have developed an artificial neural network

model with an approach to thermodynamic equilibrium.

The developed model has a standard deviation of 0.999.

Lara Wernicke et al. [6] have done 360 MW coal-fired

power plant modeling with ANN in Brazil with the real

operation data. They have used the design of the experi-

mental approach on seven operating parameters to get the

maximum results in power output and efficiency of the

plant. Finally, the response surface methodology gives the

best results. Naserbegi and Aghaie [7] have done opti-

mization from multi-objective in Bushehr 1000 MW

nuclear power plant to obtain plant efficiency and power

output. They have concluded that ANN can find out best

operating parameters and later those parameters were done

a survey with gravitational search algorithm (GSA) for

generating fitness function.

Yan Shi et al. [8] had done a combustion experiment on

the ultra-supercritical coal-fired power plant. They had

considered the input parameters like unit load, coal
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properties, excess air, and air distribution system in ANN

models, and they studied the thermal efficiency and NOx

emission in various operating conditions. Finally, they

compared the optimization results with plant results for

further improvement of the system. De et.al. [9] had built

an ANN model for the steam process of coal biomass co-

fired combined heat and power plant to swiftly estimate the

performance with precision. De et al. [10] had built an

ANN model from the data of existing plants, and ANN

models have a fast response than physical model and more

flexible to implement physical plant operation. Suresh et al.

[11] had done the experiment on high ash coal-fired super

critical power plants by using ANN-GA tool. In the novel

ANN technique, cycle temperature is used to estimate the

energy input from coal. The ANN model of feedforward

propagation was trained with the plant data. Minghow et al.

[12] had done numerical modeling of a front wall pulver-

ized coal-fired boiler, and they also validated the results

with experimental data of operating conditions. Cerri et al.

[13] had followed a methodology that replaces traditional

model calculated with neural models for methane/air

combustion. Convective and turbulent diffusive transport

of species was considered for finite volume computational

fluid dynamics code. They had developed two versions of

mechanisms. The first one is based on traditional differ-

ential equations; the second version is based on neural

models which can extract and store knowledge. Chen et al.

[14] had done a comparison of the CO2 power cycle which

is using low-grade heat and the Rankine organic cycle

which is using working fluid as R123. They had concluded

that with the use of low-grade heat with equal temperature

rejection case, the CO2 power cycle gives higher output

than Rankine organic cycle ANN. Sacco et al. [15] had

used GA to augment turbine extraction in a secondary side

of a pressurized water reactor.

Jiang Feng wang et al. [16] had experimented on

supercritical CO2 power cycle and exergy destruction in

each component from heat recovery vapor generator

(HRVG). They concluded that under the specified waste

heat conditions, the CO2 power cycle is improved with

energy efficiency as an independent function employing a

genetic algorithm. It has been shown that turbine inlet

pressure, temperature, and atmospheric temperature are the

primary thermodynamic parameters that have a substantial

effect on the functioning of the supercritical CO2 power

cycle. Suresh et al. and Sotiris A. Kalagirou [17] had

explained AI system applications in combustion systems

Fig. 1 660 MW supercritical power plant schematic representation

Table 1 Continuous breakdown of coal sample

S.No Element %

1 Sulfur 0.5932

2 Oxygen 6.544

3 Carbon 38.012

4 Nitrogen 0.744

5 Hydrogen 2.706

Table 2 Elemental exploration of coal sample

S.No Element Value

1 Fixed carbon 25.52%

2 Moisture 12%

3 Ash 30.18%

4 Volatile matter 23.08%

5 G.C.V 3745.3 kcal/kg
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and internal combustion engines. The combustion system

includes boiler, furnace, and incinerators modeling,

whereas IC engines include diesel, spark engines, and gas

engine modeling and control. Nannariello et al. [18] had

applied the neural network analysis technique in modeling,

calculating, and approximating construction amenities

engineering. This paper also explains how neural networks

focused and solve problems in architectural and construc-

tion acoustics, civil and structural engineering, etc. Wagner

F. Sacco et al. [19] had done work on GA for the deter-

mination of optimum mass flow rate of turbine extractions

from the pressurized water reactor (PWR) for cycle effi-

ciency improvement. Cayeret al. [20] had analyzed a low-

grade steam carbon dioxide trans-critical cycle. They had

studied the high-pressure effects on energy efficiency,

exergy efficiency, values of total UA (product of overall

heat transfer coefficient and heat transfer area) with max-

imum and minimum temperature. The ultimate aim of this

study was to perform optimization of parameters to recover

heat maximum. Reddy and Ranjan [21] used the ANN

technique to predict solar resources in India. The operation

modes of a solar-driven ejector-absorption cycle were

modelled using Mohaghegi and Shayegan [22] only as a

function of the operating temperatures, and GA was

applied to identify the optimal thermodynamic output

conditions for steam generators for heat recovery. In order

to increase its economic advantages using ANN and GA,

Kalogirou [23] optimized the solar energy grid to maxi-

mize its economic benefits using ANN and GA.

Kalogirou [24] has done detailed ANN evaluation on

different fields of applications, and he has given a detailed

review in the boiler furnace where fuel combustion takes

place. Mathiadakis et al. [25] had performed an aerody-

namic analysis on gas turbine components. The work is

mainly highlighted by industrial gas turbine operation. The

main objective was to identify the deposits on gas turbine

blades that were influential in power generation and mon-

itoring of the compressor fouling. Fantozzi and Desideri

[26] had done the ANN capability by repeating the process

from input to output from energy conservation plants until

satisfactory output comes. Zang et al. [27–30] had exper-

imented on a solar-based thermodynamic cycle on elec-

tricity generation and heat using CO2as running fuel.

Holland [31] had introduced a genetic algorithm that sim-

ulates the biological evaluation naturally. The genetic

algorithm operated on a Darwinian survival principle on a

solution to deliver the best predictions to the solutions. The

genetic algorithm differed from other optimization tech-

niques because through this method the solutions are not

Table 3 Design parameters for 660 MW plant

S. No Design parameters

01 Excess air ratio %: 20

02 Condenser pressure, kPa: 10–13

03 Condenser cooling water inlet, �C: 32.8
04 Condenser cooling water outlet, �C: 42.8
05 Final feed water temperature, �C: 280.9
06 Terminal temperature difference (TTD), �C: 2.8
07 Drain cool approach (DCA), �C: 5.6
08 Bottom-to-fly ash ratio: 20:80

09 Ash composition: Silicon oxide— 60.11%, aluminum oxide—28.96%, iron oxide—4.75%

10 Ambient pressure at atmospheric condition, bar: 1.013

11 Ambient pressure at atmospheric condition, �C: 33
17 High-pressure turbine (HP) efficiency: 99%

18 Intermediate pressure turbine (IP) efficiency: 98%

19 Low-pressure turbine (LP) efficiency: 92%

Table 4 Major operating parameters for 660 MW plant

S. No Major operating parameters

01 Main steam pressure, bar: 259, and temperature, �C: 571
02 IP Turbine pressure, bar: 47and temperature, �C: 571
03 Deaerator pressure, bar: 9–13

04 Excess air: up to 27%

05 LP heater-1-bled steam pressure, bar: 6

06 LP heater-2-bled steam pressure, bar: 4

07 LP heater-3-bled steam pressure, bar: 3

08 LP heater-4-bled steam pressure, bar: 3

09 HP Heater-1-bled steam pressure, bar: 78.9

10 HP heater-2-bled steam pressure, bar: 58.1

11 HP heater-3-bled steam pressure, bar: 23.4
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from a single point but also from the sub-optimal solutions.

Xinying Xu et al. [32] had studied combustion efficiency

and various pollutant emissions from thermal power plants.

They had done combustion optimization by artificial

intelligence method and distribution combustion opti-

mization method. The Mapreduces programming frame-

work was used to parallelize the proposed algorithm model

and increase its capability to facilitate big data.

In this paper, the ANN simulator model for the entire

plant is developed. The entire power plant is classified into

two categories, boiler and its auxiliaries, steam turbine,

steam generator, and its auxiliaries. Firstly, two ANN

models have been developed for both boiler and turbine

areas operating under various constraints. The first boiler

ANN model should be linked to a turbine model, for uti-

lizing boiler feedwater in the boiler and steam used in

steam turbine, later cross-validation and testing were done

with a reliable dataset.

Simulation of Power Plant

Several supercritical 660 MW units and ultra-supercritical

800 MW units are in operation currently, and 1000 MW

ultra-supercritical power plants are in the development

stage. The required pressure, temperature, and mass flow

rates of individual components were specified, and the

design and operating parameters for the simulation of the

plant are given in Tables 3 and 4. The rated main steam

pressure is 259 bar, and the temperature is 571�C. The

plant is considered to be a single reheat and double

condensing, and condensation at the exit of the condenser

is assumed as a saturated state. Further leakage losses from

the boiler and pressure drop across the pipelines could be

neglected. The drain cool approach of LP heaters could be

neglected as they are giving fewer temperature changes.

The auxiliary power consumption for the entire plant

would be 7.2% of the gross generation of the plant (in-

cluding all auxiliaries which are considered from unit

auxiliary transformers). For the simulation of plants, dif-

ferent excess air ratios and different Indian coals are con-

sidered and different heaters’ bleed pressures were

considered along with and without heaters services. Table 5

shows the different coal samples.

Plant energy efficiency

¼ Net electricity output to the grid

Themass flow rate of coal XHHV dry basis of the coalð Þ
ð1Þ

Plant exergy efficiency

¼ Net electricity output to the grid

Themass flow rate of coal XSpecific exergy of the coal

ð2Þ

Methodology

A power plant has various complex subsystems like a coal

handling plant, ash handling plant, reverse osmosis plant,

demineralized plant, etc. The plant simulation data

obtained from design and various operating conditions are

used to train the artificial neural network to find the energy

Table 5 Different coal samples for 660 MW plant operation

S.No Description Design coal Coal sample-1 Coal sample-2 Coal sample-3

As received

(%)

Dry basis

(%)

As received

(%)

Dry basis

(%)

As received

(%)

Dry basis

(%)

As received

(%)

Dry basis

(%)

Proximate analysis

1 Fixed carbon 17.3 19.807 26.40 30.226 20.1 23.013 23.28 26.654

2 Ash 44.3 50.7235 26.65 30.512 39.70 45.453 32.0 36.637

3 Moisture 19.4 – 23.35 – 20.20 – 22.72 –

4 Volatile matter 19 21.753 23.60 27.02 20.0 22.898 22.0 25.188

Ultimate analysis

1 Carbon 30.5 34.92 39.02 44.669 30.62 35.057 34.0 38.927

2 Hydrogen 2.79 3.194 2.83 3.2401 2.90 3.3203 2.80 3.0258

3 Oxygen 3.00 3.434 6.77 7.7511 5.28 6.0452 7.32 8.3808

4 Nitrogen 0.51 0.5839 0.77 0.8759 0.78 0.893 0.66 0.7556

5 Sulfur 0.5 0.5725 0.62 0.7058 0.52 0.594 0.50 0.5725

6 Ash 44.3 50.7235 26.65 30.512 39.7 45.453 32.0 36.637

7 Inherent

moisture

19.4 – 23.35 – 20.20 – 22.72 –
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input through coal. The finest set of several factors at

different load conditions giving the least energy input to

the power plant is predicted by using artificial neural net-

work as a fitness function with the genetic algorithm. The

optimum plant efficiency is obtained from the set of dif-

ferent parameters that could be optimized. The optimiza-

tion of the total plant is divided into (i) boiler-side

optimization and (ii) turbine-side optimization. Boiler-side

optimization can deal with the different types of coals,

excess air ratio, main steam pressure, main steam temper-

ature, re-heater steam pressure, and re-heater steam tem-

peratures. Turbine-side optimization can deal with heater-

bled steam pressure and temperatures, LP turbine steam

pressure, and temperatures.

Fig. 2 A 660 MW supercritical power plant schematic representation

Fig. 3 660 MW Neuro-genetic

optimization methodology

Fig. 4 Neuro-genetic optimization methodology in 660 MW power plant

123

450 J. Inst. Eng. India Ser. C (June 2022) 103(3):445–457



Artificial Neural Network (ANN)

ANN is a tool that deals with the inputs and outputs by

training similar to the neural structure of the human brain.

ANN consists of several interconnected neurons with a

proper weight, which are in linear or nonlinear transfer

functions, and these are capable of controlling the linear or

nonlinear performance of a system. Multilayer feedforward

networks are a type of network, which is using this study.

The networks consist of an input layer, a hidden layer, and

an output layer. Once the inputs are introduced into the

networks, they will be multiplied by their weights and then

they are added and moved to give an output. The data used

as inputs are transferred layer by layer, and the output is

achieved. ANN is a good modeling scheme used to test

models faster and easier than any other system. The

achieved outputs are compared with the preferred output

values and are used to modify the weights of the network to

lessen the extent of the fault. Hence, through this ‘‘super-

vised learning’’ iterative process, a satisfactory level of

Table 6 Generation versus excess air heater data with and without extractions

Power generation Excess air ratios in

different cases

Heater without extraction, Energy input

(105)kwh in different cases

Heater without extraction, energy input

(105)kwh in different cases

I II III IV V D I II III IV V D I II III IV V D

660 MW 21 20 22 21 21 20 6.825 6.762 6.688 6.680 6.675 6.793 3.534 3.498 3.496 3.492 3.488 3.522

600 MW 22 23 24 21 22 21 6.708 6.652 6.645 6.652 6.642 6.669 3.514 3.482 3.481 3.478 3.472 3.508

545 MW 23 24 25 22 24 22 6.621 6.565 6.552 6.548 6.428 6.569 3.502 3.424 3.42 3.41 3.400 3.495

500 MW 24 25 25 26 24 24 6.527 6.478 6.465 6.455 6.452 6.498 3.482 3.414 3.41 3.41 3.400 3.472

475 MW 26 25 26 27 25 25 6.457 6.388 6.285 6.185 6.085 6.397 3.355 3.22 3.21 3.2 3.188 3.348

450 MW 27 28 28 26 27 26 6.387 6.312 6.288 6.188 6.088 6.322 3.344 3.2 3.122 3.12 3.110 3.240

425 MW 28 29 28 27 26 27 6.33 6.266 6.122 6.022 6.018 6.278 3.301 3.194 3.19 3.18 3.150 3.205

400 MW 29 29 29 28 30 28 6.25 6.172 6.165 6.065 6.052 6.196 3.285 3.152 3.144 3.14 3.120 3.181

Fig. 5 Regression fit based on the ANN model for excess air using

660 MW boiler

Fig. 6 Regression fit for without extraction of feedwater heater

660 MW plant based on the ANN model

Fig. 7 Regression fit for extraction of feedwater heater 660 MW

plant based on the ANN model
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faults is identified. In general, the excess air ratios vary

from 10 to 30% depending on the combustion conditions

inside the boiler. The combustion conditions depend on the

various elements in the coal, the oxy-fuel ratio of the

boiler, availability of load demands from the grid, and

unexpected outages of the power plant. A nonlinear

regression problem is considered in this paper as the excess

air ratios and turbine extractions are varying continuously.

ANN Simulator Development for Thermal Power
Plant

The main drive of this analysis is to build the ANN sim-

ulator model for the entire plant. The total power plant is

divided into two categories: the first one is a boiler and its

auxiliaries, and the second one is a steam turbine and its

auxiliaries, including a steam generator. First, two ANN

models have been developed by studying different cases

from both boiler and turbine areas. The first boiler model

could be linked to a turbine model utilizing feed water that

goes to the boiler and steam from the boiler supplied to the

steam turbine. To alter the dataset as consistent, data pre-

processing is necessary for artificial neural network train-

ing. Then particular dataset is used for training ANN’s with

cross-validation and testing. A satisfactory result has been

obtained by trial and error.

Selection of Data for ANN Training from Real Plant

The ANN deals with the interrelationship between a set of

input and output parameters. It can be achieved from

training; thus, the appropriate selection of data for training

from the existing plant is most central for the prediction of

the accuracy of the final ANN-developed model. Required

data daily for 20–30 min for 30 days have been obtained

from the thermal plant which has been acknowledged. To

develop a precise ANN model, the following stages are

carried out from the plant data.

(a) Data filtering, (b) data selection with a suitable rep-

resentation of each category, (c) selection of transfer

functions and rang, (d) testing of selected data, (e) selection

of input and output parameters. The 660 MW supercritical

thermal power plant line diagram is useful in the analysis

and optimization (Fig. 2).

Neuro-Genetic Optimization

A wide range of operating parameters are needed to use

neuro-genetic optimization for finding the best output. In

this work, the wide ranges of operating parameters are

considered from the existing operation of the plant. For-

getting the best output of the plant, the entire plant is

divided into boiler and turbine stages. In the first stage,

optimized values of operating parameters were found from

MS pressure/temperature, RH steam pressure/temperature,

and excess air ratio by considering a different range of

operating parameters, whereas in the second stage opti-

mized values from turbine-side parameters like LP turbine

pressure/temperature and turbine-bled steam pressure/

temperature were found by considering a different range of

operating parameters.

The 660 MW artificial neural network diagram consists

of 8 input variables with 4 hidden neurons and one output

variable (Fig. 3). The neural network is obtained from the

Levenberg–Marquardt backpropagation algorithm with 4

hidden neurons for the plant that can solve excess air, with

considering and without considering feedwater heaters.

Fig. 8 Optimization

convergence curve of 660 MW

power plant except FWHs

Fig. 9 Optimization convergence curve of 660 MW power plant with

FWHs
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The population size of the genetic algorithm is 20, and

approaches considered 1000 for getting accurate results.

Figure 4 shows the application of the 660 MW parameters

in a neural network tool from MATLAB software. Table 6

shows the data at different cases (case-I to case-v and

design case-D) of excess air ratios, heater with extractions,

and heater without extractions.

The data fit obtained between physical operating and

ANN model for excess air is shown in Fig. 5. In this case,

different excess air ratios were considered at different

loads; iteration has been done with all cases by comparing

the design case. Finally, the regression fit of case no.5 has

given 94.5% accuracy than other cases. ANN model is the

better way to find out the operating parameters.

The data fit obtained between physical operating and

ANN model for feedwater without extractions is shown in

Fig. 6. In this case, different feed water extractions were

considered at different loads and iteration has been done

with all cases by comparing design cases. Finally, the

regression fit of case V has given 96.9% more accuracy

than the other cases.

The data fit obtained between physical operating and

ANN model for feed water with extractions is shown in

Fig. 7. In this case, different feed water extractions were

considered at different loads and iteration has been done

Table 7 Various losses in boiler according to various coal samples

660 MW 660 MW 660 MW 660 MW

S. No Description Unit Sample1 Sample2 Sample3 Sample4

Proximate analysis

Fixed carbon % 17.3 26.4 20.1 23.28

Ash % 44.3 26.65 39.7 32.0

Volatile matter % 19.0 23.6 20.0 22.0

Moisture—inherent % 19.4 23.35 20.2 22.72

Gross calorific value—A.R.B Kcal/Kg 3630.52 3856.68 3700.82 3820.0

Ultimate analysis

Carbon—ultimate % 30.50 39.02 30.62 34.00

Sulfur—ultimate % 0.5 0.62 0.52 0.50

Hydrogen—ultimate % 2.79 2.83 2.90 2.80

Nitrogen—ultimate % 0.51 0.77 0.78 0.66

Oxygen—ultimate % 3.00 6.77 5.28 7.32

Boiler efficiency by heat loss method

I Unburnt carbon losses % 3.040 1.722 2.791 1.706

II Fly ash caused sensible heat loss % 0.251 0.134 0.207 0.155

III Bed ash caused sensible heat loss % 0.492 0.279 0.436 0.335

IV Moisture in combustion air caused loss % 0.061 0.066 0.056 0.056

V Moisture in fuel caused loss % 3.385 3.819 3.441 3.738

VI Hydrogen in fuel caused loss % 4.382 4.166 4.446 4.146

VII Dry flue gas caused loss % 4.200 4.216 3.793 3.450

VII Radiation loss % 0.250 0.250 0.250 0.250

Total loss 83.939 85.347 84.580 86.164

Table 8 Energy balance comparison

Components Reference case Case-1 Case-2 Case-3

Plant efficiency 38.9 39.2 39.5 40.3

Plant heat rate, kcal/kwh 2147 2165 2195 2210

Heat rejected through stack 10.8 10.2 9.88 9.92

Heat rejected through bottom ash (L.O.I) 1.4 1.1 0.8 0.7

Radiation and unaccounted loss 3.8 3.3 3.1 2.7
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with all cases by comparing design cases. Finally, the

regression fit of case V has given 99.8% more accuracy

than the other cases.

Initially, the optimized parameters are identified for an

operational power plant by considering design parameters

that were supplied by the OEM supplier. Then, the final

optimized parameters are obtained through an artificial

neural network. The optimized parameters obtained for a

specific system are repeated subsequently for all the sys-

tems throughout the plant (viz. excess air, turbine bleed

Table 9 Optimized 660 MW plant process data

S. No Component Energetic power input

(MW)

Energetic power output

(MW)

Exergy power input

(MW)

Exergy power output

(MW)

1 Boiler 1791.28 1562.35 2088.8 898.3

2 Combustion 1791.28 1787.72 2089.3 1256.8

3 Heat transfer 1791.28 1562.35 1256.8 906.6

4 HPT 209.88 206.28 225.3 206.3

5 IPT 326.16 318.034 312.5 294.5

6 LPT – 1/2 2 9 68.98 2 9 66.98 2X97.9 2X84.2

7 Turbine 674 659 733.6 669.2

8 CEP 1.731 1.13 1.8 1.2

9 LPH-1 26.41 25.145 3.3 2.1

10 LPH -2 33.82 32.68 6.2 5.2

11 LPH -3 80.25 79.85 30.3 28.0

12 LPH -4 52.21 50.85 22.2 18.3

13 Drip pump 0.125 0.122 0.112 0.09

14 Deaerator 462.3 457.8 75.9 68.1

15 BFP 20.87 20.25 20.9 18.9

16 HPH-6 52.56 51.85 41.2 36.8

17 HPH -7 88.68 86.82 88.3 71.3

18 HPH -8 89.31 88.48 38.5 34.4

19 Condenser-1/

2

391.097 279.634 20.8 15.6

20 Net Plant 1791.28 659 2090.3 660

Table 10 Results comparison between parametric optimization and neuro-genetic optimization

S.N0 Parameter Parametric optimization Neuro-genetic optimization

1 Boiler outlet steam pressure (bar) 257.6 257.6

2 Boiler outlet steam temperature (�C) 571 569

3 Condenser pressure (M Pa) 0.0103 0.0103

4 Excess air (%) 23 20

5 LPH-1 extraction pressure (bar) 0.42 0.39

6 LPH-2 extraction pressure (bar) 1.02 0.96

7 LPH-3 extraction pressure (bar) 3.02 2.15

8 LPH-4 extraction pressure (bar) 6.58 6.28

9 Deaerator extraction pressure (bar) 13.74 12.82

10 HPH-1 extraction pressure (bar) 28.78 26.31

11 HPH-2 extraction pressure (bar) 60.12 59.15

12 HPH-3 extraction pressure (bar) 91.20 86.34

13 Plant exergy efficiency(%) 32.0 31.60

14 Plant energy efficiency(%) 36.78 36.59
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parameters with or without FWHs) depicted in the con-

vergence curves and curve fittings (Figs. 8 and 9). The

physical model of a power plant model is built using the

design parameters obtained by the ANN tool. While

comparing both operation parameters optimization and

neuro-genetic optimization, there is a small difference that

can be observed from the calculated values for energy and

exergy efficiencies. The neuro-genetic optimization

methodology is to reduce computation effort as parametric

optimization requires several calculations to find out the

best method and gives a quick response.

Effects of different types of Coal Samples on Boiler
Efficiency

Boiler efficiency depends on the losses that are caused by

the type of coal samples under a constant load operation.

The various losses in the boiler are (i) unburnt carbon loss,

(ii) sensible heat loss due to fly ash, (iii) sensible heat loss

due to bottom ash, (iv) moisture loss in the air, (v) moisture

loss in fuel, (vi) hydrogen loss in fuel, (vii) dry flue gas

loss, (viii) radiation loss, from Table 7. Case-I gives less

boiler efficiency than case-IV due to dry flue gas losses

more. The dry flue gas mainly depends on excess air ratio

and exit flue gas temperature at the induced draft fan. The

optimized excess air ratio of 21% was obtained from the

regression fit-based ANN. A detailed boiler performance

for the different coal samples and the losses of energy-

exergy were estimated at that optimized specific excess air

ratio [33]. Finally, the total plant performance was

calculated.

% Excess air supplied EAð Þ

¼ O2 % at Economiser

21� O2 % at Economiserð Þ ð3Þ

The actual mass of air supplied=kg of fuel to the Boiler

¼ 1þ Excess air supplied

100
� Theoreticalairsupplied

ð4Þ

In order to obtain the performance of the plant and

perform its analysis, different coal samples were consid-

ered. Energy loss is considered as the ratio of energy

rejected by the system to the coal energy going to supply in

terms of input. Table 8 shows the energy balance for four

cases, whereas exergy loss is considered as the ratio of

exergy destruction to the coal exergy input supplied to the

system. Table 9 shows the detailed energetic and exergetic

evaluations. It is observed that there is an improvement of

plant energy efficiency by 1.42% and exergy efficiency by

2.9% with 26.65% ash coal instead of 44.3% ash coal. The

reduction of ash percentage from 44.3 to 26.65%, leading

to a saving of auxiliary power consumption by 0.5%. The

lessening of ash percentage in coal decreases the com-

bustibles in bottom ash and increases in combustibles in

coal. This would reduce the power consumption by mills

and significantly reduce the exergy destruction in the

combustion space and also increase the overall plant effi-

ciency. There is one drawback to reducing the ash content

of the fuel, and the flue gas temperature increases with the

same excess air and fuel input. This may affect the tube

material and may even damage the tube itself. To avoid this

condition, the airflow and fuel flow adjustments have to be

monitored continuously concerning the flue gas

temperature.

Results

In this study, after performing a detailed ANN analysis of

various process parameters, results with good accuracy are

found finally than with a parametric optimization. The

detailed parametric and neuro-genetic optimizations are

displayed in Table 10. Boiler outlet steam pressure is

constant as there is coal firing in both cases in the furnace.

The other remaining parameters are changed according to

combustion conditions inside the boiler. Boiler perfor-

mance could rise by reducing the ash content in the coal

sample and at the specified controlled flue gas outlet tem-

perature (129–138 �C) and based on sulfur dew point

corrosion. Plant efficiency increased by reduction of losses

like stack heat losses, bottom ash losses, and radiation

losses. Major exergy loss occurred in the boiler than any

other components due to irreversibility in combustion

space. Results indicated that with the 2088.8 MW exergy

input supply to the boiler through coal combustion in the

furnace, the exergy output from the boiler is 898.3 MW.

Hence, there is nearly 1190.5 MW of wastage from the

boiler. Similarly, a major energy loss occurred in the

condenser than any other component. A 391.097 MW

energy input is supplied to the condenser through turbine

exhaust steam from the last blade, and the energy output

from the condenser is 279.634 MW. Hence, nearly

111.46 MW of energy wastage occurred through the cir-

culating water in the condenser. From the study, 0.4%

exergy efficiency and 0.19% energy efficiency improve-

ment were achieved from the neuro-genetic optimization

approach.

Conclusion

A 660 MW power plant optimization scheme based on

artificial intelligence is a proven effective methodology

than a parametric optimization technique, whereas the
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neuro-genetic optimization method lessens the computa-

tional work than optimization of parameters, without

reducing the accuracy of results by using the online arti-

ficial intelligence technique. This analysis is performed on

different coal samples of different compositions. The

power plant performance shows a reduction of ash from

44.3 to 26.65% and an increase in plant efficiency from

83.93% to 85.34%. The enhanced performance of the

powerplant gives coal saving around 30% and improves

overall plant heat rate from 2210 to 2165 kcal/kWh. Also,

there is a decrease in auxiliary power consumption, 0.5%,

and an increase in the overall plant efficiency to 1.3%. The

energy loss of the plant reduces to 1.41% which minimizes

the exergy destruction in the combustor to the maximum

extent. Hence, around 0.4% exergy efficiency and 0.19%

energy efficiency improvement were achieved from the

neuro-genetic optimization approach.
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