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Abstract The problem of precise and soft lunar landing in

a pre-specified target location is solved using a numerical

scheme based on indirect approach. In indirect approach,

the problem is transformed into a two-point boundary value

problem using Pontryagin’s principle and solved. The

challenge in the indirect approach lies in finding suit-

able initial co-states with no prior knowledge available

about them. In the proposed numerical scheme, the dif-

ferential transformation (DT) technique is employed to

determine the unknown initial co-states using the infor-

mation on the target site and the flight time. The flight time,

the only unknown, is handled by differential evolution, an

optimization technique. The novel computational

scheme combines differential transformation and differen-

tial evolution techniques and uses differential transforma-

tion in multi-steps, to ensure the precise landing at the

target site. The guidelines that help fixing the bounds for

the flight time are provided. The proposed scheme is uni-

formly valid for various performance measures such as

minimum fuel, minimum control and minimum time. Also,

it is capable of introducing coasting during descent while

maximizing the landing mass.

Keywords Lunar soft landing � Optimal trajectory �
Indirect approach � Differential transformation �
Differential evolution

Introduction

In general, the soft landing mission from an initial parking

orbit (say, 100 km circular) consists of the following flight

phases. (1) Orbit transfer phase that transfers the spacecraft

from an initial orbit to an intermediate elliptical parking

orbit. The apolune altitude of the intermediate orbit is the

initial circular orbit altitude and a perilune altitude is

selected to meet the mission requirements. (2) A powered

braking descent phase starting from perilune altitude to

reduce both the horizontal and vertical velocities to zero at

touchdown. The powered braking phase may be divided

into subphases to meet some specific mission requirements.

In this paper, powered braking phase is considered as a

single phase till touchdown. For a lunar soft landing mis-

sion, the powered braking phase is very critical and must

be executed as precisely as possible by maximizing the

landing mass.

Many numerical solution schemes have been explored in

the literature to generate an optimal powered braking tra-

jectory since the first Apollo mission. The researcher [1]

discusses the Apollo lunar landing mission design, and the

gravity turn trajectory was adapted for powered descent

phase therein. Earlier, the scientist [2] analyzes various

soft landing mission strategies using POST software. Many

of the other landing trajectory design schemes are based on

optimal control theory. It is well known that an optimal

control problem can be solved mainly by two approaches:

(i) direct approach and (ii) indirect approach. In direct

approach, the optimal control problem is converted into a
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parameter optimization problem by discretizing the state

and control variables (sometimes, state variables are

obtained by numerical integration) and is solved by non-

linear programming (NLP) approach. Many authors [3-7]

have solved the lunar landing problem by using direct

approach. They mainly use pseudo spectral methods to

discretize the states and control variables at the selected

nodal points along the trajectory. It is well known that the

solution accuracy of direct approach depends on the

number of nodes and their distribution. When numbers of

nodes increase, the number of unknowns also increases

making the problem computationally expensive. Further, a

good initial guess is essential for rapid convergence. In

indirect approach, the problem is transformed into a two-

point boundary value problem involving the state and co-

state variables and the related equations representing their

variations. The control law is obtained as a function of

time-variant co-state variables. The variation of co-states is

governed by co-state dynamics which is derived using

Pontryagin’s principle. But the initial co-states (corre-

sponding to the components of the state vector) are

unknown and are obtained using, in general, some opti-

mization technique. The researcher [7] solves the lunar soft

landing optimal trajectory in planar form using indirect

approach. The unknown initial co-states are obtained using

controlled random search method. Some of the research-

ers [8] use both direct and indirect approaches to solve the

problem and present the merits and demerits of the

approaches. They use both heuristic and a gradient-based

methods for solving the problem. The sensitivity of gra-

dient-based method to the initial guess on the unknowns is

highlighted therein. The performance of indirect approach

is found to be better in terms of convergence and accuracy

in that study [8]. The major advantage of indirect approach

is that the number of unknowns is very less compared to

direct approach.

However, the unknown co-states do not represent any

physical phenomena, and so, determining them becomes a

challenging problem. This is the major reason for the non-

convergence encountered while using gradient-based

methods through indirect approach. Many researchers

attempted to find the initial co-states by introducing

assumptions. The researchers [9, 10] presented a Legendre

pseudospectral method and the scientists [10] presented a

Gauss pseudospectral method to find the co-state history.

These studies solved the optimal control problem using

direct approach by representing the problem as a nonlinear

programming problem through pseudospectral methods. As

pointed out earlier, the number of unknowns depends on

the number of nodes. Further, in these formulations, when

the final time is unknown, the number and distribution of

nodes pose additional complexities. Some of the

researchers [11] obtained the co-states using shape-based

method for trajectory construction. The trajectory con-

struction is carried out using constant thrust. The formu-

lations reported in the literature are specific to some

performance measure, and many of them are valid for

minimum time problems only in which the final time is

free.

In the current research, a method to determine the initial

co-states which is uniformly valid for all performance

measures, viz. minimum time, minimum fuel and mini-

mum control effort, is developed. Note that minimizing

fuel is equivalent to maximizing the landing mass. The

differential transformation (DT) technique [12] is

employed to determine the initial co-states using the

information about the target site. The DT scheme is used

by some authors [13, 14] to solve a two-point boundary

value problem in single step with final time which is

known.

But for landing at a target site problem, in general, the

final state that represents the target landing site is known

and the final time (flight time) is unknown. With the

unknown initial co-states determined using DT technique,

the number of unknowns reduces to one, viz. the flight

time. The unknown flight time is selected using differential

evolution (DE) technique [15].

In the proposed computational scheme, the computa-

tion of initial co-states is carried out in a multi-step DT

technique using the pre-specified target state vector and

the randomly selected flight time. The process of selection

of flight time and the computation of initial co-states is

continued till the touchdown boundary conditions are met.

This novel scheme is named as DT–DE scheme. The

technique DE needs only bounds for the unknown

parameter. So, guidelines to arrive at narrow bounds even

for the only unknown the flight time are discussed herein.

With the co-states determined using multi-step DT tech-

nique and the guidelines, for selecting bounds for the

unknown final time available, the soft landing trajectory

problem becomes easily solvable. The robustness and

validity of the proposed scheme are demonstrated for

three popular performance measures: (i) minimum control

effort, (ii) minimum fuel and (iii) minimum time. For all

three problems, the thrust is assumed to be limited and

throttling is available.

Problem Formulation

The lunar lander module must be transferred from an initial

orbit to a target site such that the touchdown velocity is

zero. The state vector of target site is given by

xt ¼ rtcosð/tÞcosðktÞ ð1aÞ
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yt ¼ rtcosð/tÞsinðktÞ ð1bÞ
zt ¼ rtsinð/tÞ ð1cÞ

where rt;/tandkt are radial distance, selenocentric latitude

and selenocentric longitude, respectively. To achieve pre-

cise and soft landing, the thrust direction along the tra-

jectory must be chosen satisfying the performance

measure.

The problem is formulated using Pontryagin’s principle

for different performance measures. First, the system

dynamics is given, and in subsequent sections, different

formulations are described.

The assumptions used in the formulations are: (i) Lander

is a point mass with three degrees of freedom; (ii) specific

impulse of engine is constant; (iii) moon is spherical; and

(iv) rotational effect of moon on landing trajectory is

negligible.

System Dynamics

To represent the dynamics of motion, moon-centered

inertial (MCI) coordinate frame (XYZ) is used with origin

at moon’s center. The schematic of coordinate system and

landing trajectory is shown in Fig. 1. In this frame, X-axis

is toward the 0-deg longitude (prime meridian of moon)

and XY plane coincides with equatorial plane of moon and

Z-axis is toward north pole of moon. This coordinate sys-

tem is not inertial because of the rotation of moon about its

axis. However, this effect is very small during the landing

phase (landing duration is very small compared to rotation

period), and so, it is neglected.

The equations of motion are:

_r!¼ v! ð2aÞ
_v!¼ �l

r3
r!þ k � a!T ð2bÞ

_m ¼ �k � Tmax

g � Isp ¼
�k � m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aTx2 þ aTy2 þ aTz
2

q

g � Isp ð2cÞ

where r!¼ ½x; y; z�, v!¼ ½vx; vy; vz�, a!T ¼ ½aTx; aTy; aTz�,
x; y; z are positions, vx; vy; vz are velocity components, and r

is the radial distance from moon’s centre. All these quan-

tities are in SI units, i.e., position in meter and velocity in

meter per second. The quantities aTx; aTy; aTz are accelera-

tion components of thrust (T), and k is the throttling

parameter. The parameters m; Tmax;Isp; g; l are the mass of

the lander module, maximum thrust, specific impulse,

acceleration due to gravity of Earth (9.80665 ms-2) and

gravitational parameter of moon (4.902800476E12 m3s-2),

respectively. Note that for propulsion system in which the

thrust is restricted (referred to as limit thrust), the throttling

parameter k varies between 0 and 1. For a propulsion

system with unlimit thrust, actual required thrust will be

computed.

Formulation for Landing Problem (Indirect

Approach)

Introduce co-state variables ð k!¼ ½px; py; pz; pvx ; pvy ; pvz ;
pm�Þ corresponding to the state variables ðX

!¼ ½x; y; z; vx; vy;
vz;m�Þ. The control variables of the problem are given by

u ¼ ðk; aTx; aTy; aTzÞ.
Let the performance measure be

minJ ¼
Z tf

t0

CðtÞdt ð3Þ

Following Pontryagin’s principle, the Hamiltonian H is

written as

H ¼ Cþ k
!� _

X
!T

ð4Þ

The co-state dynamics is derived using

_
k
!¼ � oH

ox

oH

oy

oH

oz

oH

ovx

oH

ovy

oH

ovz

oH

om

� �

ð5Þ

The control law by the optimality condition

oH

ou
¼ 08t�½to; tf � ð6Þ

Formulation for Minimum Control Effort

The performance measure of minimum control effort

problem with variable thrust is given by
X

Y

Z

Orbital track

Landing
Point

Thrust vector

Lunar
Equator

Prime Meridian

Fig. 1 Soft landing coordinate system and thrust vector schematic
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minJ ¼
Z tf

t0

1

2
k2ðaTx2 þ aTy

2 þ aTz
2Þdt ð7Þ

The co-state equations of motion (cf. Equation (5)) are

_px ¼
l
r5

pvx y2 þ z2 � 2x2
� �

� 3xðpvyyþ pvzzÞ
h i

ð8aÞ

_py ¼
l
r5

pvy x2 þ z2 � 2y2
� �

� 3yðpvxxþ pvzzÞ
h i

ð8bÞ

_pz ¼
l
r5

pvz x2 þ y2 � 2z2
� �

� 3zðpvxxþ pvyyÞ
h i

ð8cÞ

_pvx ¼ �px ð8dÞ

_pvy ¼ �py ð8eÞ

_pvz ¼ �pz ð8fÞ

_pm ¼
pm � k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aTx2 þ aTy2 þ aTz
2

q

Isp � g ð8gÞ

Unlimit Thrust

For minimum control effort, ideally, the thrust available

must be unbounded. So, for unlimit thrust, the control

variables are considered asu ¼ ðkaTx; kaTy; kaTzÞ. That

means the product of the acceleration component and the

throttling parameter is considered as a single parameter.

So, there are only three control parameters for this for-

mulation and they are given by the control laws [cf.

Equation (6)] for 8t 2 ½t0; tf �
k � a!T ¼ � p!v ð9Þ

where p!v ¼ ½pvx ; pvy ; pvz �.

Limit Thrust

To suit realistic conditions wherein the thrust level is

limited, the formulation [cf. Equation (9)] is modified and

the thrust acceleration vector given by,

k � a!T ¼ � p!v

p
� Tmax

m
ð10Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pvx
2 þ pvy

2 þ pvz
2

q

. Note that the control laws

are independent of the co-state of the mass (pm).

Formulation for Minimum Fuel

For minimum fuel problem, the thrust is limited to a

maximum value and the thrust variation is handled using

the throttling parameter (k). The flight time of the mini-

mum fuel problem can be either free or fixed. Note that the

minimizing the fuel consumption leads to maximum

landing mass. The performance measure of minimum fuel

problem with limit thrust is given by

minJ ¼
Z tf

t0

� dm

dt
dt

¼
Z tf

t0

k � m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aTx
2 þ aTy

2 þ aTz
2

q

Isp � g dt ð11Þ

The co-state equations of motion (cf. Equation (5))

except for mass are as given in Eqs. (8a)–(8f). The co-state

equation for mass is

_pm ¼ pm � 1ð Þ � k � Tmax

m � Isp � g ð12Þ

Note that Eq. (12) and Eq. (8 g) are not same. The

optimal thrust acceleration components and magnitude are

found using the optimality condition (Eq. (6)), and they are

given as follows:

a!T ¼ � g � Isp � Tmax � p!v

m2 � ð1� pmÞ
ð13Þ

To solve for the throttling parameter k, group the terms

containing k in Hamiltonian (cf. Equation (4))

Hk ¼ k � Tmax

m

� m � ð1� pmÞ
g � Isp � g � Isp

m � 1� pmð Þ ðpvx
2 þ pvy

2 þ pvz
2Þ

� �

ð14aÞ

Let

Hk ¼ k � Tmax

m
� S ð14bÞ

where

S ¼ m � ð1� pmÞ
g � Isp � g � Isp

m � 1� pmð Þ ðpvx
2 þ pvy

2 þ pvz
2Þ

� �

ð14cÞ

It can also be easily verified that the quantity ½mð1�
pmÞ� is invariant along the trajectory. Clearly, the minimum

of Hk is controlled by the function (S), known as switching

function. The function Hk is minimum, when

k ¼
0 for S[ 0

1 for S\0

( )

ð15Þ

When S ¼ 0, the value of k is set to zero or one based on

the previous value of S. This, clearly, is a bang-bang type

of control. That means, for minimum fuel problem, the

thrust level is set either to maximum or to zero, along the

trajectory. Note that the initial value of co-state of mass

(pm) cannot be equal to one. When set to one, _pm ¼ 0 and

the co-state of m is frozen to one always and Eq. (14)

becomes indeterminant. This observation will be used in

the formulation for differential transformation technique.
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Formulation for Minimum Time

The performance measure of minimum time problem is

given by

minJ ¼
Z tf

t0

dt ð16Þ

The co-state equations of motion (cf. Equation (5))

except for mass are as given in Eqs. (8a)–(8f). The co-state

equation for mass is

_pm ¼ pm � k � Tmax

m � Isp � g ð17Þ

The optimal thrust acceleration components obtained

using the optimality condition (Eq. (6)) is:

a!T ¼ � g � Isp � Tmax � p!v

m2 � pm
ð18Þ

As in the case of minimum fuel, to find the throttling

parameter k, group the terms containing k in Hamiltonian

(cf. Equation (4)) and the resulting switching function is

S ¼ �m � pm
g � Isp � g � Isp

m � pm
ðpvx

2 þ pvy
2 þ pvz

2Þ
� �

ð19Þ

It can also be easily verified that the quantity ðmpmÞ is
constant along the trajectory. The minimum of Hk is

controlled by the function S. For Hk to be minimum, the

choice of k is as follows:

k ¼
0 for S[ 0

1 for S\0

( )

When S ¼ 0, the value of k is set to zero or one, based

on the previous value ofS. The sign of the switching

function (S) (refer Eq. (19)) depends on the sign of the co-

state pm. If pmðt0Þ\0; then Sðt0Þ[ 0 and hence k t0ð Þ ¼ 0,

which implies that _pm t0ð Þ ¼ 0: So, pm remains negative in

the time interval ½t0,tf ], which, in turn, leads to no thrust

throughout which means the probe is not descending.

Therefore, the initial co-state pm cannot have negative

value or zero. It must remain always positive which makes

the throttling parameter k as one always.

Solution Scheme

In all the above formulations, the control variables are

expressed as functions of co-state variables (cf. Equa-

tions (9), (10), (13), (18)). As pointed out earlier, in the

indirect approach, if the initial co-states are known, the

time history of control can be computed. The determination

of co-states is attempted, in general, using optimization

techniques. The objective function for optimization

(different from the one for optimal control) represents the

achievement of the target site with zero velocity.

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xtÞ2 þ ðy� ytÞ
2 þ ðz� ztÞ2 þ vx2 þ vy2 þ vz2

q

ð21Þ

It is well known that the gradient-based technique fails

in the absence of good initial guess. In this problem, there

is no prior knowledge of initial co-states and so gradient

techniques are not suitable for solving an optimal control

problem using indirect approach. In an earlier study [8],

differential evolution (DE) technique has been used to

determine the co-states that minimize the objection

function F. The advantage of DE technique is that it

does not need an initial guess for the unknown and needs

only bounds within which the unknown varies. When very

wide bounds for the unknowns are used, the process

requires large computational time. To overcome the

complexity in determining the co-states and reduce the

computational time, a novel computation scheme is

proposed in this paper. The unknown initial co-states are

determined using differential transformation (DT)

technique. However, in addition to target state the time

of flight must be known for the use of DT technique.

Although for landing problem the target site is known, the

flight time is an unknown quantity. So, in this computation

scheme, the unknown flight time is randomly using DE

technique and DT determines the initial co-states using the

selected flight time. Both DE and DT operate concurrently

to minimize the function ‘F.’ In the following sections, first

a brief account of DE is given. Then, the procedure to

determine the co-states using DT is explained. Finally, the

computation scheme is presented.

Differential Evolution (DE)

In the first step of differential evolution technique, an ini-

tial population of a fixed size (NP) is built. If there are ‘N’

unknown variables, the population matrix is of the size NP

x (N ? 1). Of the N ? 1 elements of each row, first ‘N’ of

them are unknown variables selected randomly from their

respective bounds according to uniform distribution and

the (N ? 1)th element is the objective function value. The

set of randomly selected unknowns are used to evaluate the

objective function at touchdown after numerical propaga-

tion. In the second step, each row (say zi) of the population

undergoes three operations: mutation, crossover and

selection and a new set of elements is constructed. These

two steps are repeated until the value of objective function

is less than a prefixed small tolerance value. The DE

parameters are fixed as follows after few trial simulations:

the mutation factor = 0.8, CR = 0.9 and the population

size = 30 for the present problem.

123

J. Inst. Eng. India Ser. C (December 2021) 102(6):1379–1393 1383



Initial Co-States using Differential Transformation

DT is a technique that is used for solving a two-point

boundary value problem when the final state and the time

are known. DT transforms the equations from time domain

into a set of nonlinear algebraic equations in a transformed

domain. In DT, unlike Fourier and Laplace transforms, the

transformed function is expressed in terms of differential

operators. That is, if f ðte) is a function where te�½t0; tf �, the
image of this function (F( te)) for te 2 ½t0; tf � in the trans-

formed domain is given by

F te; jð Þ ¼ 1

j!

d jf ðtÞ
dt j

� �

t¼te

; j ¼ 0; 1; 2. . .: ð22Þ

and F te; jð Þ is the jth-order differential spectra of f(t) at

the time instantte. Now the solution to the function f tð Þ in
the original domain is obtained using inverse

transformation given as follows:

f tð Þ ¼
X

1

j¼0

F te; jð Þðt � teÞ j ð23Þ

The solution is obtained as a Taylor-series expansion

about the step size of the independent variable. For various

types of functions, the expressions for images are available

in the literature (Pukhov, 1981; Hwang et al., 2008). Some

examples are: When the function is a differential function

(f tð Þ ¼ _xÞ, the jth-order transformed function is given by

jþ 1ð ÞX te; jþ 1ð Þand when the function is an algebraic

expression (f tð Þ ¼ bxÞ, the jth-order transformed function

is given bybX te; jð Þ.
In the current problem, the unknown initial co-states are

obtained using DT technique. The details of the procedure

are given below. For use in DT, it is convenient to express

the state and co-state equations [Eqs. (2) and (8)] in state

space matrix form.

Let x,p, u be the state, co-state and the control vectors of

the system, respectively, where

x ¼ ½xyzvxvyvz�T

p ¼ ½pxpypzpvxpvypvz �
T

u ¼ ½000kaTx
kaTy

kaTz
�T

The mass state (m) is not considered in the DT process

because of the following reasons: (i) the co-state equation

of m does not explicitly depend on either x or p; (ii) the

control law does not depend on the co-state of ‘m’ for

minimum control effort case; and (iii) there are invariant

quantities ðmpmÞ and ½mð1� pmÞ� for minimum time and

minimum fuel cases. For these reasons, the co-state of

m need not be determined through differential

transformation technique.

For all performance measures, the co-state equations are

same except for co-state equation of mass. So, the state and

co-state equations [Eqs. (2) and (8)] are rewritten as

_x ¼ A1x tð Þ þ C1u tð Þ ð24aÞ
_p ¼ A2pðtÞ ð24bÞ

where

A1¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1�l
r3

0 0 0 0 0

0
�l
r3

0 0 0 0

0 0
�l
r3

0 0 0

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð24cÞ

C1 ¼ ð000111Þ ð24dÞ

A2¼

0 0 0
lðy2 þ z2 � 2x2Þ

r5
�3lxy
r5

�3lxz
r5

0 0 0
�3lxy
r5

lðx2 þ z2 � 2y2Þ
r5

�3lzy
r5

0 0 0
�3lxz
r5

�3lzy
r5

lðy2 þ x2 � 2z2Þ
r5

�1 0 0 0 0 0

0 �1 0 0 0 0

0 0 �1 0 0 0

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

ð24eÞ
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Equations (24a) and (24b) can be written in the matrix

form by substituting optimal control law [Equation (9)] of

minimum control effort.

_x
_p

� �

¼ A1 B1

0 A2

� �

x
p

� �

ð25aÞ

where

B1 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 �1 0 0

0 0 0 0 �1 0

0 0 0 0 0 �1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð25bÞ

The matrix B1 will have to be set according to the

performance measure.

Let BT ¼ B1

Then, for minimum time case, matrix B1 becomes

B1 ¼
g � Isp � Tmax

m2 � pm

� �

� BT ð25cÞ

For minimum fuel case, matrix B1 becomes

B1 ¼
g � Isp � Tmax

m2 � ð1� pmÞ

� �

� BT ð25dÞ

Let the matrix A be

A ¼ A1 B1

0 A2

� �

12x12

ð25eÞ

The initial and final conditions are given by

x t0ð Þ ¼ x0andx tf
� �

¼ xf ð26Þ

Now, define a single vector to represent state and co-

state variables together as follows:

y ¼ x p½ �T12x1 ð27Þ

and Eq. (25a) becomes

_y ¼ Ay ð28Þ

Let the variables y tð Þ; x tð Þ; p tð Þ be represented by

Y ;X;P; respectively, in the transformed domain.

Applying the DT concept for Eq. (28), we get

j+1ð ÞYðjþ 1Þ ¼ AYðjÞ ð29Þ

for j ¼ 0; 1; . . .; n (the infinite series is restricted to ‘n’

terms). The value for ‘n’ depends on the problem

sensitivity. Using the above recursive relation (cf.

Equation (29)), we get

YðjÞ ¼ 1

j!
Aj Xð0Þ

Pð0Þ

� �

ð30aÞ

where ½Aj�12x12 ¼ A� A� A. . .� A; jtimes. It is

represented as

½Aj�12x12 ¼
½Aj1�6x6 ½Aj2�6x6
½Aj3�6x6 ½Aj4�6x6

� �

ð30bÞ

Applying inverse transformation, we get

x tð Þ ¼
X

n

j¼0

ðt � t0Þ jXðjÞ ð31Þ

p tð Þ ¼
X

n

j¼0

ðt � t0Þ jPðjÞ ð32Þ

When ¼ t0, and on expansion of Eqs. (31) and (32), we

have

x t0ð Þ ¼ X 0ð Þandp t0ð Þ ¼ P 0ð Þ ð33Þ

The state vector at the final time is given by,

x tf
� �

¼
X

n

j¼0

ðtf � t0Þ jXðjÞ ð34Þ

x tf
� �

¼
X

n

j¼0

ðtf � t0Þ j

j!
Aj1 Aj2½ � X 0ð Þ

P 0ð Þ

� �

ð35Þ

x tf
� �

¼
X

n

j¼0

ðtf � t0Þ j

j!
Aj1X 0ð Þ þ

X

n

j¼0

ðtf � t0Þ j

j!
Aj2P 0ð Þ

ð36Þ

x tf
� �

¼ Qþ R � p t0ð ÞðusingEq:ð33ÞÞ ð37aÞ

where

Q ¼
X

n

j¼0

ðtf � t0Þ j

j!
Aj1x 0ð ÞandR ¼

X

n

j¼0

ðtf � t0Þ j

j!
Aj2 ð37bÞ

Rearranging Eq. (37a),

p t0ð Þ ¼ R�1 x tf
� �

� Q
	 


ð38Þ

Using Eq. (38), the initial co-state can be computed if

the final state is known. The step size (tf � t0) used in the

determination of initial co-states is referred to as DT step

size.

DT–DE Scheme—Algorithm

Combining differential evolution and differential transfor-

mation techniques, a novel computational scheme is pre-

sented. In the landing problem on hand, there are eight

unknowns in all, namely flight time and the seven initial

co-states. As earlier pointed out, the co-state pm need not be

determined in the DT scheme and it can be assigned an

arbitrary value. The remaining six co-states are determined

using DT scheme as described in the previous section. For

DT process, the final flight time must be a known param-

eter. But in the landing problem, as pointed out earlier, the

flight time is an unknown parameter. In the proposed
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scheme, the unknown flight time is selected using differ-

ential evolution (DE) technique. The DE technique

explores over a range of values to obtain the optimal flight

time. With each randomly selected value of flight time

from DE, the co-states are computed using DT. Using these

co-states, the state equations are propagated to find the

objective function (cf. Equation (21) of the optimization

process.

The performance of DT process with step size as the

whole flight time (chosen using DE) is found to result in

large target deviations. So, the chosen flight time is split

into several intervals resulting in discrete time instants

(t0; t1. . .. . .tf Þ and at each time instant DT is applied to

determine the co-states at that instant. So, there are two

step sizes in this scheme: (i) propagation step size (e.g.,

(t1 � t0Þ; ðt2 � t1Þ; etc.), used for the numerical propaga-

tion of system dynamics and (ii) DT step size (initially

(tf � t0Þ, then reduces to (tf � t1Þ; ðtf � t2Þ. . . and so on),

used for the determination of co-states at different time

instants of numerical propagation. The multi-step DT

process along with DE is named as DT–DE scheme.

The steps of DT–DE algorithm are the following:

I. By fixing ‘NP’ as the size of the population, a popu-

lation matrix (NP 9 2) each row of which consists of the

unknown flight time and the objective function is con-

structed. The objective function is evaluated after propa-

gating system dynamics. The steps involved in constructing

initial population are given as follows:

1. Choose tf randomly from its bounds.

2. Compute the co-states at t0 using the specified ter-

minal states and ðtf � t0Þ as the DT step size.

3. Compute the thrust accelerations at t0 as in Eq. (9) or

(10) or (13) or (18) (depending on the performance mea-

sure) using the determined co-states.

4. Propagate the state equations to next time step (t1)

using DT/numerical integration.

5. Update the DT step size as tgo ¼ ðtf�t1Þ. Compute the

co-state at t1 using tgo and the states at tf . During propa-

gation, at different time instants (ti), tgo ¼ ðtf�tiÞ.
6. Repeat steps 3 to 5 till tf is reached and evaluate the

final objective function given by Eq. (21)

At the end of step (6), one row of the population is

generated.

7. Repeat steps (1) to (6) for different randomly selected

flight times till the population is built.

II. Find the minimum of the objective function values of

the population matrix. If objective function\ �( a small

prefixed tolerance value), the solution is obtained.

III. Otherwise, update the population. In the update

process, each row is subjected to three operations (muta-

tion, crossover and selection) as mentioned in Sect. 3.1.

For each trial parameter (flight time, tf ), steps I-(2) to I-(6)

are executed to evaluate the objective function.

IV. Steps (II) and (III) are repeated till convergence.

In DT–DE scheme, the major advantage is that the co-

state equations need not be numerically integrated to find

the control variables at each computational step. Further-

more, the number of unknowns reduces to one.

Guidelines for Bounds for Flight Time

For DT–DE scheme, the flight time is selected using dif-

ferential evolution. The DE technique needs bounds for the

unknown flight time. The bounds for the flight time are

fixed by using the ideal rocket equation and the burn

duration.

Dv ¼ g � Isp � ln m0

mf
ð39Þ

tburn ¼ m0

1� 1

e
Dv

g�Isp½ �

� �

_m
ð40Þ

where m0andmf are initial and final masses, respectively.

For this computation, it is assumed that the thrust is

continuous and constant throughout the descent. The

constant mass flow rate is given by,

_m ¼ T

g � Isp ð41Þ

In general, the thrust level (T), Isp, and initial mass are

the known quantities. To derive the guidelines, the orbital

velocity is treated as the minimum velocity impulse the

propulsion system needs to produce. The burn time

required for the reduction in orbital velocity provides the

minimum limiting value for the actual flight time. For

example, if the lunar soft landing phase starts from perilune

of 15 9 100 km orbit, then the orbital velocity to be

reduced to zero is 1.692 km/s. For a propulsion system

with Isp of 315 s and with thrust of 2200 N and a mass of

874.4 kg (mass in 100 9 100 km orbit is 880 kg), the burn

time is 518 s. So, the lower bound for flight time is set as

518 s. The upper bound is set as (lower bound ? 100 s).

Table 1 provides the lower and upper bounds of time for

different thrust levels. However, these guidelines are not

applicable, for the performance measure of minimum

control effort with unlimited variable thrust case which is

practically improbable scenario.

Results and Discussion

For the case studies presented in this paper, the parking

orbit size and shape correspond to 100 9 15 km lunar

orbit. The braking maneuver starts from the perilune, i.e.,

when true anomaly is zero. The values of physical con-

stants are: equatorial radius of moon (rt) = 1,738,000 m

and gravitational constant of moon (l) = 4.902800476E12
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m3/s2. The initial location is chosen on the equator (0 deg

latitude and 0 deg longitude). The initial state at which the

landing starts corresponds to the orbital elements given in

Table 2. To demonstrate the performance of the DT–DE

scheme, a target landing site is required. For this purpose,

the minimum time formulation is solved using differential

evolution scheme and the resulting landing site is used as

the target site. To have confidence in the optimal solution

of DT–DE scheme, all problems have been solved using

DE scheme (Remesh et al., 2016) also for which all the

initial co-states are the unknowns. In all simulations, the

switching function S is considered to be negative if S \
1.0E-15.

Minimum Time Trajectory using Differential

Evolution

To generate a target site for use in DT–DE algorithm, the

minimum time problem is solved using DE scheme. As

pointed out earlier, there are eight unknowns: seven co-

states and the flight time for this scheme. Considering the

conditions that the co-state of mass cannot be negative, the

initial co-state of mass is arbitrarily fixed at ? 3. For all

other initial co-states, [-2, 2] is used as bounds. Because the

final time is unknown, the objective function given in

Eq. (21) is computed by terminating the numerical inte-

gration at touchdown. By this choice of termination,

determination of one of the unknowns, flight time is

eliminated. The threshold value for convergence is kept as

1.0E-02. This value ensures an accuracy of\ 1 cm/s in

velocity and\ 1 mm in position. Table 3 presents the

initial co-states obtained for the minimum time landing

trajectory. The values of the ratio (
pvz
pi
Þ are given for com-

parison with the result of DT–DE algorithm. The optimal

flight time and the related landing mass are given in

Table 4. The landing site of the optimal trajectory is given

in Table 5 and is used as the target site in the studies with

DT_DE algorithm.

Table 1 Bounds for flight time required for velocity braking

Thrust (N) Mass flow rate (kg/s) Bounds

Lower bound(s) Upper bound(s)

1800 0.5827 633 733

2200 0.71218 518 618

2600 0.8417 438 538

Table 2 Input parameters

Parameters Value

Semimajor axis (m) 1795.5E3

Eccentricity 0.023670287

Inclination (deg) 89

Argument of perilune (deg) 0

Longitude of ascending node (deg) 0

True anomaly (deg) 0

Maximum thrust (N) 2200

Specific impulse (s) 315

Mass (kg) 874.4

Table 3 Unknown initial co-states for minimum time trajectory using

DE

Co-state Initial values
pvz
pi
ði ¼ x; y; z; vx; vy; vzÞ

px 0.00355884 409.3686

py - 0.00000204 - 714,155.5882

pz - 0.00012364 - 11,783.2206

pvx 0.07837131 18.5894

pvy 0.02546095 57.2201

pvz 1.45687740 1

Table 4 Optimal minimum time trajectory

Parameter DE scheme

Flight time (s) 544.06

Landing mass (kg) 486.943

Total impulse (kN-s) 1196.929

Table 5 Landing site of the optimal minimum time trajectory

Parameter Value

Latitude (deg, north) 16.15234

Longitude (deg) 0.28956
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Minimum time Trajectory Using DT–DE Scheme

Performance of DT Scheme

To assess the performance of the DT scheme, the optimal

flight time obtained in the previous section is used as the

flight time (cf. Table 4) with other input parameters

remaining same as given in Table 2 and Table 5. The

critical parameter in the DT scheme is the size of the time

step used, referred to as DT step size. To demonstrate the

criticality of the time step, first the whole flight time is used

as the step size which means that determination of co-states

is attempted in a single step. The co-states determined

using single step are given in Table 6. To assess the

accuracy of these initial co-states, the equations of motion

of state (Eqs. (2a and b)) and co-states (Eqs. (8a–f) and

Eq. (17)) are numerically integrated till the final flight

time. The deviations in the position and velocity from the

target site are found to be large. So, in order to reduce the

deviations, a multi-step DT scheme is proposed and used.

The deviations in the target state are given in Table 7 for

different DT step sizes. It was noted that with the decrease

in the DT step size, the deviations in the target state

decrease. The error stabilizes after the DT step size of

0.5 s, and so, for all further studies a step size of 0.5 s is

used.

Another parameter that influences the performances of

DT is the number of terms to be considered in the series

expansion. With few simulation trials, it was observed that

when the number of term is � 15, the deviations remain

same (cf. Table 8). So, for further studies, the number of

terms is fixed at 20.

Minimum Time Trajectory Using Multi-step DT

Scheme (DT–DE Scheme)

As discussed earlier, in the DT–DE scheme, the flight time

is an unknown parameter. The unknown flight time is

selected using DE and the multi-step DT scheme is

employed to find the deviation at the selected final time.

The objective function for the optimization process is the

deviation in the position and velocity components of cor-

responding to the target site (cf. Equation (21)). The target

site given in Table 5, as mentioned earlier, is used. The

optimal flight time and the landing mass obtained using

DT–DE scheme are given in Table 9. Note that the optimal

trajectory with DE scheme is reproduced and the target site

is achieved using the DT–DE scheme. The initial co-states

determined using DT are given in Table 10. The values of

initial co-states given in Table 6 and 10 are slightly dif-

ferent because of the small difference in flight time

(544.0836 s against 544.06 s).

The profiles of altitude, velocity and thrust acceleration

components are given in Fig. 2 (a–c) for both DE and

multi-step DT–DE schemes. Also the differences between

the altitudes and velocities of the two schemes are given in

Fig. 2 (a and b). A perfect match of the profiles for the two

schemes can be seen. The computational time for DT–DE

scheme is very less compared to DE scheme (cf. Table 11).

The computational time for DE scheme will be even larger

than 170 s if wider bounds are used for the unknowns. All

computations have been carried out in a desktop computer

with Intel Core i5 (3570 CPU @3.4 GHz) processor and

4 GB RAM.

Minimum Control Effort Trajectory Using DE

and DT–DE Schemes (with Thrust Limit)

For demonstration, the thrust limit is kept as 2200 N.

Table 12 provides the optimal trajectory parameters. The

final landing mass is close to the landing mass obtained in

minimum time solution (cf. Table 4), i.e., total impulse

required for velocity braking is same. The initial co-states

obtained using both schemes are given in Table 13.

Table 6 Determined initial co-states with single step using DT

Co-state Initial values

px 0.00219624

py - 0.00000137

pz - 0.00008221

pvx 0.04993741

pvy 0.01552542

pvz 0.88836814

pm 3.0

Table 7 Influence of DT step size on DT scheme

Target parameter

deviations

Single step (step size = 544.06 s) Multi-step DT

Step size 50 s Step size 5 s Step size 1 s Step size 0.5 s Step size 0.1 s

Position (m) 17,890 14,726 1270 1 0.35 0.34

Velocity (m/s) 520 65 6.5 0.76 0.036 0.036

123

1388 J. Inst. Eng. India Ser. C (December 2021) 102(6):1379–1393



Although the initial values are different as in the earlier

case studies, the optimal trajectory parameters and the

control parameters are same. To derive more confidence,

the ratios are also provided in Table 13. Figure 3 depicts

the thrust acceleration profiles.

Minimum Fuel Trajectory using DE and DT–DE

Schemes

The minimum fuel trajectory is generated using DE

scheme and DT–DE scheme and is provided in Table 14.

The trajectory corresponds to the input conditions provided

in Table 2 and targets the site given in Table 5. As in other

cases, the initial co-states obtained using the two schemes

are given in Table 15. Clearly, there are several combi-

nations of the initial co-states that lead to the same optimal

solution. However, the optimal trajectory is uniquely gen-

erated by both the schemes. The profiles of thrust

acceleration components are given in Fig. 4 for both DE

and multi-step DT–DE scheme. A perfect match of the

profiles from the two schemes can be seen.

Comparison of Optimal Solution with Different

Performance Measures

The optimal solution with DT–DE scheme as discussed for

minimum time, minimum fuel and minimum control effort

with thrust limit is summarized in Table 16. It is to be

noted that results for all three cases are nearly same. These

results are nearly the same because of the following rea-

sons: (i) the target landing site of minimum time solution

used as the target in all cases; (ii) variable thrust but limited

to a maximum value; and (iii) time-free problem. For

minimum time case, the thrust settles at maximum

throughout the descent phase. For minimum fuel case, for a

time-free problem the thrust settles to the maximum

throughout the descent. For minimum control effort also,

for a time-free problem, the thrust settles to maximum

value in the limit thrust case. So in all cases the optimal

solution is nearly same.

Performance of Gradient-Based Method with DT

In this section, the efficiency of gradient-based scheme in

selecting the single unknown parameter of flight time is

explored. In this study, MATLAB function ‘fmincon’ is

used to find the flight time and used in DT scheme. This

scheme is named as DT-SQP scheme, and its performance

is compared with DT–DE scheme. The performance mea-

sure chosen for this assessment is minimum control effort

with variable unlimit thrust. For this case, the guidelines

for getting the bounds for flight time are not applicable.

Both DE and the function fmincon need a range of values

(bounds) for the unknown, and additionally, fmincon needs

an initial guess for the unknown parameter. For the flight

time bounds [400 s—600 s], fmincon converges in less

computational time compared to DE (cf. Table 17). In the

absence of DT, fmincon using direct scheme takes about

50 s with close initial guess. So, the use of DT brings down

Table 8 Influence of number of terms of series expansion (n) on DT scheme

Number of terms Position deviation from target (m) Velocity deviation from target (m/s)

3 8 95

5 3 26.5

10 0.382 0.04

15 0.35 0.036

20 0.35 0.036

50 0.35 0.036

Table 9 Optimal trajectory using multi-step DT–DE scheme

Parameter Value

Flight time (s) 544.0836

Landing mass ( kg) 486.9250

Total Impulse (kN-s) 1196.9803

Table 10 Determined initial co-states using multi-step DT–DE

scheme

Co-state Initial value
pvz
pi
ði ¼ x; y; z; vx; vy; vzÞ

px 0.00219620 404.5104

py - 0.00000136 -653,224.7426

pz - 0.00008211 -10,819.4574

pvx 0.04992954 17.7928

pvy 0.01552573 57.2202

pvz 0.88838565 1
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the computational time for a direct scheme also. However,

when the range is wider, fmincon converges to a local

minimum with the initial guess as 400 s. Therefore, the

DT–DE scheme which avoids non-convergence is pre-

ferred over DT-SQP.

Summary of Merits and Demerits of Different
Solution Schemes

The merits and demerits of different solution schemes are

compared in Table 18. In DT–DE scheme, the major

advantage is that the co-state equations need not be

numerically integrated to find the control variables at each

computational step. Furthermore, the number of unknowns

reduces to one. In a conventional indirect approach without

DT, the numbers of unknowns are eight and numbers of

equations are 14 including the co-state equations. In direct
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Table 11 Comparison of computational time

Solution scheme Computational time (CPU time) s

DE 170

DT–DE 35

Table 12 Optimal trajectory parameters—minimum control effort

with thrust limit

Parameter DE scheme DT–DE Scheme

Final time (s) 544.085 544.090

Final mass (kg) 486.925 486.921

Total impulse (kN-s) 1197.0198 1197.0199

Computational time (s) 172 38
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scheme, the number of unknowns depends on the number

of nodes selected.

Conclusion

The challenge in determining the initial co-states is dealt

through a new computational indirect scheme. The effi-

ciency of multi-step differential transformation technique

in achieving the target site precisely is demonstrated. With

a step size of 0.5 s, the deviation in the target site is

brought down to 35 cm in position and to 3.6 cm/s in
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Fig. 3 Thrust acceleration profile comparison—minimum control

effort with thrust limit
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Fig. 4 Thrust acceleration components—minimum fuel

Table 13 Unknown initial co-states comparison—minimum control effort with thrust limit

Co-state Initial values

DE scheme DT–DE scheme

initial co-states
pvz
pi
ði ¼ x; y; z; vx; vy; vzÞ initial co-states

pvz
pi
ði ¼ x; y; z; vx; vy; vzÞ

px 0.00237944 407.63095 0.00650677 404.5220

py -1.52e-06 -638,114.0724 -0.00000403 -653,134.4268

pz -9.166e-05 -10,581.8611 -0.00024307 -10,828.6985

pvx 0.05305068 18.2831 0.14791396 17.79501

pvy 0.01695228 57.2155 0.04600118 57.2188

pvz 0.96993339 1 2.63213174 1

Table 14 Optimal trajectory—minimum fuel

Parameter DE scheme DT–DE scheme

Flight time (s) 544.0599 544.08322

Landing mass (kg) 486.94367 486.9257

Total impulse (kN-s) 1196.92980 1196.983

Computational time 167 35

Table 15 Unknown initial co-states—minimum fuel

Co-states at

time = 0

DE scheme DT–DE scheme

Initial co-states
pvz
pi
ði ¼ x; y; z; vx; vy; vzÞ Initial co-states

pvz
pi
ði ¼ x; y; z; vx; vy; vzÞ

px - 0.00484134 409.3678 - 0.00146412 404.5166

py 0.00000278 - 712,909.6223 0.00000091 - 650,836.0769

pz 0.00016821 - 11,782.2291 0.00005472 - 10,823.4801

pvx - 0.10661490 18.5892 - 0.03328461 17.7938

pvy - 0.03463614 57.2203 - 0.01035055 57.2202

pvz - 1.98188875 1 - 0.59226083 1
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touchdown velocity. The number of unknowns of the two-

point boundary value problem is reduced to just one which

removes the complexity in the solution process to a large

extent. The differential evolution technique obtains the

solution very quickly using the initial co-states determined

by DT technique and the guidelines on the flight time. The

optimal landing trajectory is generated quickly without

losing the advantages of the indirect scheme. The compu-

tational time to generate the optimal solution using DT–DE

scheme is about 35 to 40 s, whereas using DE

scheme which uses bounds for initial co-states also, it is

about 170 s. The computational time for DT–DE scheme is

comparable with a gradient-based optimizer that uses the

initial co-states determined by DT technique. Further, the

use of DE technique along with DT technique avoids non-

convergence and local convergence scenarios which occur

when gradient-based optimizer is used. The robustness of

the scheme is demonstrated through the performance of

proposed DT–DE scheme for different performance

measures. The ability of the proposed scheme to introduce

coasting during descent is demonstrated.
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