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Abstract The small punch test (SPT) is a miniature

specimen testing technique to extract the mechanical

strength characterization of the in-service component—

to determine its preserved strength and fitness-for-service.

This technique delivers a convincing test outcome inline to

conventional testing using a universal testing machine. The

bulk material to retrieve from the in-service component for

testing is quite challenging without compromising the

structural strength integrity so this technique comes in

handy to serve the purpose. During the SP testing, the

miniaturized specimen is indented using a rigid ball punch,

and the specimen’s load–displacement response is mea-

sured simultaneously. Such load–displacement response is

post-processed further to determine the preserved strength

parameters to assess the remaining life of the system to be

fit for service. During the last couple of decades, numerous

research advancements are made and several researchers

have proposed various graphical and analytical approaches

to improve the strength determination and mechanical

characterization practice. However, many diverse opinions

emerged in the efforts to formulate the reliable and uni-

versal mechanical characterization approach, using the SPT

load–displacement data. This paper attempts to summarize

the latest developments which are made and verifying the

viability of popular graphical and analytical approaches for

non-irradiated ductile iron, 65-45-12 material which is

extracted from the in-service general-purpose mechanical

system. It is also outlined the certain challenges and

potential scope of improvement for SPT technique.

Keywords SPT � Small punch test � Fitness-for-service �
Miniature testing � Specimen test � Tensile strength

Introduction

The small punch test (SPT) is an evolving miniature

specimen test technique that was developed in the late

1980s by many researchers [1–4]. This technique is highly

effective to determine the preserved structural strength

integrity and residual life [5] of the in-service component

to realize its fitness-for-service. This approach was pri-

marily explored over irradiated and embrittled specimens

retrieved from the nuclear and steam power plants

[2, 4, 6, 7] for the subjected purpose but later, its novelty

was expanded further for general engineering system

applications [8–10].

The credible attempts have been made to establish the

reliable and universally viable correlations and method-

ologies—to determine the mechanical strengths from the

SPT load–displacement response. The objective of this

paper is to narrate the recent development, those are made

toward estimation of in-service component’s structural

strength integrity. It is also verified the viability of popular

graphical and empirical correlations for the ductile iron,

65-45-12 material’s characterization which is extracted

from one of the general-purpose mechanical systems.& Pruthvish Patel
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Small Punch Test

The small punch test was first developed at MIT for radi-

ation embrittlement studies and reported by Manahan et al.

[1], and further research was extended by Mao et al. [11].

The SP test apparatus includes a miniature specimen, the

lower and upper dies, spherical tipped punch, or spherical

ball punch separately. As shown in Fig. 1, the specimen is

clamped firmly in-between the dies whereas the specimen

is indented using the spherical punch at a gradual force.

Where (1) specimen (2) spherical tipped punch (3) lower

die (4) upper die (5) deflection measurement rod.

d1 = 8 mm, d2 = 4 mm, r = 1.25 mm, u1 = punch dis-

placement, u2 = specimen displacement, t0 = initial speci-

men thickness, P = applied load.

It is recommended to have a punch hardness of at least

55 HRC for steel specimens to ensure that it doesn’t

deform during the punching. Traditionally, the flat circular

or square-shaped, 0.2–0.5 mm thick miniature specimens

are utilized [11, 12] for SPT; excluding Simonovski et al.

[8] researched over the curved specimens.

The initial attempt had been made at Japanese Atomic

Energy Research Institute (JAERI) by Takahashi et al. [13]

to standardize the SP test practice for metallic materials to

determine the ductile to brittle transition temperature

(DBTT) and elastic–plastic fracture toughness (JIC). Later,

European committee of standardization (CEN) [5] worked

to standardize the SP test a code of practice for tensile and

fracture behavior for metallic material, where they referred

to the indenter load as a function of the diameter of

indenting ball, specimen thickness and lower die diameter.

Such SPT setup is attached to the universal testing

machine equipped with a load cell of 5–20 kN. Generally,

the indentation is carried out at the very slower displace-

ment rate of 0.2 mm/min until the specimen ruptures and

corresponding specimen displacement is measured using a

precise extensometer [8, 14, 15]. As an SP test output, the

load–displacement characteristic curve is generated.

The miniature specimens are being developed using

either virgin or aged material under investigation. Manahan

et al. [1] stamped the specimens from rolled sheets and

Mao et al. [11], sliced from steel rod of ø3.0 mm to define

the SPT technique. Generally, the aged material specimens

are scooped out using the sampler machines as shown in

Figs. 2, 3a, whereby surface material is removed through a

mechanically powered cutting mechanism. Later, the

extracted material is shaped into miniature specimen

blanks as Fig. 3b, employing EDM cutting, followed by

polishing to make them SP test compliant. Such scooping

techniques, minimally invade the in-service component, as

a result, its structural integrity remains intact.

Since the computer-added finite element analysis (FEA)

simulation tool capabilities have been advanced,

researchers [1, 8, 18, 19] have adopted the FE simulation-

driven approach to research the insight of specimens

characteristic transformation under the instantaneous

loading. Many times, it is also preferred to simulate the SP

test virtually, rather than to conduct experimental testing.

First-ever Manahan et al. [1], explored the potential of FEA

to convert the experimentally measured load–deflection

data into stress/strain information. Numerical simulation

has been performed using implicit non-linear solver by

resembling the real SP test boundary conditions as shown

in Fig. 4. The FEA geometry is typically idealized by 2D

axisymmetric elements to optimize the result accuracy and

computation time over the use of 3D elements due to

reduced order degrees of freedom and highly mapped mesh

control. Axisymmetric 2D elements are featured to glob-

alize the elemental stiffness behavior across the stipulated

angle with reference of datum axis. These elements are

equally capable to deliver reliable results using 3D ele-

ments. The frictionless contacts are defined between

punch-upper die whereas the specimen is tightly clamped

in-between the upper and lower dies. The free surfaces of

upper-lower dies are constrained as fixed. The SPT speci-

men is defined using isotropic elastic–plastic non-linear

material characteristics.

All the components except the specimen are considered

as a rigid to eliminate the simulation compliance error. The

punch follows the 2–3 mm of displacement load and

indenting the specimen under the frictional/frictionless

environment until it ruptures. The frictionless condition

imitates the SP testing over the lubricated specimen,

Fig. 1 Schematic representation of the SPT testing device [5].
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whenever the study is not meant to verify the friction

sensitivity.

Simonovski et al. [8] has conducted an SP test over the

flat and curved specimens to verify the specimen’s geo-

metrical stiffness sensitivity for mechanical characteriza-

tion. Later the experimental results were compared through

FE models as shown in Fig. 5.

Load–Displacement (L–D) Curve

During SP testing, the specimen deforms under the

indented load. Such constitutive relations are outlined in

form of L–D curve. The Manahan et al. [1] represented the

L–D curve at room temperature for the 316SS with 20%

cold work material as shown in Fig. 6 and similarly, Mao

et al. [11] performed the SP test using various grades of

steel material and varied L–D responses are plotted in

Fig. 7. Such variation is primarily realized due to variation

in material’s inherent elastic–plastic stiffnesses and frac-

ture toughness. Fleury et al. [20] performed the SP testing

for the temperature range of 25–600 �C and noticed that

maximum load is decreasing with elevated temperature as

shown in Fig. 8. Such a trend of observation conforms the

metal’s uniaxial strength deterioration along with temper-

ature increment.

Figure 9 defines the classical form of metallic speci-

mens’ L–D characteristic curve. The specimen displace-

ment behavior has been classified into four zones by

Kameda et al. [21]. I-Elastic bending of the specimen due

to contact with indenter, II-Plastic bending due to contin-

uous deflection, III-Plastic membrane stretching happens

after reaching certain plastic bending limit and IV-Plastic

instability where necking and specimen cracking starts

after reaching maximum load whereas fracture is happen-

ing in different regime with reference of its fracture

Fig. 2 Abrasive-edged spinning

cutter shell [16]

Fig. 3 a Nuclear reactor

pressure vessel sampler [17],

b Specimen blanks machined

using EDM out of sample

removed with the scoop system

[5]

Fig. 4 Axisymmetric numerical model setup

Fig. 5 1/4 symmetric FE model of flat and curved specimens [8]
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toughness—is not defined here. This L–D behavior is

characterized using Eqs. (1) to (4).

Pilkey [22] in the book ‘‘Formula for stress, strain, and

structural matrices’’ has proposed the equations to model

the elastic bending behavior. The elastic deflection has

been determined as a function of applied load through

Eq. (1).

P ¼
64Ide 1 � 1 � d2

e

� �� �1=2

1:504ðd=2Þ2ðL=2Þ4 C1 þ 2C2 1 � a2ð Þ þ a2½ �
ð1Þ

where C1, C2 and a = the geometrical constants, d = in-

denter diameter, P = applied load, de = elastic deflection,

and I = moment of inertia.

Fig. 6 L–D curve 316SS with

20% cold work [1]

Fig. 7 L–D curve of various metal specimens at room temperature

[11]
Fig. 8 Load–displacement curve for 12Cr–1Mo [20]

Fig. 9 Metals load–displacement curve at room temperature
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Whereas, plastic bending behavior is described by

Drucker–Prager constitutive equation [23] with the

assumption of all the SPT components are perfectly rigid

except miniature specimen. He defined to calculate the

plastic stress and strain using Eqs. (2) and (3), respectively.

r ¼ CPe

4p 0:721 Pdcð Þ0:33
h i

ðt0=3Þ
ð2Þ

where C = constant for the distributed load, Pe = load

determined from the elastic calculation, P = applied load,

d = indenter diameter, c = Poisson’s ratio, and t0 = initial

specimen thickness

_ep ¼ K
r
ry

� 1

� �n

ð3Þ

where r = plastic stress from Eq. (2), ry = yield stress,

K and n = strain hardening constants determined from

uniaxial tensile test data.

Zone III, Plastic membrane stretching behavior is

explained by Wang [24] using Hill’s plasticity theory based

on a stress–strain incremental equation. The strains across

the thickness,et can be determined using fundamental

Eq. (4).

et ¼ ln
t

t0

� �
ð4Þ

where t = deformed thickness, and t0 = initial specimen

thickness

Fleury et al. [20] have verified the validity of Eqs. (1)–

(4), by performing an SP test using austenitic 12Cr-1Mo

and 1Cr-0.5Mo steels specimens along with temperature

variation. Figure 10 shows the comparative data at 25 �C.

The analytical simulation data found good alignment with

the experimental data for elastic bending, plastic bending,

and membrane stretching regimes.

Tensile Material Properties

Determination of yield force Py and ultimate

strength ru

Lucas et al. [25] experimentally investigated the effects of

indenter ball size and specimen thickness on the SPT L–D

response. The authors observed that:

1. Increasing specimen thickness; increases the yield

load, maximum load, and displacement to rupture, due

to gain in the bending stiffness.

2. The yield and maximum load increase with increment

of punch ball size whereas displacement to rupture

decreases slightly.

It is extensively researched for SP tests using the various

grades of austenitic and ferritic steels to establish the

empirical correlations to estimate the yield stress, ry and

the ultimate stress, ru. There is consensus found among the

researchers for the potential use of linear equations such as

Eqs. (5) to (7) for mechanical strength determination.

These linear correlations are established by the normal-

ization of Py with t20 Eq. (5) and Pm with t20, t0dm [i.e.,

Eqs. (6) and (7)].

ry ¼ a1 þ
a2Py

t20
ð5Þ

ru ¼ b1 þ
b2Pm

t20
ð6Þ

ru ¼ b01 þ
b

0

2Pm

t0dm

ð7Þ

, where t0 = specimen initial thickness, Pm = maximum

load in a load–displacement curve, Py = elastic plastic

transition force, and dm = deflection at maximum force.

The correlation factors ai; bi; b
0
i depend on the dimensions

of the test rig such as punch diameter or diameter of the

lower die.

However, the correlation factor values are significantly

scattering to correlate the linear equations with graphical

methods to characterize the various class of materials.

Some researchers outlined the linear correlations with [26]

or without [11] integration of the correlation factors

a2; b2; b
0

2. The published distinct linear correlations along

Fig. 10 Simulation of the SP plastic bending and membrane

stretching regime at 25 �C [20]
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with the corresponding factors with reference of boundary

conditions are listed in Table 1.

Apart from the empirical formulations, many research-

ers [14, 15, 26, 35] explored the viability of various

graphical methods for stress estimations. The widely reli-

able graphical methods include the offset method, CWA,

and the two-tangent method. The offset method approach is

similar to Rp0.2 strain offset method which is being

Table 1 Constants values for the SPT load–displacement correlations to determine the yield and ultimate strengths

Sr.

no.

Reference Material, temperature Method a1 a2 b1 b2 b01 b02

1 Mao and

Takahashi

[11]

Austenitic and ferritic

steels, [25 �C]

2-Tangent 0 0.36 -320 0.13 – –

2 Kameda and

Mao [21]

Various austenitic and

ferritic steels,

[- 196 �C; 200 �C]

2-Tangent 0 0.36 – – – –

3 Fleury and

Ha [20]

4 different austenitic and

ferritic steels

[25 �C; 600 �C]

Not specified 0 0.33 – – – –

4 Ruan et al.

[27]

EUOFER97, [- 193 �C,

20 �C]

2-Tangent 149 � 108 0.345–0.481 218 � 101 0.062–0.092 – –

5 Campitelli

et al. [28]

316L stainless steel, RT 2-Tangent 0 0.39 – – – –

6 Contreras

et al. [15]

Ferritic-pearlite AE460,

[- 60 �C, - 50 �C]

Offset 50 lm t0/

10

207 0.268 269 0.051 – –

7 Matocha

et al. [29]

Carbon steel 22 K and heat

treatments, RT

Offset 100 lm

t0/5

0 0.31 – – – –

8 Garcia et al.

[26]

Wide variety of steels and

one Al alloy

Offset 50 lm t0/

10

0 0.346 – – 0 0.277

2-Tangent 0 0.442 268.8 0.065 – –

CWA 0 0.476 268.7 0.129 – –

9 Rodriguez

et al. [9]

Wide range of polymers First max. load–

deflection

curve

- 0.186 0.12 – – – –

10 Rodriguez

et al. [14]

Various sintered materials Offset t0=10 0 0.343 0 0.343 – –

11 Bruchhausen

et al. [19]

P-92 Specimen Offset t0=10 10.7 0.288 – – – –

2-Secant - 34.9 0.405 – – – –

CWA 28.8 0.382 - 27.04 0.326 - 11.8 0.093

12 Altstadt et al.

[30]

T91 steels, RT and 300 �C 2-Secant 0 0.44–0.60 – – – –

13 Janca et al.

[31]

Various steels and Al alloys Fe1:5 0 0.51 – – – –

14 Simonovski

et al. [8]

Grade 91 ferritic steel, RT CWA 0 0.442 – – – –

2-Secants 0 0.476 – – – –

Offset t0=10 0 0.346 – – – –

15 Moreno [32] Various Al alloys and

steels, RT

(t0/100, t0/10,

2-tangents,

2-secant)

0 0.23–0.98 – – – –

16 Peng et al.

[33]

316L stainless steel, RT 2-Tangents 25.71 0.69 - 63.97 0.13 – -

CWA 50.42 0.77 – – – –

Offset t0=10 54.92 0.49 – – – –

Offset t0=100 80.02 0.78 – – – –

17 Holmstrom

et al. [34]

Various steel alloys [RT,

650 �C]

N.A – – 0 0.279 0 0.179
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followed to define the yield strength for steels from uni-

axial tensile test data. Here, rather offsetting at 0.2% strain,

a parallel line to draw at t0=10 displacement with reference

of the initial linear elastic slope. Yield load Py is identified

at intersecting point of offset line to the L–D curve as

shown in Fig. 11.

Whereas, in the two-tangent method, as shown in

Fig. 11, two-tangent lines are drawn from the elastic and

plastic bending curves, and the yield load Py [11] relates to

the intersection point of the tangent lines. Moreover, as per

CEN CWA 15627:2007 [5] approach, Py is regarded at the

intersection point of L–D curve and vertical line drawn

down from the intersection of two-tangent lines.

Mao and Takashi [11] investigated TEM (HT-60) disks

and proposed a linear relationship to determine the

strengths as a function of applied force and initial specimen

thickness as mentioned in Eqs. (5) and (7).

Later Ruan et al. [27] performed SP testing at the

variable temperature of 80, 133, 173, and 293 K over the

tempered martensitic steel EUROFER97 specimens and

concluded that Eqs. (5), (6) driven strength parameters are

highly dependent on the temperature as shown in Figs. 12

and 13. The results appear that the yield strength estimation

Py=t
2
0 is highly temperature sensitive below 200 K.

Garcia et al. [26] performed SPT on 16 different mate-

rial grades of structural steel to stainless steel metal alloys,

to scrutinize the best-fit approach for the yield and ultimate

strengths estimation. We reference of such a study, the

author proposed the distinct empirical correlation factors.

Later, Bruchhausen et al. [19] optimized these factors.

Janca et al. [31] attempted to improve the linear corre-

lation Eq. (5), with the aim to make it universally viable

for yield strength estimation. Author such correlation as a

function of Py1.5, as per Eq. (8) which is claimed the

superior approach than CWA method. Such Py1.5 force is

denoted over the L–D curve, where the area under the

curve is 1.5 times greater than the complimentary area

above the curve.

ry ¼ a1 þ
a2Py1:5

t20
ð8Þ

Calaf-Chica et al. [36] found that yield strength

estimation does not only rely on elastic–plastic transition

load obtained with the t/10 offset method but also on the

minimum slope (Slopemin) during the membrane stretching

region (strain hardening region) of the L–D curve by

following Eq. (9), as an attempt to optimize t/10 offset

method.

ry ¼ a02Py

t20
þ a01Slopemin

t0
ð9Þ

where a0i = co-efficient obtained by regression analysis.

Eventually, some of the researchers have also attempted

to establish the non-linear correlation Like, Eskner et al.

[37], Fleury et al. [20] analyzed the elastic deformation

using classical plate bend theory, and found a good

agreement between SPT biaxial results with uniaxial ten-

sile data.
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Fig. 11 Determination of Py by various methods at room temperature

Fig. 12 Temperature dependence of Py=t
2
0 and of r0:2 [27]

Fig. 13 Temperature dependence of Pmax=t
2
0 and of UTS [27]
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ry ¼ 3Py 1 þ vð Þ
2pt20

ln
R

r
ð10Þ

, where Py = the small punch elastic–plastic load, t0 = the

original thickness, R = the radius of the lower die bore,

m = Poisson’s ratio, and r = the small punch equivalent

contact radius.

Calaf-Chica et al. [38] studied the deviation in yield and

ultimate strength estimation in absence of material isotropy

and the Bauschinger effect. He observed that in absence of

isotropy, the co-efficient of yield strength correlation

becomes invalidated.

Isselin et al. [39] have proposed a unique elastic energy

compliant approach by correlating it with force to yield

strength. The authors stretched the specimen until maxi-

mum force to gain extreme plasticity and subsequently

unloaded it at the same rate. The area under the L–D curve

measured which was observed while reverse deflection

until elasticity and defined the elastic energy Eel as a

function of stress using Eq. (11):

Eel ¼ r2
y

2 1 � v2½ �R2h

3Ep 1 þ v2½ � ð11Þ

where E = elastic modulus, v = Poisson ratio, and R =

radius of an aperture of the lower die. Eel = determined

experimentally using the load/unload method.

Modulus of Elasticity (E)

The initial slope ðSlopeiniÞ of L–D curve per Fig. 9, plotted

using t0=10 offset method defines Young’s modulus of

elasticity (E). It can be established as proposed by Cuesta

et al. [40]:

E ¼ k
Slopeini

t0

� �
ð12Þ

, where k = the co-efficient for elastic modulus.

Vorlicek et al. [41] attempted to characterize the

mechanical properties for the low-alloy ferritic steel and

demonstrated the analytical formulation for E, as a function

of various SPT parameters per Eq. 13. However, here, it

was assumed that the contact radius remains constant

throughout the disk’s elastic deformation whereas the

contacts are frictionless. As a result, such an assumption

leads to underestimation.

E ¼ Py

pdt0

� �
1:2 1 þ vð Þ ln

R

r

� �
þ 0:75R2 1 � v2

� �
=t20

� 	

ð13Þ

, where t0 = initial specimen thickness, d = specimen dis-

placement, Py = Yield force, R = the radius of the sup-

porting specimen jig, r = the contact radius, and

v = Poisson’s ratio.

Chica et al. [18] studied the sensitivity of Slopeini for

unloading/loading (UL) cycles and proposed the slope

determination with reference of unloading cycle because it

exhibits the pure elastic behavior and independent of

Poisson’s ratio influence. The author proposed the empir-

ical correlation as mentioned in Eq. (14) at the fixed punch

displacement at 0.1 mm for UL cycle. He found a good

linear agreement (R2 = 0.9999) using the correlation factor

of kUL 0:1 ¼ 14:84 mm�1.

E ¼ kUL0:1
� SlopeUL0:1

ð14Þ

Nowadays, commercial Finite Element Analysis (FEA)

simulation tools are advanced greatly to match the

experimental level of accuracy. FE simulation

compliments to bring greater insight regarding

specimen’s structural behavior transformation under the

various stages of loading. These imperatives have attracted

the attention of researchers to extend the work in the

domain of the SP test technique. Recently I. Simonovski

et al. [8] used curved specimens extracted from nuclear

fuel cladding tubes to correlate the variation in L–D as well

as stress–strain behavior with flat specimen under the

change of friction between punch and specimen.

Small Punch Test Simulation

As discussed so far, the diverse opinions realized among

the researchers to accord the most appropriate SPT

empirical correlations which universally comply for the

larger group of materials mechanical characterization. The

ductile iron material is widely used for general-purpose

mechanical product manufacturing which undergoes the

high-pressure rating; due to its easy availability and eco-

nomical raw material cost. Hereby, it is attempted to

investigate the SP test methodology and its empirical cor-

relations for the ductile iron, 65-45-12 characterization.

This investigation is accomplished through an FEA simu-

lation-driven approach. The ductile iron, 65-45-12 mate-

rial’s uniaxial tensile data are compared with FE simulated

SPT L–D response and comparative results are discussed

further.

FE Simulation Setup

Hereby, the ANSYS Mechanical Enterprise R19.2 FE [42]

FE simulation tool is utilized to conduct the virtual SPT

simulations for various boundary conditions. As shown in

Figs. 4 and 14, FEA geometries specification is set as per

CWA [5]. A flat specimen of size /8 mm 9 0.5 mm is

considered. The entire assembly is 360� symmetric so it is

idealized using axisymmetric behavior and meshed using

PLANE183 higher order 2D, 8-node quadrilateral element.
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The specimen is firmly clamped between upper and lower

dies and indenter ball punch exerting the force over spec-

imen to displace it.

All the geometries except specimen are defined as a

rigid body to capture the inherent specimen stiffness

whereas, the specimen’s 65-45-12 ductile iron defined

using a ‘‘multilinear isotropic hardening’’ material model

to capture the isotropic elastic–plastic characteristic and

material non-linearity. The true elastic–plastic stress–strain

characteristic points are fed as engineering data to follow

during the numerical solution convergence.

FEA Methodology Benchmarking

The researchers [19, 20, 26, 43] has typically employed the

ABAQUS numerical analysis tool whereas, in this study,

ANSYS Mechanical Enterprise 2020 R2 FE [42] tool is

explored so it’s being essential to benchmark the FEA

simulation methodology and computation accuracy with

the researchers’ simulation and experimental results. For

this purpose, the FE simulation boundary conditions are

replicated here to conduct ANSYS simulation with refer-

ence of the published data by Bruchhausen et al. [19].

Figure 15, shows G91 specimen deformation, extracted

from ANSYS FE simulation. The extracted load–dis-

placement relationship is compared with SPT experimental

and ABAQUS simulation data in Fig. 16. It is observed the

close match among all of the three L–D results. Such

agreement endorses the reliability of ANSYS simulation

methodology and computational accuracy for the potential

tool to carry over SPT research, as an alternate of experi-

mental testing.

Comparison of Ductile Iron Characterization

Our interest in this study is to verify the strength charac-

terization viability for aged ductile iron 65-45-12 speci-

men, using the linear Eqs. (5) to (7) and corresponding

factors published in the pieces of literature [19, 26] as

tabulated in Tables 3 and 4. The FEA simulation-based

approach is continued to simulate the SP test parameters.

The material properties of ductile iron, 65-45-12 are

defined with reference of Table 2, which are uniaxial

Fig. 14 FEA simulation setup

Fig. 15 G91 Steel ANSYS FEM results with l ¼ 0:2
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Fig. 16 G91 Steel FEM and SPT [19] load–displacement results

benchmarking with ANSYS FEM, l ¼ 0:2
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tensile test data, performed over the material extracted

from the in-service component.

FEA simulation is performed by considering the 0.2

frictional co-efficient to imitate the SP test boundary con-

ditions as mentioned in the literature [19, 26]. Figure 17

shows the ductile iron SP test L–D response until the

rupture phase. Whereas, Fig. 18 shows the subsequent

yield force estimation using the (1) 2 tangent method, (2)

CWA approach, and (3) t/10 offset method.

As tabulated in Table 3, Garcia et al. [26] and Bruch-

hausen et al. [19] proposed the universal factors for

material strength characterization using linear equation and

yield load estimated through graphical methods. The yield

strength compliance of the SP test with uniaxial data are

plotted over Fig. 19, to compare them with yield strength

estimation for ductile iron.

Similarly, Table 4 describes initially defined ultimate

strength correlation factors by Garcia et al. [26] and sub-

sequently optimized further by Bruchhausen et al. [19].

The ductile iron material’s ultimate strengths are estimated

with reference of maximum load extracted from Fig. 17,

L–D curve and linear Eqs. (6) and (7) with the integration

of optimized factors of Bruchhausen et al. [19]. The ductile

iron uniaxial and SPT data are compared in Fig. 20.

Results and Discussion

It is observed with reference of Fig. 19 comparative data

that the yield strength estimation for all the materials, using

CWA [5] and t/10 offset methods are closely matching. But
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Fig. 19 Uniaxial versus SPT Yield strength estimation using various

approaches, API X70 [26], P92 [19]

Table 2 Ductile iron, 65-45-12 mechanical properties utilized for

FEA simulation

Material E (GPa) Poisson’s ratio ry (MPa) ru (MPa)

DI, 65-45-12 170 0.275 281 610

Where ry = at 0.2% offset and strain hardening co-efficient, n = 7.9

Table 3 Factors proposed by literature for yield strength estimation

Approach Factor Garcia et al. [26] Bruchhausen et al. [19]

CWA a1 0 28.8

a2 0.476 0.382

Two-tangent a1 0 - 34.9

a2 0.442 0.405

t/10 offset a1 0 10.7

a2 0.346 0.288
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still, there are gaps to correlate the SPT estimated strengths

with uniaxial data, because all of them deviate from the

unity line.

Moreover, it is also noticed from Fig. 20 data, that

ultimate strength estimation is reliable using Eq. (6) for

API X70 but it is not true for ductile iron. The proposed

factors are not competent to determine the ultimate strength

accurately for ductile iron, using any of the linear

equations.

Overall, the relevance of proposed optimized factors for

ductile iron material is subjective and such inconsistency

may be primarily due to variation in materials elastic and

plastic stiffness along with its bulk modulus.

Summary

Overall, it is perceived the potential of SP testing for in-

service components’ mechanical characterization, rather to

rely on traditional universal tensile testing. However, there

are certain challenges, which need to be addressed to make

this technique more robust, reliable, and universal to

comply for the wider class and nature of materials. As we

studied earlier, one of the greatest challenges is for

appropriate post-processing of SPT L–D data to establish

the uniaxial stress–strain constitutive relationship. Many

graphical and analytical methods exist in public but their

reliability is highly subjective and distinct to specimen’s

material along with the test boundary conditions. The

analytical linear correlation factors diverge significantly for

different classes of materials. Some researchers [34, 39, 44]

have also formulated non-linear equations with the

assumption of plasticity theory using an inverse predictive

method for stress–strain behavior. These analytical for-

mulations are complicated to interpret and adopt too.

Moreover, the SP test L–D characteristic is sensitive to

the testing parameters like indenter ball punch to specimen

size ratio, specimen thickness, and shape.

As we realized the scattered results for ductile iron,

65-45-12 material strength characterization using the pub-

lished factors and characterization methods, prompts the

great scope of improvement for the SP testing methodology

and guideline to post-process the results for accurate

mechanical characterization for the universal class of

materials. It is pretty much challenging to get a micro-level

insight into specimen behavior during physical experi-

mental SP testing. Here, it crucial to exploit the virtues of

FEA simulation techniques to overcome the known issues.
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