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Abstract An analytical solution to study fundamental

behaviors of a pressure-driven electroosmotic flow in a

parallel plate microchannel is presented in the present

work. A thermally fully developed flow of a Newtonian

liquid is considered. The fluid motion is assumed to be

caused with a pressure gradient applied externally and an

electrostatic potential field. The electrical potential field is

determined by solving the Poisson–Boltzmann equation.

The Debye–Huckel approximation is not considered for

higher accuracy of results. A modified form of the Navier–

Stokes equation with slip boundary conditions is consid-

ered to evaluate velocity field and skin friction coefficient,

whereas the energy equation is simplified to obtain tem-

perature profile as well as Nusselt number. Homotopy

perturbation method (HPM) is applied to solve the Pois-

son–Boltzmann equation, whereas the momentum and the

energy equations has been solved analytically to achieve

the velocity and temperature profiles, respectively. The

predicted results are compared with existing work and

show a good harmony. Results obtained for electric

potential, velocity and temperature fields have been shown

graphically varying wall zeta potential, slip coefficient and

pressure gradient. Subsequently, a parametric study is

presented for skin friction coefficient and the Nusselt

number. Finally, an effort is made to determine local vol-

umetric entropy generation and global entropy generation.

The proposed results exhibit both the influence of the

Brinkman number and pressure gradient on the entropy

generation.

Keywords Microchannel � Parallel plates �
Pressure-driven electroosmotic flow � Zeta potential �
Nusselt number � Entropy generation

List of Symbols

2H Distance between two parallel plates (m)

w Electric potential due to EDL (V)

W Non-dimensional electric potential

! Perpendicular distance of a given point from the

center (m)

n0 Bulk ionic concentration (m-3)

Z Valence of ions

E Electric charge (C)

kb Boltzmann constant (J K-1)

T Absolute temperature (K)

n Zeta potential at the wall (V)

Z Non-dimensional zeta potential

j Inverse Debye–Huckle length (m-1)

k Electrokinetic length (m)

l Dynamic viscosity (Pa s)

U Velocity in x-direction (m s-1)

um Mean velocity (m s-1)

U Non-dimensional velocity

Fx Electrical force per unit volume of the liquid

(N m-3)

Ex Electric field strength (V m-1)

E Non-dimensional electric field strength

b Slip coefficient (m)

qf Local net charge density (cm-3)

L Distance between the two electrodes (m)

C1, DP Non-dimensional pressure gradient

C2 Ratio of electrical force per unit volume to

frictional force per unit volume

B Slip coefficient
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qw Heat flux at wall (W m-2)

Cf Skin friction coefficient

sw Shear stress (MPa)

q Density (kg m-1)

cp Specific heat (J kg-1 K-1)

Tw Wall temperature (K)

Tm Mean temperature (K)

U Non-dimensional temperature

h Non-dimensional temperature at wall

Nu Nusselt number

Introduction

In current years, microfluidic systems are rapidly becoming

a significant area of study for numerous prospective

applications in chemical and biomedical sectors.

Microfluidic-based bioMEMS or lab-on-a-chip devices can

execute sample separation, injection, chemical reaction and

finding in an assimilated microfluidic circuit [1, 2]. The

most important microfluidic operations in various bio-

MEMS are pumping, mixing, thermal cycling, dispensing

and separating. Many methods like thermopneumatic,

magnetohydrodynamic, electrostatic, piezoelectric and

electroosmotic pumping are offered for fluid transport in

microchannels [3–6]. The electroosmotic pumping is pre-

ferred among these methods due to simplicity of micro-

fabrication and a great degree of flow regulation. Recently,

electroosmotic pumps have been presented as a substitute

to the porous media based electroosmotic pump. It is

essential to gather knowledge on basic characteristics of

EOF in microchannels for optimum design of electroos-

motic pumps. The ions of an electrolyte solution dissociate

when the solution is in no flow situation. These ions have

charge reverse to that of the solid surface and have been

invited by the solid surface. As a result, dual layers of

positive and negative charged ions are built adjacent to the

solid surface. These layers are termed electric double layer

(EDL) [7, 8]. When both electric field and pressure gra-

dient is applied tangential to this charged solid surface, the

ions from the diffuse layer start flowing due to a body force

imposed by the electrical field, resulting a combined

pressure-driven EOF [9]. EOF offers a very flat velocity

profile. Moreover, switching without valves, precise regu-

lator of conveyance and handling of liquid sample with an

electrical field and absence of moving parts are few added

advantages of electroosmotic pumping.

In this regard, some existing literatures are reviewed for

a systematic idea on fluid delivery in microchannels.

Burgreen and Nakache [10] investigated analytically

electrokinetic liquid flow within a fine capillary channel of

rectangular cross-section. The liquid transport is imposed

by an electric field. The electrical potential distribution is

determined considering the Debye–Huckel approximation.

Masood Khan et al. [11] offer an exact analytical solution

of a Burgers fluid in a cylindrical domain adopting tem-

poral Fourier transform and Hankel transform. They con-

sidered a time periodic electroosmotic flow. It is finally

concluded that the size of EDL thickness and velocity rises

as the electrokinetic parameter is increased. Yang and Li

[12] studied the influences of EDL adjacent to the two

phase boundary and the imposed electro kinetic field of a

pressure imposed flow in rectangular microchannels. An

accurate solution of the momentum equation is determined

adopting Green function formulation. They concluded that

the liquid flow is influenced by the EDL field for high zeta

potential. Jain and Jensen [13] established an analytical

model to examine the influence of electrokinetics for fluid

motion in microchannels. The momentum equation is

modified assuming the Debye–Huckel linear approxima-

tion to determine velocity profile. The heat transfer anal-

ysis has also been studied. They concluded that the

electrokinetic effects have considerable effect on fluid flow

whereas the effect on heat transfer characteristics is neg-

ligible. Ngoma and Erchiqui [14] studied numerically the

influence of slip factor and heat flux for pressure-driven

EOF of liquid within parallel plate microchannel. They

considered the Poisson–Boltzmann equation for electric

Fig. 1 Schematic of the

physical problem
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potential field, the reduced momentum equation for fluid

flow behaviors and the energy equation for heat transfer

characteristics. It is concluded that the slip factor, pressure

gradient and heat flux influence the fluid motion and heat

transfer in different manner. Shamshiri et al. [15] carried

out the 1st and 2nd law analysis for electroosmotic pres-

sure-driven flow of non-Newtonian liquid within uniform

micro-annulus. They solved numerically the governing

equations in cylindrical polar coordinates using finite dif-

ference method. In the second law analysis, the entropy

generation rates are determined and the influence of ther-

mal diffusion, Joule heating and viscous dissipation are

examined on the total entropy generation. Wang and Jian

[16] investigated the thermal transport characteristics of

fluid in slit nanochannels under the joint influences of

streaming potential and pressure driven. The non-dimen-

sional temperature distribution is analytically determined

from the energy equation based on the obtained electric

potential and velocity profiles. Finally, the entropy gener-

ation rates are obtained and presented graphically.

In general, the electric potential field for electroosmotic

flow in microchannels is obtained using a simple analysis

implementing the Debye–Huckel approximation. The

approximation is effective only if the wall zeta potential is

very small [14, 17–20]. However, higher orders of zeta

potential are often faced in real-life applications. Hence,

the accuracy of predicted result becomes less. For such

instances, in place of the Debye–Huckel approximation

tedious and time-consuming numerical simulations are

used. Alternatively, the analytical techniques used in the

literature are lengthy, laborious and complex. Therefore, it

becomes very essential to apply a simple analytical tech-

nique to predict the essential behavior of EOF in

microchannels disregarding the Debye–Huckel

approximation.

This work considers a pressure-driven EOF within a

parallel plate microchannel. The analytical technique HPM

is used to determine solution of the Poisson–Boltzmann

equation as an effective and a simple analytical solution

technique. Subsequently, the electric potential distribution

is utilized to solve the momentum equation for obtaining

velocity distribution and the energy equation for determi-

nation of temperature profile.

Description of Physical Problem

Figure 1 shows liquid motion within a microchannel

between two parallel plates. The plates are considered with

a distance of H and assumed to be extended to both infinite

x- and z-axis. Hence, variations of properties are assumed

in the y-direction. Electrodes are positioned at a distance of

L perpendicular to the plates so that an electric field (Ex) is

formed along x-axis. A fixed pressure gradient is applied

along x-axis to investigate the mutual influence of both the

pressure and electric fields.

The assumptions made in the analysis are as follows:

• The fluid is a Newtonian, incompressible and symmet-

ric electrolyte.

• The thermophysical properties of the liquid are

constant.

• A laminar, steady and fully developed flow is

considered.

• First-order slip velocity boundary condition is

considered.

Mathematical Formulation

The liquid flow based on the above assumptions is gov-

erned by the Poisson–Boltzmann, the reduced Navier–

Stokes and the energy equations.

The Poisson–Boltzmann Equation

The differential equation for the EDL field in y-direction is

presented by the Poisson–Boltzmann equation as

[13, 17–19, 21, 22]

o2w=oy2 ¼ ð2zen0=eÞ sinhðzew=kbTÞ ð1Þ

The boundary conditions of Eq. (1) stated as follows:

For y ¼ H=2; ow=oy ¼ 0 and for y ¼ 0; and at H;w ¼ n:

Momentum Equation

The modified Navier–Stokes equation in x-direction is

given by a equilibrium among the electric field, externally

applied pressure gradient and shear stresses as [13, 14]

lðo2u=oy2Þ � oP=oxþ Fx ¼ 0 ð2Þ

, where Fx ¼ qf Ex denotes electrical force of the liquid/unit

volume.

Therefore, Eq. (2) becomes

lðo2u=oy2Þ � oP=oxþ qf Ex ¼ 0 ð3Þ

The boundary conditions of Eq. (3) are

For y ¼ 0, u ¼ bðou=oyjy¼0Þ whereas for y ¼ H,

u ¼ �bðou=oyjy¼HÞ.

Energy Equation

The energy equation of a laminar steady thermally fully

developed flow is written as [13, 14]

qCpuðoT=oxÞ ¼ kðo2T=oy2Þ þ E2
xr ð4Þ
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The boundary conditions of Eq. (4) are

For y ¼ 0, �kðoT=oyÞ ¼ qw;T ¼ Tw and at y ¼ H;

kðoT=oyÞ ¼ qw; T ¼ Tw.

Solution Method

The governing equation for the electrical potential has been

solved adopting HPM. Subsequently, the velocity and

temperature distributions are obtained analytically based

on the obtained electrical potential field.

Electric Potential Field

Solving Eq. (1) adopting the HPM, the electric potential

field is obtained. The following non-dimensional variables

are introduced to dimensionless Eq. (1) as

! ¼ y=H;W ¼ zew=ðkbTÞ;Z ¼ 2zen=ðkbTÞ

Equation (1) is written in dimensionless form as

o2W=o!2 ¼ k2 sinhW ð5Þ

, where k ¼ jH and j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½2z2e2n0=ðekbTÞ�
p

.

The non-dimensional form of the corresponding

boundary conditions are given as at ! ¼ 1=2, oW=o! ¼ 0

and at ! ¼ 0 and at ! ¼ 1, W ¼ Z.

It is already stated that most of the literature studied

considers the Debye–Huckel approximation in which

sinhW of Eq. (5) is assumed as W. Hence, accurateness of

results might be reduced. The Debye–Huckel approxima-

tion in the current study is not assumed to increase the

accurateness of the predicted results. Hence, sinhW in

Eq. (5) is taken as sinhW which is expressed following the

Taylor’s expansion series.

sinhW ¼ WþW3=3!þ � � � ð6Þ

Putting Eq. (6) in Eq. (5) leads to

o2W=o!2 ¼ k2ðWþW3=3!þ � � �Þ ð7Þ

A homotopy is constructed to solve Eq. (5) as

W00 � x2Wþ p k2 � x2
� �

Wþ k2W2=3
� �

¼ 0 ð8Þ

, where W00 ¼ o2W=o!2, x denotes a reformed inverse

Debye length. Whereas p 2 ½0; 1�½0; 1� signifies a trivial

term called embedding parameter in the HPM based

analysis.

The electrical potential W is expressed with a power

series in p as

W ¼ W0 þ pW1 þ p2W2 þ � � � ð9Þ

Substituting Eqs. (9) to (8) and ordering the constants of

p powers, the equation can be expressed as follows

p0 W00
0 � x2W0

� �

þ p1½W00
1 � x2W1 � k2 � x2

� �

W0

� k2W3
0=3!�

¼ 0 ð10Þ

Equating the coefficients of p0, p1 to zero provides

p0 : W00
0 � x2W0 ¼ 0 ð11Þ

p1 : W00
1 � x2W1 � k2 � x2

� �

W0 � k2W3
0=3! ¼ 0 ð12Þ

Equation (11) is solved using the boundary conditions

W0 0ð Þ ¼ Z, W0 1ð Þ ¼ Z and W0
0 1=2ð Þ ¼ 0 resulting in

W0 ¼ Z coshfxðY � 1=2Þg= coshðx=2Þ ð13Þ

Replacing Eq. (13) in Eq. (12) and simplifying the

equation gives

W00
1 � x2W1 � ðk2 � x2ÞZ coshfxð!� 0:5Þg= coshðx=2Þþ
� k2Z3½3 coshfxð!� 1=2Þg þ coshf3xð!� 1=2Þg�=
½24 cosh3ðx=2Þ� ¼ 0

ð14Þ

In order to eliminate cosfxðY � 0:5Þg in Eq. (14), the

coefficients are collected and equated to zero as

ðk2 � x2ÞZ= coshðx=2Þ þ k2Z3=½8 cosh3ðx=2Þ� ¼ 0

to give the value of x as follows

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð8k2 � 8Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2 þ 4Þ2 þ 2z2
q

�=2
r

ð15Þ

Equation (14) becomes

W00
1 � x2W1 � k2Z3 coshf3xð!� 1=2Þg=½24 cosh3ðx=2Þ�
¼ 0

ð16Þ

Now applying the boundary conditions.

W1 0ð Þ ¼ 0, W1 1ð Þ ¼ 0 and W0
1ð1=2Þ ¼ 0.

Equation (16) is solved and written as

W1 ¼ ½k2Z3=192x2 cosh3ðx=2Þ�½coshf3xð!� 1=2Þg
þ coshð3x=2Þ coshfxð!� 1=2Þg= coshðx=2Þ�

ð17Þ

Replacing Eqs. (13) and (17) in Eq. (9) and taking p = 1,

the electric potential field is evaluated as

W ¼ A1 coshfxð!� 1=2Þg þ A2 coshf3xð!� 1=2Þg
ð18Þ

, where A1 ¼ Z= coshðx=2Þ �
k2Z3 coshð3x=2Þ=½192x2 cosh4ðx=2Þ� and

A2 ¼ k2Z3=½192x2 cosh3ðx=2Þ�.

Velocity Field

The modified momentum equation is written as [19]
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lðo2u=oy2Þ ¼ oP=oxþ eExo
2w=oy2 ð19Þ

, where qf ¼ �eðo2w=oy2Þ is the local net charge density.

The following dimensionless terms are introduced to

non-dimensionalized Eq. (19) as

U ¼ u=um;C1 ¼ �ðH2=lumÞoP=ox ¼ DP;

C2 ¼ ekbTEx=ðlumzeÞ and B ¼ umb=H

Hence, dimensionless form of Eq. (19) becomes

o2U=o!2 ¼ �C1 þ C2ðo2W=o!2Þ ð20Þ

Now, Eq. (20) is integrated twice with respect to Y yields

U ¼ �C1!
2=2þ C2Wþ a1!þ a2 ð21Þ

, where a1 and a2 are integration constants. The corre-

sponding boundary conditions are presented in non-di-

mensional form as follows:

at ! ¼ 0,U ¼ BðoU=o!j!¼0Þ and at ! ¼ 1,

U ¼ �BðoU=o!j!¼1Þ.
Applying the above boundary conditions two linear

equations are obtained as follows

�Ba1 þ a2 ¼ �C2fWð0Þ þ BW0ð0Þg ¼ C3 ð22Þ

ð1þ BÞa1 þ a2 ¼ C1ðBþ 1=2Þ � C2fWð1Þ þ BW0ð1Þg
¼ C4

ð23Þ

Solving Eqs. (22) and (23) the expressions for a1 and a2 are

determined as follows:

a1 ¼ ðC4 � C3Þ=ð1þ 2BÞ ð24Þ
a2 ¼ fð1þ BÞC3 þ BC4g=ð1þ 2BÞ ð25Þ

The skin friction coefficient Cf expressed as [13]

Cf ¼ 2sw=ðqU2Þ ð26Þ

The product CfRe determined as

CfRe ¼ 4U0ð1Þ ð27Þ

, where Re ¼ qumð2HÞ=l is the Reynolds number.

Temperature Distribution

Equation (4) for an applied constant heat flux boundary

condition results in where

oT=ox ¼ oTm=ox ¼ constant

Tm ¼
Z

1

0

UTd! ð28Þ

The energy balance for fluid flowing through a

microchannel is written as follows:

qCpumoTm=ox ¼ 2qw=H þ E2
xr ð29Þ

Substituting Eq. (29) in Eq. (4) yields

uð2qw=H þ E2
xrÞ=um ¼ kðo2T=oy2Þ þ E2

xr ð30Þ

Equation (30) is written in dimensionless form using the

non-dimensional terms as follows:

U ¼ ðT � TmÞ=ðHqw=kÞ;H1 ¼ 2qw=H þ E2
xr;

qv ¼ E2
xrH=qw and Uw ¼ ðTw � TmÞ=ðHqw=kÞ

Hence, the non-dimensionalized energy equation becomes

U ¼ H1U � qv ð31Þ

The non-dimensionalized boundary conditions are as

follows:

at ! ¼ 0,oU=o! ¼ �1;U ¼ Uw and at ! ¼ 1,

oU=o! ¼ 1;U ¼ Uw.

Equation (31) is integrated two times with respect to !
subjected to the above boundary conditions provides

Uw � U ¼ H1C1ð!4 � !Þ=24þ H1C2½A1fcoshðx=2Þ
� coshxð!� 1=2Þg=x2 þ A2fcoshð3x=2Þg=9x2

� cosh 3xð!� 1=2Þ� þ H1a1ð!� !3Þ=6
þ H1a2ð!� !2Þ=2þ H1qvð!2 � !Þ=2

ð32Þ

The Nusselt number at the top and bottom plates expressed

as [14]

Nu ¼ qwH=fkðTw � TmÞg ¼ 1=ðUw � UmÞ ð33Þ

, where

Uw � Um ¼
Z

1

0

UðUw � UÞd! ð34Þ

Entropy Generation Rate

It is known from the 2nd law analysis of thermodynamics

that the lost work is proportionate to the total entropy

generation rate. Engineering devices and their components

are to be operated at minimum destruction of work. As a

result, minimization of entropy generation plays an

important role in systematic design of these systems and

components. It minimizes irreversibility existing in the real

systems and processes. Hence, in this section, an effort is

made to determine the local entropy generation rate as

[15, 16]

SG ¼ SGH þ SGJ þ SGV ð35Þ

, where SGH, SGJ and SGV are the rate of local volumetric

entropy generations resulting from heat diffusion, Joule

heating and viscous dissipation, respectively, as described

below
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SGH ¼ kðoT=oyÞ2=T2 ð36Þ

SGJ ¼ rE2
x=T ð37Þ

SGV ¼ lðoU=oyÞ2=T ð38Þ

SG becomes dimensionless by introducing the following

dimensionless terms

SH ¼ ðoU=o!Þ2=ðUþ hÞ2 ð39Þ
SJ ¼ qv=ðUþ hÞ ð40Þ

SV ¼ BrðoU=o!Þ2=ðUþ hÞ ð41Þ

, where h ¼ kTw=ðHqwÞ and Br ¼ lu2m=ðHqwÞ is the

Brinkmann number.

The non-dimensional global entropy generation rate is

expressed as [15, 16]

Stotal ¼
Z

1=2

0

ðSH þ SJ þ SVÞd! ð42Þ

Results and Discussion

This work considers an electroosmotic pressure-driven

flow in a parallel plate microchannel with first order slip

model. The electric potential, velocity, temperature pro-

files, the Nusselt number and the entropy generation rates

are determined. Lastly, a MATLAB-based program is

constructed for solving the constitutive governing equa-

tions. The results found are expressed in a comparative

manner with both existing and numerical results for com-

paring accuracy level of the present study.

Effect of Zeta Potential on Electrical Potential Field

In Fig. 2, the non-dimensional potential distributions (W)

in the direction normal to the parallel plates (! direction)

are presented at Z = 1, 2 and 4 for an electrokinetic length

(k) of 10. It is observed that W value increases from the

center of the microchannel and reaches maximum value at

the walls. Moreover, the value of W increases with increase

in Z.

Effect on the Flow Velocity Profile

In Fig. 3, the non-dimensional velocity distribution (U) is

presented with ! at B = 0, 0.05 and 0.1 for k ¼ 10; Z = 1

and DP ¼ 1:9. The velocity distribution for B = 0 corre-

sponds to a familiar velocity profile with no slip boundary

condition whereas the other profiles show velocity distri-

bution with slip effect. The velocity profiles for B = 0.05

and 0.1 clearly depict that the increase in B leads to higher

values of U. Hence, intensification in slip coefficient results

in higher non-dimensional velocity of flow.

Fig. 2 Potential distribution for different values of zeta potential

(k ¼ 10)

Fig. 3 Velocity profiles for different value of slip coefficient (k ¼ 10;
Z = 1, DP ¼ 1:9)

Fig. 4 Velocity profile for different pressure gradients (k ¼ 10;
Z = 1, B = 0.05)

Fig.5 Nature of CfRe parameter for Z = 1, 2, 3with k
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The influence of pressure difference on the velocity is

shown in Fig. 4. The dimensionless pressure difference

considered are DP ¼ 0:9, 1.9 and 2.8 for a constant non-

dimensional slip coefficient of B = 0.05. It is observed that

U rises as DP is raised. The rate of rise of U is higher as the

DP value increases. It is noted that the curve for DP ¼ 0:9

is comparatively flat.

Influence of Wall Zeta Potential on the Product

CfRe

In Fig. 5, the CfRe product is expressed as a function of k
for Z = 1, 2 and 3. It is noticed that the CfRe value

decreases with increasing k for a specific value of Z. With

increase in k, EDL field increases resulting an increase of

Cf . At the same time, viscosity increases resulting an

decrease in Re. But, the rate of decrease of Re is much

faster than the rate of increase of Cf. As a result, CfRe

product decreases as k is increased. It is also noticed that

for a specific k value, the product CfRe rises with rise in Z.

It might be explained as on increasing Z, the existence of

EDL is noticed in a zone away from the solid wall resulting

increase in viscosity which in turn enhances CfRe value.

Influence of Slip Coefficient and Pressure Gradient

on Temperature Profile

To forecast the influence of slip coefficient on temperature

difference, the non-dimensional pressure difference is kept

constant (DP ¼ 1:9) as shown in Fig. 6. The slip coeffi-

cients chosen are 0.0, 0.05 and 0.1. It can be noticed that

the temperature difference falls with rise in the slip coef-

ficient. With increase in slip coefficient, the liquid flow

velocity increases which in turn increases the convection

heat transfer. In Fig. 7, the non-dimensional pressure dif-

ference DP is varied (0.9, 1.9, 2.8) for a constant non-

dimensional slip coefficient (B) of 0.05. It is noticed that

the temperature rises with rise in DP for a specific location

of !.

Effect of Wall Zeta Potential and Electrokinetic

Length on Nusselt Number

In this part, the effect of various flow parameters on Nu is

studied. Figure 8 presents the variation of Nu with k for

Z = 1, 2 and 3 considering DP ¼ 1:9, B = 0.05. It is seen

that Nu first increases, attains a peak value and then

decreases. This may be explained as the creation of small

turbulences in the flow field due to ionic distribution for

smaller value of k. Whereas for a larger value of k, the wall
is completely surrounded by counter-ions which in turns

reduces the disturbances in the flow causing Nu to decrease

with k. It is also noticed from the same figure that for a

particular value of k, Nu increases as Z is increased. The

electrostatic potential adjacent to the wall dominates more
Fig. 6 Temperature distribution for different slip coefficients

(k ¼ 10, Z = 1, DP ¼ 1:9)

Fig. 7 Temperature profiles for different pressure gradient (k ¼ 10;
Z = 1, B = 0.05)

Fig. 8 Variation of Nu with k for different values of Z (DP ¼ 1:9,
B = 0.05)

Fig. 9 Variation of Nu with B for different values of k (Z = 1,

DP ¼ 1:9)
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with increase in Z resulting an increase in the apparent

viscosity which causes Nu to increase.

In Fig. 9, Nu as function of dimensionless slip coeffi-

cient (B) is presented for changed values of electrokinetic

length (k ¼ 10, 20 and 40) for a constant zeta potential (Z)

and pressure difference (DP) of 1.0 and 1.9, respectively. It

is seen that Nu rises with increasing B. An increase in

B increases flow velocity U which in turn enhances the heat

transfer coefficient resulting an increase in Nu.

Effect of Pressure Gradient on the Entropy

Generation

This section deals with the influence of DP and Br on

entropy generation rates. Figure 10 shows the variation of

SG with ! for DP ¼ 0:9, 1.9 and 2.8 considering k ¼ 10,

Z = 1, B = 0.05, Br ¼ 0:02 and h ¼ 1000. It is observed

that SG rises from the center of the microchannel and

becomes maximum at the wall. It is also noticed that SG
value increases with increasing DP upto a certain value of

! (! ¼ 0:42). This is due to the effect of electrical

potential which is predominant adjacent to the wall and

diminishes near the center. A part of the work associated

with fluid delivery and heat transfer is lost in the process of

electroosmotic flow, whose value is proportional to that of

SG. The lost work increases with increase in DP resulting

an increase in SG.

In Fig. 11, Stotal is presented with Br for DP ¼ 0:9; 1.9

and 2.8. It is seen that Stotal increases with increasing both

DP and Br. The influence of viscous dissipation rises with

increase in Br, resulting an increased value of Stotal.

Moreover, with rise in DP, U increases causing Stotal to

increase.

Validation of the Present Work

The present analytical model is validated with the existing

work by Ngoma and Erchiqui [14]. Figure 12 represents

the temperature distribution based on present work with the

Ngoma and Erchiqui [14] as a function of Y for k ¼ 10,

Z = 1, DP ¼ 1:9 and B = 0.05. It is observed that the

proposed result agrees well with the Ngoma and Erchiqui

[14]. Therefore, the present analysis can be extended for

analysis of pressure-driven electroosmotic flow between

two plates.

Conclusion

This work proposes an analytical solution using HPM to

investigate the behaviors of a pressure-driven electroos-

motic flow considering first order slip model in a

microchannel between two parallel plates. The electrical

potential field is determined solving the Poisson–Boltz-

mann equation. The Debye–Huckel approximation is dis-

regarded to recover accuracy of the proposed work. The

velocity as well as temperature profiles are obtained solv-

ing the momentum and energy equations, respectively. The

HPM is applied for solution of the constitutive governing

equations. The potential distribution obtained is subse-

quently used to evaluate the velocity and temperature

distributions. Cf and Nu are determined based on the

velocity as well as temperature profiles. Both CfRe product

and Nuincrease with increase in zeta potential. Entropy

generation rate is also evaluated. It is seen that entropy

generation rises with increasing both pressure gradient and

Fig. 10 Nature of SG with ! for various pressure gradients (k ¼ 10,

Z = 1, B = 0.05, Br = 0.02 and h ¼ 1000)

Fig. 11 Nature of Stotal with Br for different pressure gradients

(k ¼ 10, Z = 1, B = 0.05 and h ¼ 1000)

Fig. 12 Temperature distribution with ! (k ¼ 10, Z = 1, DP ¼ 1:9
and B = 0.05)
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Brinkman number. Finally, the proposed result is matched

with existing work and shows a good harmony.
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