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Abstract Wire electrical discharge machining (WEDM)

process optimization is essential when any novel material

is discovered. The WEDM process has numerous variables

which affect multiple responses. Therefore, multi-response

optimization needs to be performed with the help of

advanced optimization techniques. Multi-parametric opti-

mization of the WEDM for processing aluminium silicate

composite with 15–20% silicate (designated as Al/SiCp)

was examined in the present work. A composite principal

component was calculated using principal component

analysis for multi-parametric optimization. The artificial

neural network was employed for enhancing the perfor-

mance of the process. Analysis of variance was performed

to realize the influence of WEDM process parameters on

the overall WEDM effectiveness. The WEDM response

characteristics such as finish part roughness (Ra), material

removal rate and kerf width were considered for this work.

From the experimental findings, it is observed that the

parameters, viz. the % composition of silicate, the pulse off

time (POFF) and current (IP), are the most critical process

parameters. The parameters obtained through the present

analysis were silicate composition 15%, pulse on time

112 ls, POFF 56 ls, IP-3 A, wire feed rate 4 m/min, wire

tension 10 kg and fluid pressure 13 kg/cm3.

Keywords Multi-response optimization � Al/SiC MMC �
Principal component analysis � Taguchi method �
WEDM

Introduction

To sustain in the current global manufacturing market, new

technologies in manufacturing are playing a very important

role. Micromachining proves its significant role in the

manufacturing sector. The use of aluminium-based mate-

rials in the machining improves drastically. Aluminium

enjoys its wide application in the automobile sector,

defence sector, chemical processing instruments, space and

many more. Hence, nowadays, most of the researchers are

developing various novel compositions for aluminium-

based composites. The wire electrical discharge machining

(WEDM) is a very beloved non-conventional metal cutting

process preferred in the metal cutting industries. Most of

the researches in the field of material processing concern

with the minimum surface roughness, maximum MRR,

minimum vibration, minimum tool–workpiece interface

temperature and other process parameters.

Chen et al. [1] have employed a back-propagation neural

network (BPNN) to enhance the overall WEDM effec-

tiveness. Taguchi L18 orthogonal array has been used for

experimental planning. Surface roughness was linked with

the related machining parameters based on the ANN

technique. From experimental findings, it was observed

that pulse on time and input current mostly dominate the

response. Jun et al. [2] have investigated the impact of
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residual strains in Al-based metal matrix composite

(MMC) welding using an eigenstrain-based finite element

approach. From the research outcome, the residual strain

has been observed as a crucial factor that affects the

machining performance. Ilhan et al. [3] have employed the

multiple regression analysis (MRA) and ANN technique

for analysing processes and enhancing the process perfor-

mance. From the investigation, the surface roughness

during the machining of Co28Cr6Mo has been mostly

affected by the process parameters. Gaitinde et al. [4] have

used conventional wiper and ceramic inserts in the metal

cutting process. The performance of conventional and

wiper ceramic inserts was compared during the machining

using artificial neural network. The findings show that the

soft computing technique ANN has the capability of pre-

dicting the response effectively and efficiently. Debapra-

sanna et al. [5] have investigated the influencing of

dependent parameters associated with the machining of

AlSiC MMC using the PCA technique. Ra, MRR, TWR,

i.e. tool wear rate, and the circularity have been analysed

during the research. Jamadara et al. [6] have used dimen-

sional analysis (DA) technique and BPNN training network

to analyse the impact due to imperfections in the compo-

nents of the bearing. The BPNN has been effectively

employed in the detection of localized faults in roller

bearings. Bobbili et al. [7] have investigated the effect of

machining parameters on MRR and Ra using DA and ANN

approach. Senthilkumar et al. [8] have adopted a grey

relational fuzzy grade (GRFG) technique to study the

influencing of process variables and the cutting angles on

the machining performances. Vinoth et al. [9] have inves-

tigated the reinforcement of traditional and the cryogeni-

cally treated WEDM process. From the experimental

findings, it has been observed that the cryogenically treated

WEDM process is more effective and efficient compared

with the traditional process. Neeraj et al. [10] have speci-

fied response surface method (RSM) combine with a

genetic algorithm (GA) in the WEDM. For predicting

overcut, they carried out 32 experiments and analysed the

impact of parameters such as pulse on time (PON), pulse

off time (POFF), servo voltage (SV), peak current (IP) and

wire tension (WT). They employed RSM to study the

process variables’ influence. The GA has been employed to

find out the most favourable process parameters which

minimize the overcut. Vinod et al. [11] have performed

RSM and coupled it with desirability function to study the

impact of machining parameters such as PON, POFF, IP

and SV on the voltage on MRR and Ra. The desirability

function approach (DFA) has been adopted to find out the

favourable set of process variables concern with the

machining of Monel-400 material. Abhijit et al. [12] have

analysed the impact of particles in the hard facing material

for improving the overall performance and reliability. From

the study, it has been observed that the nanostructure

particle significantly affects the machining performance.

Karabulut et al. [13] have studied the impact of rein-

forcement content on the properties (mechanical) of the Al-

7039-based composites. They observed that the reinforce-

ment of Al2O3 (10% wt) has produced higher mechanical

properties such as hardness and strength. Ergun et al. [14]

have investigated the impact of process variables on the

thrust force and Ra, dimensional accuracy and the burr

height during the drilling of Al/10B4C and Al/10B4C/5Gr

composites. The impact of various cutting parameters was

analysed with the help of analysis of variance (ANOVA).

Kavimani et al. [15] have examined the process and

used grey relational analysis for improving the perfor-

mance of the process. Graphene–SiC magnesium com-

posite was effectively machined, and the responses were

optimized for the better use. Majumdar et al. [16] have

employed multi-response techniques like general regres-

sion and ANN to get the optimized value of surface

roughness and microhardness. The machining of Al/SiC

metal matrix composite was examined by the authors. The

modelling, optimization and analysis of micro-EDM pro-

cess were carried out by Bhiradi et al. [17] with an effec-

tive use of adaptive neuro-fuzzy inference system (ANFIS)

tool coupled with principal component analysis (PCA) with

the minimization of tool wear rate and maximization of

material removal rate as an objective. Multi-response

optimization was performed by Kimar et al. [18] for the

optimization of surface characteristics measure in terms of

thickness of white layer, roughness parameters and the

crack density of the surface. Grey relational analysis

(GRA) tied with the Taguchi technique was employed by

the authors Manikandan et al. [19] for multi-response

performance optimization of Inconel 625 during the elec-

trochemical process. Joshi et al. [20] have examined the

characterization of thermal damage during the WEDM

process using ultra-thin wafers. RSM-based central com-

posite design was adopted for conducting the experiment.

Philip et al. [21] have investigated the tribological perfor-

mance of alloy Ti–6Al–4V during the EDM process at

200–6000 �C. The load is varying from 50 to 150 N. For

the said load, the EDM responses were tested and the best

set of EDM process parameters was identified for the

effective machining of Ti–Al–4V material. Saha et al. [22]

have introduced neuro-genetic technique for the multi-re-

sponse optimization of TiC-reinforced composite. The

method employed was found to be very effective in the

optimization process. Majumdar and Maity [23] have

employed a hybrid approach of grey relational neural net-

work coupled with multivariate approach for the WEDM

process optimization of Ni–Ti shape memory alloy. Jangra

et al. [24] have employed grey relational analysis for the

EDM of punching die. Surekha et al. [25] have used
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response surface method and fuzzy grey relational analysis

for the optimization of EDM of EN-19 process. Phate et al.

[26] have used ANN-based grey relational analysis for the

optimization. Also, SiC has shown the significant impact

on WEDM performance [27]. The latest work related to

different WEDM and its optimization is presented in

Table 1.

Nowadays, most of the metal cutting industries use

advanced machining processes for improving product

quality and the performance of an industry. For this pur-

pose, application of traditional machining is not efficient

and effective. To overcome this, wire electrical discharge

machining (WEDM) is projected in this work. Along with

the use of advance and latest precise machining process,

the use of aluminium-based metal matrix composite also

drastically increases the field of space, defence and auto-

mobile industries. Hence, the effort has been made to focus

on measuring the performance of WEDM process which

will help to find the ease of machining aluminium with

silicon carbide (SiC 15 & 20%) MMC. This effort will help

the machining industries to overcome the challenges faced

during the convectional machining.

The motivation of the work PCA is a statistical technique

used to extract important features from the large set of

features available in the dataset. If there are different fea-

tures in the dataset, then we cannot execute the algorithm

taking into account all features in the dataset. It will reduce

the performance of any technique. PCA has an important

feature of removing the correlated feature that means all

the principal components are independent of one another.

PCA improves the performance by getting rid of correlated

variables that do not contribute in any decision making

which reduces the training time. It also helps in over-

coming the over fitting issue. It also improves the visual-

ization of the data by transforming the high-dimensional

data into low-dimensional data compared with the other

methods. Hence, PCA has been selected for the present

work. Based on the literature review, many researchers

have worked on the MMCs and their analysis. But no one

reported multi-response optimization using ANN-based

PCA approach. For this purpose, wire electrical discharge

machining (WEDM) has been projected along with multi-

response optimization using ANN-based PCA approach.

Experimentation

Fabrication of Component (MMC)

The demand for aluminium-based MMCs is rising day by

day. The acceptability is due to its superior strength versus

low weight fraction and favourable properties. The filler

material tried for making this MMC consists of silicon

carbide (SiC). The workpiece was prepared using the sand

casting method. Aluminium alloy was put in the crucible

and preheated at a temperature of 1000 �C. A wooden

pattern of required size was prepared, and then, the cope

and drag were prepared as per the dimensions and the

manufacturing standards. After that, the heated Al liquid

metal was poured into the mould along with SiC powder

and then allowed to cool down slowly. After that, the

composite specimen of required size and shape was

Table 1 Summary related to the latest work associated with different optimization techniques

Authors Parameter Objectives

Mangesh Phate

et al. [28, 29]

% Concentration of SiC, PON,

POFF, IP, WFR, WT and FP

To optimize WEDM of Al SiCp15/20 using ANN and grey relational analysis

(GRA)

Amit Kumar et al.

[30]

PON, POFF, IP and WFR To analyse the WEDM of high-speed steel M2 Grade using grey relational analysis

(GRA) and response surface method (RSM)

Aslantas et al. [31] Speed (VS), feed rate (FR) and depth

of cut (DOC)

To optimize surface roughness and burr width during WEDM of Ti–6Al–4V using

GRA and Taguchi method

Somvir Singh Nain

et al. [32]

PON, POFF, IP, WFR and voltage

(V)

To analyse the wear of wire and deviation in dimension using particle swarm

optimization (PSO) during the WEDM of Udimet-L605

Sachin

Sonawane et al.

[33]

PON, POFF, IP, WFR and WT To investigate surface roughness, overcut (OVT) and MRR during the WEDM of

Nimonic 75 using PCA

Amitesh Goswami

et al. [34]

PON, POFF, IP and the wire off set Multi-response optimization of MRR, Ra and workpiece wear rate using GRA and

RSM during WEDM of Nimonic 80 A

Ashish Goyal [35] PON, POFF, IP, WFR and WT To examine MRR and Ra during WEDM of Inconel 625 using Taguchi method

Rajeshwari et al.

[36]

VS, FR, DOC and % of silicate Multi-response optimization of Al/SiC MMC using GRA and RSM

Vaibhav Gaikwad

[37]

PON, POFF, IP and electrode

conductivity (K)

To examine MRR and Ra during WEDM of cryo-treated Ni–Ti alloy using

Taguchi method

123

J. Inst. Eng. India Ser. C (February 2021) 102(1):169–181 171



removed. The workpiece was ground to remove the

unwanted particles and defects and make the workpiece

ready for machining.

The fabricated MMC has a good mechanical properties

such as yield strength, higher ultimate strength etc. The

maximum strength was 6.61 MPa, while the ultimate ten-

sile strength was 215 MPa. It has a better thermal con-

ductivity, high melting point, low thermal expansion, high

strength and the high hardness value. The fabricated MMC

has a density of 2883 kg/m3, melting point 515 �C, Pois-

son’s ratio of 0.34 and thermal conductivity of 185 W/mK.

Measurement of Response Parameters

The response MRR is estimated by using ‘‘Eq. 1.’’ The set-

up for conducting the experiment is shown in Fig. 1.

MRR
gm

min

� �
¼ Wb � Wað Þ

Tm

ð1Þ

where Wb and Wa are the weight of workpiece in pre- and

post-WEDM in grams and Tm is the machining time in

minutes.

Ra is a measure of surface roughness. It is measured in

microns using digital roughness tester Mitutoyo SJ-201.

The amount of materials wasted during the machining is

known as kerf width (Krf). It affects the dimensional

accuracy. Kerf width is measured using a profile projector.

Selection of Experimental Plan

All experiments were conducted on WEDM (Ultracut S0

wire Electronic Discharge Machine,Make: M/S Electron-

ica, Ultracut So Model). Al SiCp15/20% MMC with

dimension 80 mm 9 55 mm 9 20 mm was chosen as a

sample workpiece. During the WEDM operation process,

parameters like a pulse on time (PON), pulse off time

(POFF), wire feed rate (WFR), input current (IP), SiC

percentage, dielectric fluid pressure (FP) and wire tension

(WT) were considered for the investigation. Brass cutting

wire (diameter of 0.25 mm) was selected as a cutting wire.

The levels of the process parameters are tabulated in

Table 2. Taguchi’s L18 (21 * 35) mixed plan of experi-

mentation is employed for the experimentation, and three

replicated were used for each experiment. The average of

three replicates is used for getting the value of response

parameters. The WEDM set is shown in Fig. 1. The

experimental findings are tabulated in Table 3.

The approach such as ‘‘higher is the better’’ is adopted to

find out the signal-to-noise(S/N) ratio for the response

MRR (Eq. 2), while the approach such as ‘‘lower is the

better’’ is used for the response’s Ra and Kerf (Eq. 3).

gHIB ¼ �10 log
1

s

Xs

1

1

Z2
mn

ð2Þ

gLIB ¼ �10 log
1

s

Xs

1

Z2
mn ð3Þ

where Zmn is the mth experiment at the jth test and s is the

total number of replications.

Principal Component Analysis (PCA)

This is a mathematical technique use for identifying the

less significant numbers of uncorrelated variables from the

big set of data. In the following section, basic steps

involved will be discussed in brief:

• Step 1: Construction of standard matrix [M] There are

three response variables or attributes and a total 18

experiments that construct matrix [M] of order 18 9 3.

The matrix can be written as ‘‘Eq. (4).’’

Wire Drum 

Work table

Display Unit  

Switch Panel

Dielectric Tank 

Key Board 

Wire Feeding 
Mechanism 

Fig. 1 Experimental set-up
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M ¼

A11 A12 A13 . . . . . . A1p

A21 A22 A23 . . . . . . A2p

A31 A32 A33 . . . . . . A3p

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
Am1 Am2 Am3 . . . . . . Amp

0
BBBBBB@

1
CCCCCCA

ð4Þ

where m is the run or experiments carried out and p is the

f response or attributes identified in the work.

• Step 2: Construction of the normalization matrix [B]

This can be possible with the help of Eq. (5). For the

higher better response or attributes, i.e. MRR, the

normalized values are obtained by using Eq. (5), while

for the lower best response, i.e. the Ra and kerf

responses, the normalized values are obtained by using

Eq. (6).

Bmp ¼
Zm pð Þ � min Zm pð Þ

max Zm pð Þ � min Zm pð Þ
ð5Þ

Bmp ¼
max Zm pð Þ � Zm pð Þ

max Zm pð Þ � min Zm pð Þ
ð6Þ

where Zm(p) is the normalized values of the pth response,

min Zm(p) is the minimum value of Zm(p) for the pth

response and max Zm(p) is the maximum values of Zm(p) for

pth response. The n normalized matrix [X] is represented

by Eq. (7).

Table 2 Process parameters with the test points (levels)

Levels Parameters

SiC composition (%C) PON ( ls) POFF ( ls) WFR (m/min) IP (A) (knob position) WT (kg) FP (kg/cm3)

1 15 108 52 4 1 9 13

2 20 110 54 5 2 10 14

3 – 112 56 6 3 11 15

Table 3 Experimental plan

S. no. Input process parameters Responses

%C PON POFF WFR IP WT FP Ra KRF MRR

1 15 108 52 4 1 9 13 1.82 0.171 33.3

2 15 108 54 5 2 10 14 1.68 0.165 27.6

3 15 108 56 6 3 11 15 1.6 0.164 26.6

4 15 110 52 4 2 10 15 1.76 0.17 31.16

5 15 110 54 5 3 11 13 1.7 0.168 28.43

6 15 110 56 6 1 9 14 1.61 0.167 26.64

7 15 112 52 5 1 11 14 1.79 0.169 32.25

8 15 112 54 6 2 9 15 1.58 0.163 25.67

9 15 112 56 4 3 10 13 1.52 0.159 24.53

10 20 108 52 6 3 10 14 1.97 0.172 36.6

11 20 108 54 4 1 11 15 2.51 0.186 58.7

12 20 108 56 5 2 9 13 2.04 0.173 38.9

13 20 110 52 5 3 9 15 2.41 0.182 56.34

14 20 110 54 6 1 10 13 2.1 0.175 44.37

15 20 110 56 4 2 11 14 2.36 0.181 55.2

16 20 112 52 6 2 11 13 2.25 0.177 50.9

17 20 112 54 4 3 9 14 2.5 0.183 57.6

18 20 112 56 5 1 10 15 2.31 0.18 54.5

123

J. Inst. Eng. India Ser. C (February 2021) 102(1):169–181 173



B ¼

B11 B12 B13 . . . . . . B1p

B21 B22 B23 . . . . . . B2p

B31 B32 B33 . . . . . . B3p

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
Bm1 Bm2 Bm3 . . . . . . Bmp

0
BBBBBB@

1
CCCCCCA

ð7Þ

• Step 3: Construction of variance–covariance matrix [Y]

The variance–covariance matrix (Eq. 8) is obtained

from the matrix [X] by using Eq. (9)

Y ¼

C11 C12 C13 . . . . . . C1p

C21 C22 C23 . . . . . . C2p

C31 C32 C33 . . . . . . C3p

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
Cm1 Cm2 Cm3 . . . . . . Cmp

0
BBBBBB@

1
CCCCCCA

ð8Þ

The correlation coefficient matrix is given by ‘‘Eq. (9)’’

Cp;l ¼
Cov Xmp;Xml

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xmp

� �
� Var Xmlð Þ

q ð9Þ

where l = 1,2,3,…,p and Cov ((Xmp),(Xml)) is the covari-

ance of the sequences Xmp and Xml.

• Step 4: Compute eigenvalues and eigenvectors for the

correlation coefficient matrix (Y) The eigenvalue and

eigenvector are denoted by the kJ and VJ, respectively.

• Step 5: Estimate principal component (wJ) The eigen-

vector (VJ) represents the weighting factor of Jth

principal component.

Let RJ represent the Jth response parameter, then the

Jth principal component wJ is given by Eq. (10)

wJ ¼ V1JR1 þ V2JR2 þ � � � þ VJJRJ ð10Þ

where w1 stand for the starting (First) principal component

(PC1), w2 represents intermediate (Second) principal

component (PC2) and w3 represents the last (third) princi-

pal component (PC3).

• Step 6: Calculate Overall composite primary compo-

nent (CPC) It is multiple responses combine index. It is

the combination of all each primary component with its

eigenvalues. It is given by Eq. (11).

CPC ¼
Xp

J¼1

w2
J

� �1=2 ð11Þ

• Step 7: Select the optimum setting for the highest value

of CPC The higher value of CPC indicates better

performance. ANOVA was carried out to know the

significant impact of dependent process variables on the

overall performance of the WEDM.

Methodology Adopted

In the present work, PCA is used for multi-response opti-

mization. The performance parameter (CPC) is calculated

based on PCA. PCA is used to find out the overall per-

formance parameter (CPC). In order to strengthen the

analysis and to correlate the input process parameters with

the CPC, ANN has been introduced in the present work.

BPNN is performed to obtain the best value of CPC known

as ANN-based CPC (Table 5) which represents the overall

performance of the machining process. The results shown

in Fig. 4 or Table 7 are based on ANN-based CPC. The

flow of the work is as follows

• Fabrication of MMC

• Experimentation (actual input and output)

• Analysis of an impact of process parameters on

individual response parameter

• The calculation for multi-response optimization

through PCA

• The calculation for ANN-based CPC (input is the actual

process parameter and output is PCA-based CPC); here,

we get ANN-based CPC which was correlated the input

process parameters.

• Impact of various process parameters on overall

performance.

• Results and Discussion

Result and Discussion

The experimental plan and the response measure during the

experimentation are given in Table 3.

Impact of WEDM Process Factors

Figure 2a–c shows the main effect plots. These are the

graphs of mean response or mean output parameter for

each factor level linked by a line. The flat (horizontal) line

represents that there is no presence of the main effect,

while non-parallel or incline lines represent the presence of

the main effect. Different levels of the variables influence

the response in a diverse way. The larger the difference in

vertical positions of the plotted points, the higher the

magnitude of the main effect. The slop of these lines shows

the relative magnitude of the effects.

Silicon carbide (SiC) is a chemical compound of carbon

and silicon which is initially produced by the electro-

chemical reaction between sand and carbon. It has
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excellent abrasive property. Aluminium silicon carbide has

a metal–ceramic composite that consist of silicon carbide

particles dispersed in a matrix of aluminium alloy. The

combination of these metal and ceramic gives the advan-

tages of both high thermal conductivity (metal) and a lower

coefficient of thermal expansion (Ceramic). These both the

properties are very important in machining through

WEDM. The presence SiC (abrasive) particles will also

help in enhancing the MRR.

Pulse on time (PON) is an actual time during which the

machining performed. Hence, it increases machining time

or ‘‘PON.’’ Because of this, the machining becomes faster

which will enhance the MR. Pulse off time (POFF) is a

span between two consecutive sparks during which there is

no current supply to the electrode. Hence, it will decrease

the MRR. As the PON increases, thermal energy is trans-

ferred into the workpiece. The workpiece melting rate is

also increased rapidly. During the solidification process,

this melted metal is sticking to the finished part of the

workpiece which deteriorates the surface quality of it.

It is observed that a higher fraction of Sic is associated

with the higher MRR, but it will adversely affect the

response kerf width and surface roughness. It is observed

that higher value of pulse on time is associated with the

higher MRR, but it adversely affects the surface roughness.

Lower kerf width is associated with the lower and higher

value of pulse on time. It is also observed that the lower

value of pulse off time is associated with the lower surface

roughness and kerf width, while maximum MRR is asso-

ciated with the middle value of pulse off time. Maximum

MRR is associated with the lower wire feed rate, while the

minimum surface roughness and kerf width are associated

with higher value of the wire feed rate.

Minimum kerf width and surface roughness are associ-

ated with higher input current, and maximum MRR is

associated with lower value. The higher value of wire

tension is associated with maximum MRR and minimum

Ra, kerf. Similarly the maximum value of MRR is asso-

ciated with higher value of dielectric fluid pressure, while

its higher value adversely affects other two responses and

vice versa. Figure 2d illustrates the residual which pursue a

(a) Impact of WEDM parameters on roughness                  (b)  Impact of WEDM parameters on Kerf

(c) Impact of WEDM parameters on MRR (d) Residual plot
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straight line in the normal probability plot. Residuals are

spread out arbitrarily around zero. It has been observed that

residual error is within the permissible error.

PCA Analysis

Table 4 shows that the values of PC1, PC2 and PC3 are

98.80%, 1.10% and 0.2% corresponding to the responses

Ra, Kerf and MRR’s principal component values, respec-

tively. So PC1 and PC2 account for tremendous total

variability. We can neglect PC3 as it has only 0.2% of the

proportion. The magnitude of CPC is shown in Table 5.

The CPC symbolizes the overall effectiveness character-

istics. This multi-response performance problem can be

converted into a single response with the objective function

maximum CPC. The CPC is maximized for getting the

optimized value of the response parameters.

The first principal component (PC1) is strongly corre-

lated with all the response variables. PC1 increases with

increases in both Ra and kerf, while it increases with the

decrease in the MRR. Second principal component (PC2)

increases with the decrease in the kerf width and the

material removal rate. Third principal component (PC3)

increases with the decrease in surface roughness. The

results obtained from the PCA analysis shows that run 9 is

the optimized run for the present situation.

Validation Using Soft Computing Technique ANN

ANN is a soft computing technique synonymous to the

human nervous system to improve the performance. It

consists of various layers (hidden input and output) layers

with different nodes. The basic terminology and the num-

ber of layers selected for the analysis are shown in Fig. 3a.

There are seven input parameters (nodes) and one output

parameter (node), i.e. CPC. In total, ten hidden layers are

used to train the network. The ANN is designated as 7-10-1

network. ANN-predicted CPC validates the effectiveness

of PCA technique. The correlation obtained between PCA-

predicted CPC and ANN-predicted CPC is 0.99999.

FF-BPNN is trained using training function Levenberg–

Marquardt (LM) and the adoption learning function

‘‘LEARNGDM.’’ The transfer function employed during

the analysis is ‘‘TANSIG.’’ Various parameters used to

Table 4 Eigenanalysis of the correlation matrix

Parameters Values

Eigenvalues 2.9628 0.0318 0.0054

Proportion 0.988 0.011 0.002

Cumulative 0.988 0.998 1.000

Variables PC1 PC2 PC3

Surface roughness (Ra) 0.579 0.239 - 0.779

Kerf width (Krf) 0.575 - 0.797 0.183

Material removal rate (MRR) - 0.578 - 0.554 - 0.600

Table 5 Normalization of the response variables

Run Ra KRF MRR VPC1 VPC2 VPC3 CPC CPC (ANN) Rank S/N

1 0.696 0.555 0.256 0.575 - 0.418 - 0.595 0.927 1.057 13 - 0.653

2 0.838 0.777 0.089 0.881 - 0.469 - 0.564 1.147 1.277 5 1.1922

3 0.919 0.814 0.060 0.966 - 0.463 - 0.603 1.229 1.359 3 1.7963

4 0.757 0.592 0.194 0.667 - 0.398 - 0.598 0.981 1.111 9 - 0.164

5 0.818 0.666 0.114 0.791 - 0.399 - 0.584 1.061 1.191 6 0.518

6 0.909 0.703 0.061 0.895 - 0.377 - 0.616 1.151 1.281 4 1.223

7 0.727 0.629 0.225 0.652 - 0.453 - 0.587 0.988 1.118 8 - 0.103

8 0.939 0.851 0.033 1.014 - 0.473 - 0.596 1.268 1.398 2 2.066

9 1 1 0 1.154 - 0.558 - 0.596 1.414 1.544 1 3.010

10 0.545 0.518 0.353 0.410 - 0.478 - 0.542 0.831 0.961 16 - 1.604

11 0 0 1 - 0.577 - 0.553 - 0.599 1 1.13 7 0.000

12 0.474 0.481 0.420 0.309 - 0.503 - 0.534 0.796 0.926 18 - 1.978

13 0.101 0.148 0.930 - 0.393 - 0.609 - 0.609 0.948 1.078 11 - 0.463

14 0.414 0.407 0.580 0.138 - 0.547 - 0.596 0.821 0.951 17 - 1.709

15 0.151 0.185 0.897 - 0.324 - 0.608 - 0.622 0.928 1.058 12 - 0.640

16 0.262 0.333 0.771 - 0.101 - 0.630 - 0.606 0.880 1.01 15 - 1.103

17 0.010 0.111 0.967 - 0.489 - 0.622 - 0.567 0.974 1.104 10 - 0.226

18 0.202 0.222 0.877 - 0.261 - 0.614 - 0.642 0.927 1.057 14 - 0.657
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train the network are tabulated in Table 6. The perfor-

mance curves of the trained data are shown in Fig. 3b, c.

The regression plot of the trained network is shown in

Fig. 3d. ANN is employed here to find out the best per-

formance and calculate the best CPC and get the optimized

ranking. ANN-trained CPC is shown in Table 5.

The residual error observed is 0.065267. The last col-

umn of Table 7 showed the % contribution of the process

parameter. Figure 4 shows that % of SiC, POFF and IP are

the critical parameters that have an effect on the whole

process effectiveness. The values for the S/N ratio for the

overall CPC are tabulated in Table 4. The impact or effect

of process parameters on the overall ANN-based CPC is as

shown in Fig. 4.

Figure 4 shows that the overall performance is deterio-

rating with the enhancement in the % composition of SiC

from 15 to 20%. The overall performance is increasing

with an increase in PON and POFF from 108 to 112 ls and

52 to 56 ls, respectively. The overall performance is also

enhanced with increases in the IP and WT from 1 to 3

positions and 11 to 13 kg, respectively. The overall per-

formance is maximum at a wire feed rate 4 m/min, while it

is a minimum of 5 m/min.

The maximum value is of the ANN-based CPC is 1.544

which is at experiment number nine. The optimum

parameters for experiment 9 are % C1 (15) PON3 (112)

POFF3(56) WFR1(4) IP3(3) WT2(10) FP1(13). The signal-

to-noise, i.e. S/N, ratio of the obtain CPC is estimated using

Eq. 2. The magnitude of signal/noise (S/N) ratio for the

CPC is tabulated in Table 5. The well-known approach of

ANOVA is carried out to understand the significant factors

during the analysis. Table 7 shows the results obtained

through ANOVA. Table 7 shows that the contribution of

silicate composition (contribution 49.58%) is the critical

factor, followed by the POFF, IP and PON affecting the

WEDM overall effectiveness.

After getting the optimized results from the PCA anal-

ysis, the next step is to find out the role of each parameter

on performance. For this purpose, ANOVA has been used

in the present work. The details are shown in Table 6.

As the PON increases, thermal energy is transferred into

the workpiece, and the workpiece melting rate is increased

rapidly. During the solidification process, this melted metal

is sticking to the finished part of the workpiece which

deteriorates surface quality of the finished part. Surface

quality is also deteriorated with microcracks present in the

materials. These microcracks are developed due to the

various stresses and the mechanical properties such as

material thermal conductivity, strength and Young’s

modulus of elasticity. Hence, the selection of the optimum

level of process parameters is very significant during the

WEDM of the MMC. The optimum value of the PON and

the IP will create an optimum amount of thermal energy.

Conclusions

This work focused on multi-response optimization of the

WEDM process during Al/Sic MMC by applying principal

component analysis coupled with an artificial neural net-

work. The experiments were executed as per Taguchi’s

L18 (21 * 35) mixed plan with responses material removal

rate, kerf width and surface roughness. Pulse on time

(PON), pulse off time (POFF), wire feed rate(WFR), input

current (IP), SiC percentage, dielectric fluid pressure (FP)

and wire tension (WT) were considered as process input

parameters. To improve the effectiveness of the optimiza-

tion and analysis of the entire process, a soft computing

technique, viz. ANN, was employed, which validates the

effective use of PCA in optimization. From the present

work, the following conclusions are drawn:

• Based on the analysis, it has been found that the

optimum magnitude of input parameters is Sic weight

15% of the total volume, pulse on time 112 ls, pulse

off time 56 ls, wire feed rate 4 mm/min, input current

3 knob position, wire tension 4 kg and the dielectric

fluid pressure 13 kg/m2.

• From ANOVA, the % composition of SiC (Contribut-

ing 49.58%) has been observed as the most influencing

parameter. The variation in the volume fraction of SiC

Fig. 3 a ANN 7-10-1 architecture. b ANN best validation perfor-

mance curve. c ANN gradient versus epochs curve. d ANN regression

curve
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drastically affects the overall performance of the

WEDM process.

• The integrated PCA-ANN approach has been effec-

tively proved for multi-response optimization of Al/

SiCp WEDM. Further, the present approach can also be

employed for different MMSs and the diverse machin-

ing processes. The experimental optimum conditions

can also be used to automate the machining process.

Table 6 ANN parameters adopted during the run

S. no. Parameters Type

1 ANN type of network FF-BPNN (feed forward back-propagation)

2 ANN function during training TRAINLM (Levenberg–Marquardt)

3 ANN learning function LEARNGDM

4 Selected layers’ number 02

5 ANN designation 07-10-01

6 ANN function for transfer TANSIG

7 Maximum number epochs 1000

Table 7 ANOVA to understand the impact of process parameters on CPC (ANN)

Source Degree of freedom Sum square Adj sum square Adj means square Fisher’s ratio P % Contribution

%C 1 0.236 0.236 0.236 14.47 0.019 49.58

PON 2 0.032 0.032 0.016 1.00 0.445 6.849

POFF 2 0.074 0.074 0.037 2.27 0.219 15.59

WFR 2 0.012 0.012 0.006 0.39 0.700 2.672

IP 2 0.036 0.036 0.018 1.12 0.411 7.677

WT 2 0.0002 0.0002 0.0001 0.01 0.992 0.056

FP 2 0.018 0.018 0.009 0.56 0.609 3.860

Error (residual) 4 0.065 0.065 0.016 13.70

Total 17 0.476
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Fig. 4 Impact of process

parameters on CPC (ANN)
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13. Ş. Karabulut, U. Gökmen, H. Çinici, Study on the mechanical and

drilling properties of AA7039 composites reinforced with Al2O3/

B4C/SiC particles. Compos. B 93, 43–55 (2016)

14. E. Ekici, A.R. Motorcu, G. Uzun, An investigation of the effects

of cutting parameters and graphite reinforcement on quality

characteristics during the drilling of Al/10B4C composites.

Measurement 95, 395–404 (2017)

15. V. Kavimani, K.S. Prakash, T. Thankachan, Multi-objective

optimization Graphene–SiC Magnesium composite through

hybrid techniques. Measurements 145, 335–349 (2019)

16. H. Majumdar, K. Maity, Prediction and optimization of surface

roughness and micro hardness using GRNN and MOORA –

fuzzy–a MCDM approach nitinol in WEDM. Measurements 118,

1–13 (2018)

17. I. Bhiradi, L. Raju, S. Somashekher, Adaptive Neuro-fuzzy

Inference system (ANFIS): modelling, Analysis, and optimiza-

tion of process parameters in the Micro-EDM process. Adv.

Mater. Process. Technol. 6(1), 133–145 (2020)

18. S. Kimar, M. Thirumalai, S. Kumaran, Investigating the surface

integrity of Aluminium based composites machined by EDM.

Defence Technol. 15(3), 338–343 (2019)

19. N. Manikandan, K. Balasubramanian, D. Palanisamy, P. Gopal,

D. Arulkirubakaran, J. Binoj, Machinability analysis and ANFIS

modelling on advanced machining of hybrid metal matrix com-

posites for aerospace applications. Mater. Manuf. Process 34(16),

1866–1881 (2019)

20. K. Joshi, U. Bhandarkar, I. Samajdar, S. Joshi, Microstructural

characterization of thermal damage on Silicon wafers sliced using

Wire-Electrical Discharge Machining. J. Manuf. Sci. Eng. 140,

1–14 (2018)

21. J. Philip, D. Kumar, J. Mathew, B. Kuriachen, Experimental

investigation on the tribological performance of electric dis-

charge alloyed Ti–6Al–4V at 200–6000 �C. J. Tribol. 142, 1–15

(2020)

22. P. Saha, D. Tarafdar, S. Pal, P. Saha, A. Srivastava, K. Da, Multi-

objective optimization in wire –electro-discharge machining of

TiC reinforced composite through neuro-genetic technique. Appl.

Soft Comput. 13, 2065–2074 (2013)

23. H. Majumdar, K. Maity, Application of GRNN and multivariate

hybrid approach to predict and optimize WEDM responses for

Ni–Ti shape memory alloy. Appl. Soft Comput. 70, 665–679

(2018)

24. K. Jangra, A. Jain, S. Grover, Optimization of Multi-machining

characteristics in wire electrical discharge machining of punching

die using grey relational analysis. J. Sci. Ind. Res. 69, 606–612

(2010)

25. B. Surekha, T. Lakshmi, H. Jena, P. Samal, Response surface

modelling and application of fuzzy grey relational analysis to

optimise the multi response characteristics of EN-19 machined

using powder mixed EDM. Aust. J. Mech. Eng. (2019).

https://doi.org/10.1080/14484846.2018.1564527

26. M.R. Phate, S.B. Toney, V.R. Phate, Investigation on Al/GrCp10

MMC WEDM using artificial neural network based grey rela-

tional analysis. ANNALS of Facul. Eng. Hunedora-Int. J. Eng.

XVIII(2), 141–149 (2020)

27. M.R. Phate, S.B. Toney, V.R. Phate, Investigation on the impact

of Silicon Carbide and process parameters on wire cut-EDM of

Al/SiCp MMC. Int. J. Ind. Eng. Prod. Res. 31(2), 11–23 (2020)

28. M.R. Phate, S.B. Toney, V.R. Phate, Analysis of machining

parameters in WEDM of Al/SiCp20 MMC using Taguchi-based

grey-fuzzy approach, Modell. Simul. Mater. Sci. Eng. 2019

(2019)

29. M.R. Phate, S.B. Toney, Modeling and prediction of WEDM

performance parameters for Al/SiCp MMC using dimensional

analysis and artificial neural network. Eng. Sci. Technol. Int. J.

22, 468–476 (2019)

30. A. Kumar, T. Soota, J. Kumar, Optimization of wire-cut EDM

process parameters by Grey-based response surface methodology.

J. Ind. Eng Int. 14, 821–829 (2018)

31. K. Aslantas, E. Ekici, A. Çiçek, Optimization of process
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