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Abstract In a highly volatile manufacturing world, the

demand of a product changes on everyday basis. Thus,

there is a need of flexibility and competitiveness in the part

of manufacturing organizations to cope with the situation.

It becomes an absolute necessity for any organization to

plump for the implementation of advanced manufacturing

technology (AMT) for its betterment. The present paper

exhibits a decision model based on Taguchi loss function

under fuzzy environment in the process of evaluating the

AMTs. Triangular fuzzy numbers are used in the analytics

to quantify the obscurity immanent in the subjective esti-

mates. An objective estimate is also undertaken in the

model to make it more effective and fruitful. The appli-

cability of the algorithm is exhibited by pitting it against a

more orthodox fuzzy VIKOR method on a case study of

AMT selection. The results gained thereafter could estab-

lish the superiority of the proposed approach.

Keywords Advanced manufacturing technology �
Fuzzy multi-criteria group decision-making �
Triangular fuzzy numbers � Fuzzy Taguchi loss function �
Post-optimality treatment � Fuzzy VIKOR

List of symbols
~D Decision matrix

;ij¼ðaij; bij; cijÞ Triangular fuzzy number

;Nij ¼ aNij ; b
N
ij ; c

N
ij

� �
Ri Normalized triangular fuzzy

number

�x Triangular fuzzy weight matrix

xj Normalized triangular fuzzy

weight matrix

wj Crisp weight matrix

fA xð Þ Fuzzy membership function

Ri Installation cost for AMT

OFMi Objective factor measure of AMTs

SFMi Subjective factor measure of

AMTs

kn Number of decision associates

(DA)

m Number of alternatives

n Number of criteria

c Coefficient of cognition

Fuzzy Taguchi loss function

l Loss coefficient

k Actual product size

y Nominal value of the specification limit

V2 Variance of product size
�k Average product size

Lij Taguchi loss value of AMTs

WLi ¼ WLai;ð
WLbi;WLciÞ

Fuzzy weighted Taguchi loss value of

AMTs

EIi Evaluation index

Fuzzy VIKOR

f �i Best fuzzy value

f�i Worst fuzzy value

Mi Weighted and normalized Manhattan distance

Ci Weighted and normalized Chebyshev distance
�Qi Index value of AMT expressed in triangular fuzzy

number

r Maximum group utility
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Qi Average index value

Q�
i Inverse of average index value

VSIi VIKOR selection index

Introduction

Evolution of revolution in manufacturing has come a long

way. It all started from Stone Age to le-agile stage via

pyramid age, medieval age, Victorian age, line manufac-

turing, lean manufacturing and lastly agile manufacturing.

Under the volatile market characteristics, manufacturing

organizations are constrained to estimate the demand of the

products. They are confronted with envisaging the dormant

demand of types of products and their quantity as well. The

giant outcome of this is a shifting of manufacturing

strategies to a more customized product as depicted in

Fig. 1 [1]. The manufacturing strategies shifted from

make-to-stock (MTS), a mass productive one, to buy-to-

order (BTO), a mass customized one, via assembly-to-

order (ATO) and make-to-order (MTO) bearing varying

proportions of lead time for production (P) and delivery

(D) [2] of the product.

The performance of a manufacturing organization in

today’s environment is largely dependent on the competi-

tiveness, flexibility and new technological innovations.

These can only be achieved through the implementation of

advanced manufacturing technology (AMT). This, in

today’s volatile market environment, ticks all the boxes, in

getting the required attention and occupying the whole

industry. Advanced technology is involved in producing in

masses as demanded by the customer, using latest inno-

vative technologies while setting a new benchmark as well.

As far as customization is concerned, AMT has the upper

hand as opposed to conventional technology. It has inten-

sified the applications of advanced intelligence systems to

enable rapid manufacturing of new products, dynamic

response to product demand and real-time optimization of

supply chain networking. The benefits achieved by

implementing typical advanced technologies are humun-

gous ones. Quality, flexibility, productivity and eco-

friendliness are the ones where AMT is in a whole different

league as compared to conventional technologies.

Implementation of AMT involves high level of risk aris-

ing from the associated unpredictability. It incorporates

phasing out manual labor to a great extent. Instead, it puts

money on new equipments, software and, above all, highly

customized training of personnel. So, all we need is a deci-

sion support system to help manufacturing firms with

choosing optimum advanced technology according to their

specified requirements. However, in many real-world multi-

criteria decision-making (MCDM) problems, human judg-

ment gets subjective. Person concerned, i.e., decision asso-

ciate (DA) deployed by the manufacturing firm, might be

unable to provide crisp estimation in the comparison matrix.

FuzzyMCDM approach handles this kind of situation with a

great deal of ease. The linguistic information and triangular

fuzzy number (TFN) become the savior in those critical

situations. They express a subjective criterion which is

otherwise difficult to express in crisp form. In short, TFN and

the associated membership function eliminate the
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Fig. 1 Shifting of manufacturing strategy
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uncertainty and fuzziness in an MCDM problem which is

otherwise not possible in the crisp data exploration for a

subjective criterion. There are some ordinal approaches as

well that are not based on TFNs. We have some past

researches on sentiment analysis with multi-granular fuzzy

linguistic modeling [3], trapezoidal fuzzy numbers [4] and

unbalanced fuzzy linguistic information [5] for representa-

tion of user information. The present paper converts the

linguistic information into fuzzy set [6] comprising of TFNs,

by using a suitable conversion scale. It is a prefixed user-

defined scale used where incomplete information is pre-

vailing in the system range as well as design range [7, 8]. The

common region of these two is depicted by the overlapped

portion of the two TFNs [9], in Fig. 2. Subsequently, the

weightage factor in decision-making is introduced with the

likes of some past researches such as minimum cost strategic

weightmanipulationwith themixed 0–1 linear programming

[10] and heterogeneous preference relation in group deci-

sion-making with individual concerns [11].

So, the main contribution of the algorithm is the con-

sideration of uncertainty in Taguchi loss function and a

comparison with the fuzzy VIKOR method thereafter. No

work has been reported till date regarding the same. In this

aspect, the model can be treated as a novel one.

The rest of the paper is arranged as follows: Literature

survey for AMT assessment model is presented in Sect. 2.

The research background of the proposed model is pre-

sented in Sect. 3. The framework is presented in Sect. 4.

Section 5 elaborates a case study followed by post-opti-

mality treatment of the parameters. Section 6 analyzes the

applicability and validation of the proposed model by

comparing the outcome with a well-established VIKOR

(Serbian language: VlseKriterijumska Optimizacija I

Kompromisno Resenje) method. Last but not the least,

Sect. 7 brings the conclusion of the research.

Literature Survey for AMT Assessment Model

This section contains the most recent developments in the

world of manufacturing, incorporating the newest ideas and

features and some recently proposed algorithms. There

have been a handful of researches undertaken in recent

times for the performance assessment of AMTs by MCDM

approach. Nath and Sarkar [12] exhibited a distance-based

fuzzy technique for ordered preference by similarity to the

ideal solution (TOPSIS) method for the performance

evaluation of AMT. Fernandez and Perez [13] analyzed

and brought out a model of emerging occupational risks in

the context of advanced technology innovation. Teti [14]

proposed a model for manufacturing pertaining to zero

defect in machining with a unique solution of signal pro-

cessing and decision theory. Rohrmus et al. [15] came up

with a model of advanced carbon-based manufacturing

with environment-friendly green raw materials and green

production to contribute to a safer and greener future.

Efthymiou et al. [16] introduced a semantic technology

approach that could facilitate the knowledge storage and

extraction in terms of past production processes configu-

ration for manufacturing systems design and planning.

Nath and Sarkar [17] developed a Denovo approach for the

performance evaluation of AMTs. They made a compara-

tive study of two MCDM tools, namely preference ranking

organization method for enrichment evaluations (PRO-

METHEE) and Dempster–Shafer theory of evidence (DST)

based on the basic ideas of TOPSIS. Chuu [18, 19] pro-

posed models on group decision-making by fuzzy multi-

Fig. 2 Common area of system

and design range
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attribute analysis for the evaluation of advanced technol-

ogy. The mathematical frameworks involved a fusion

method of fuzzy information that was performed by max-

imum entropy-ordered weighted averaging (MEOWA)

operators. A scientific approach involving analytic hierar-

chy process (AHP) and fuzzy AHP as MCDM tools was

presented by Al-Ahmari [20] for the selection and evalu-

ation of AMTs. The suggested methodology combined two

databases, namely manufacturing organization database

and AMTs database for the upliftment of the model.

Ahmed et al. [21] addressed a multi-period investment

problem for selection, acquisition and allocation of alter-

native manufacturing technology over a long-range plan-

ning horizon by applying linear programming (LP)

relaxation solution of a multi-period mixed-integer pro-

gramming, capacity shifting heuristic and probability

analysis. A multi-criteria mathematical model based on

data envelopment analysis (DEA) and assurance region

(AR) was formed by Liu [22] for the selection of flexible

manufacturing systems. A group decision-making model

based on consensus was developed by Choudhury et al.

[23] for the selection of advanced technology. They used

proximity measure, consensus measure and multi-agent

system (MAS)-based negotiation to resolve the problem.

Yurdakul [24] integrated AHP and goal programming to

develop a model for the selection of computer-integrated

manufacturing (CIM) in a multi-attribute environment. A

distance-based fuzzy MCDM approach was proposed by

Karsak [25] for evaluating flexible manufacturing system

alternatives. Both the economic figure of merit and the

strategic performance variables were integrated in the said

approach for making it a robust decision-making proce-

dure. A fuzzy multiple objective programming approach

for the selection of flexible manufacturing system was

presented by Karsak and Kuzgunkaya [26]. They incor-

porated fuzzy set theory in the model to cope with the

vague nature of future investments and the uncertainty of

the production environment. Yusuff et al. [27] tried their

hands in developing a preliminary study based on the

potential usage of AHP in predicting AMT implementa-

tion. The whole implementation process was segregated

into four main modules, namely the institutionalization,

acceptance, routinization and infusion modules. Kengpol

and O’Brien [28] showcased a rapid product development

tool by assessing the value of investment in time com-

pression technologies, in a mathematical model that used

data structure monitoring with AHP and statistical analysis.

Karsak and Tolga [29] developed a fuzzy decision algo-

rithm for the implementation of advanced manufacturing

system. Preference ratings of experts for economic,

strategic criteria and alternatives were aggregated in mea-

suring fuzzy suitability indices and subsequent ranking of

alternatives. Chan et al. [30] suggested an evaluation

methodology using fuzzy MCDM, AHP and fuzzy cash

flow analysis in going for the selection of optimum tech-

nology. They incorporated a factor, namely fuzzy appro-

priate index in the problem.

There are a few research works carried out on VIKOR as

well. A fuzzy model on analytic network process (ANP) in

integration with the VIKOR method was proposed by

Demirel and Yucenur [31] for the selection of cruise port

site. The study also compared the fuzzy ANP and VIKOR

method results. Fouladger et al. [32] proposed a project

portfolio selection model based on the implementation of

an organized framework in fuzzy VIKOR platform. A

group MCDM model using fuzzy VIKOR was proposed by

Mirahmadi and Teimoury [33] for the selection and eval-

uation of suppliers. Ramachandran and Alagumurthi [34]

proposed fuzzy VIKOR approach for lean manufacturing

facilitator selection problem. This method provided the

advantage of taking decision which was closer to the ideal

solutions. Samantra et al. [35] developed a supplier selec-

tion model based on the application of the VIKOR method

combined with fuzzy logic.

There are some recently proposed algorithms as well

that could contribute in the likes of the current research.

Modiri-Delshad et al. [36] presented a backtracking search

algorithm (BSA) contemplating valve-point loading

effects, prohibited operating zones, multiple fuel options

while facing difficulties in economic dispatch (ED). This

algorithm can explore search space in an optimization

problem to find out the optimal solution in a very short

computational time. Kaboli et al. [37, 38] proposed two

different algorithms in forecasting long-term electrical

energy consumption. One of them used optimized gene

expression programming (GEP) and the other one used

artificial cooperative search algorithm. A multi-objective

metaheuristic particle swarm optimization (PSO) algorithm

was proposed by Rafieerad et al. [39] in view of improving

mechanical, tribological, anti-corrosion and in vitro

bioactivity properties of the nanostructured implants. A

nature-influenced algorithm relying on behavior of rain-

drops, namely rainfall optimization (RFO), in addition to

ED algorithm, was proposed by Kaboli et al. [40] in

solving constrained optimization problems. Asadi et al.

[41] proposed a fuzzy logic control-based algorithm,

applied on Li-Ion battery charger, for the performance

optimization of charging process. Hlal et al. [42] proposed

a mathematical model based on non-dominated sorting

genetic algorithm (NSGA-II) and multi-objective particle

swarm optimization (MOPSO) for sizing of a hybrid

renewable energy storage system as an alternative to fossil

fuel-based generators.

Thus, the motto of this survey is to provide an outlook

about the different methods and techniques developed for

the successful implementation of AMT, thereafter,
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applications of Taguchi loss function and VIKOR method.

The survey successfully establishes the fact that a fair

number of research works are being done, to cope with the

uncertainty and fuzziness associated with the successful

implementation of AMT in a manufacturing establishment.

Background Knowledge

This section presents the background of the current

research work undertaken.

The Fuzzy Decision Matrix

A fuzzy preference is represented by decision matrix of the

following form:

The five elements of the matrix are as follows:

(i) Alternatives, i.e., AMT1, AMT2… AMTm.

(ii) m Numbers of alternatives.

(iii) Criteria selected, i.e., CR1, CR2… CRn.

(iv) n Numbers of criteria.

(v) Criteria values of alternatives, assigned by the DAs in

linguistic values due to the subjectivity, uncertainty

and fuzziness present in the problem. In turn, these

are converted to TFNs ;ij ¼ ðaij; bij; cijÞ using suit-

able conversion scales. i ¼ 1; 2. . .m :

no: of alternatives; j ¼ 1; 2. . .n : no: of criteria

The weight matrix consisting of the criteria weights is

given by the following:

�x ¼ ½ �x1 �x2 . . . �xn �;ij ¼ ðaij; bij; cijÞn, where

�xj ¼ xaj;xbj;xcj

� �
are the TFNs for criteria weights

assigned by DAs for n numbers of criteria.

Triangular fuzzy number (TFN)

A TFN eliminates the fuzziness prevailing in a problem. A

TFN ‘;ij’ is presented by a triplet (Fig. 3) such as ;ij ¼
ðaij; bij; cijÞ where aij is the lower limit and cij is the upper

limit. The membership function fA xð Þ of the TFN follows

the conditions noted [43]:

fA xð Þ ¼
0; x\aij; x[ cij
x� aij=bij � aij; aij � x� bij
cij � x=cij � bij; bij � x� cij

8<
:

Taguchi Loss Functions

The concept of Taguchi loss function is somewhat different

from the traditional loss function popularly known as goal

post view (Fig. 4) [44]. Upper specification limit (USL)

and lower specification limit (LSL) are the goal posts in the

traditional loss function. If the product feature falls within

the limit of the designed specifications, it is taken to be of

acceptable quality no matter what the deviation is from the

center. On the contrary, the same gets rejected if it does not

meet the designed specifications. Taguchi suggested a

restricted and more focused perspective of characteristic

acceptability and indicated that any departure from a preset

target value resulted in a loss [45]. According to him,

quality can only be defined in terms of the amount of

financial loss incurred to the society. It is a graphical

representation of how an increase in variation within the

specified limits leads to an exponential increase in cus-

tomer dissatisfaction. A characteristic measurement equal

to the target value incurs zero loss. The loss, otherwise, is

measured by quadratic functions and measures ought to be

taken to minimize the divergence from the targeted zone

[46]. The formulation of Taguchi identifies the losses

incurred even before a product is shipped [47].

1

Fig. 3 Triplet showing triangular fuzzy number

Loss 
incurred

Loss 
incurredLoss incur

No
red

Lower 
specification 
limit (LSL)

Higher 
specification 
limit (HSL)

Fig. 4 Goal post view of traditional loss function
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Three types of loss functions [48] could be assimilated

depending on the variation in product characteristic. The

first one, i.e., nominal is better approach, fixes the target

region, either at the center (two-sided equal specification

loss function) or allows for nominal shift in both directions

from the center (two-sided with specification preference

loss function) as shown in Figs. 5 and 6, respectively. The

loss is depicted by a quality loss function, and it follows a

parabolic curve mathematically given by Eq. 1 as follows:

fl ¼ l k � yð Þ2; ð1Þ

where fl corresponds to the loss incurred, l is the loss

coefficient, k is the actual size of the product and y is the

nominal value of the specification.

If the difference between actual size and nominal value,

i.e., k - y is large, loss would be more, irrespective of

tolerance specifications. The loss function in Eq. 1 holds

good for a single product. But for multiple products, there

is slight variation in the loss function and is given by Eq. 2:

fl ¼ l V2 þ �k � yð Þ2
h i

ð2Þ

where V2 represents the variance of product size and �k be

the average product size and other variables remain the

same as in Eq. 1.

The second one, i.e., smaller is better approach, corre-

sponds to one-sided LSL and the third one, i.e., higher is

better approach, corresponds to one-sided USL, as shown

in Figs. 7 and 8, respectively. They confront to Eqs. 3 and

4, respectively, as follows:

fl ¼ l kð Þ2 ð3Þ

fl ¼ l
�
k2 ð4Þ

Taguchi loss function can be used for non-

manufacturing applications as well. Liao and Kao [49]

developed an MCDM model based on multi-choice goal

programming, Taguchi loss function and AHP for selection

of supplier. The proposed method allowed decision makers

to set multiple aspiration levels for the decision criteria. A

robust optimization approach utilizing Taguchi loss

function was developed by Ramakrishnan and Rao [50]

for solving nonlinear optimization problem. Sharma and

Balan [51] developed a supplier selection model with

different criteria levels, by integrating TOPSIS, Taguchi

loss function and multi-criteria goal programming. They

integrated different criteria levels to select the best

performing supplier from a number of given options. A

mathematical model using Taguchi loss function and

principal component analysis (PCA) was developed by

Antony [52] for optimizing a multivariate multi-response

problem.

The Proposed Methodology

We have discussed various steps of the proposed model in

this section. A unified framework for the model is depicted

in Fig. 9. The procedural steps are as follows:

LSL             Target            USL
0

100

Taguchi 
loss

Fig. 5 Two-sided equal specification loss function target at the center

LSL     Target                 USL
0

100

Taguchi 
loss

Fig. 6 Two-sided with specification preference loss function–nom-

inal target shift from the center

Target USL

100

Taguchi 
loss

0

Fig. 7 Smaller is better approach—Taguchi loss function

0

100

Taguchi 
loss

TargetLSL

Fig. 8 Higher is better approach—Taguchi loss function
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Problem recognition

Brainstorming session

Decision criteria selection Selection of alternatives

Weights of criteria by Decision 
Committee

Value of Taguchi loss of alternatives 
with respect to criteria by Committee

Consolidated loss 
of alternatives

Knowledge 
Base

Objective factor 
measure 

(Implementation cost 
of alternatives)

Evaluation Index 
of alternatives

Final Ranking 
and selection

P
H
A
S
E
1

P
H
A
S
E
2

P
H
A
S
E
3

World of manufacturing

Fig. 9 Unified decision support framework for the proposed methodology
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Step 1 Formation of decision committee having kn
number of DAs.

Step 2 Ascertainment of the alternatives and the

important criteria describing the alternatives.

Step 3 Construction of decision matrix by defining the

criteria values as linguistic values and subsequently

converting to TFNs. A conversion scale in the range of

0–10 is used here as given in Table 1. Conversion of

aggregated criteria weights into TFNs by scale bearing

values between 0 and 1 is given in Table 2.

Step 4 Measure of criteria values of alternatives and the

importance weights of criteria by simple arithmetic

mean as in Eqs. 5 and 6, respectively:

;ij ¼ ½;1ij þ ;2ij þ � � � þ ;knij �=kn; ð5Þ

where i ¼ 1; 2. . .m : no: of alternatives; j ¼ 1; 2. . .n :

no: of criteria; kn ¼ no: of members:

�xj ¼ ½ �x1
j þ �x2

j þ � � � þ �xk
j �=kn; �xj

¼ �xaj; �xbj; �xcj

� �
is the TFN for weight vector ð6Þ

Step 5 Normalized TFNs for weight vectors are

calculated and converted into crisp values as in Eqs. 7

and 8:

xj ¼ �xj=
X

�xj;xj

¼ xaj;xbj;xcj

� �
is the normalised TFN forweight vector

ð7Þ

wj ¼ xaj þ xbj þ xcj

� �
=3;wj

¼ crisp value of weight vector ð8Þ

Step 6 Normalization of the decision matrix; the

normalized TFNs are represented by

;Nij ¼ aNij ; b
N
ij ; c

N
ij

� �
. The generating equations for

benefit and cost criteria are presented in Eqs. 9 and 10,

respectively:

;Nij ¼ aNij ; b
N
ij ; c

N
ij

� �
¼ aij

.
c�j
; bij

.
c�j
; cij

.
c�j

� �
;

c�j ¼ maxcij

ð9Þ

;Nij ¼ aNij ; b
N
ij ; c

N
ij

� �
¼ a�j

.
cij;

a�j
.
bij;

a�j
.
aij

� �
;

a�j ¼ minaij
ð10Þ

Step 7 Combining the fuzzy normalized values with the

loss function. Calculating Taguchi loss value (Lij) of the

alternatives in fuzzy form, thereby not losing any

information that was contained in the problem at the

beginning. Specification limits of decision criteria and

fuzzy values of alternatives are integrated to achieve the

same.

Step 8. Calculating the fuzzy weighted Taguchi loss

value (WLi) for each alternative. The generating equa-

tion is provided in Eq. 11 as follows:

WLi ¼
Xn
j¼1

ðLij � wjÞ; WLi

¼ WLai;WLbi;WLcið Þ is the TFN forweighted Taguchi loss:

ð11Þ

Step 9 Defuzzification [43] of weighted Taguchi loss

value as in Eq. 12 and ranking of alternatives based on

the same. The lower the value, the higher the ranking.

CrispWLi ¼ WLai þ 4 �WLbi þWLcið Þ=6 ð12Þ

Step 10 The assistance of knowledge base and market

survey is extracted by the DAs for the installation costs

(Ri) of the AMTs. The same is introduced as the

objective factor in the mathematics. Calculation of the

objective factor measure (OFMi) is carried out by

Eq. 13:

OFMi ¼ Ri �
X 1

Ri

	 
�1

ð13Þ

Step 11 Calculating the evaluation index (EIi) for each

alternative as in Eq. 14 as proposed by Bhattacharya

et al. [53]. Subsequent ranking of the AMTs based on the

same. Higher values of EIi produce better ranking of

alternatives.

EIi ¼ c � SFMið Þ þ 1� cð Þ OFMið Þ; SFMi

¼ subjective factormeasure ¼ WL�1
i ð14Þ

where c = coefficient of cognition; SFMi ¼
Subjective factor measure for the AMTs.

These above-mentioned steps are utilized by the DAs of

three individual decision committees separately to find out

three different solutions to the given problem.

Table 1 Linguistic values for weights of alternatives

Linguistic variable Triangular fuzzy number

Very high performance (VHP) (8, 10, 10)

High performance (HP) (6, 8, 10)

Medium performance (MP) (4, 6, 8)

Low performance (LP) (2, 4, 6)

Very low performance (VLP) (0, 2, 4)

Table 2 Linguistic values for weights of criteria

Linguistic variable Triangular fuzzy number

Extremely high importance (0.8, 0.9, 1)

Very high importance (0.7, 0.8, 0.9)

High importance (0.5, 0.6, 0.7)

Low importance (0.3, 0.4, 0.5)

Very high importance (0.1, 0.2, 0.3)
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A Case Study

The establishment of the proposed model through a real-

life case study is presented in this section.

Experimental Setting

The present paper represents a formulation of performance

assessment problem of five preselected AMTs. For the

purpose of assessment, three decision committees, namely

K1, K2 and K3, are formed. They involve a certain number

of DAs in the decision committees. All of them are from

different virtuosities having considerable experience and

expertise to deal with any problem scenario. The overall

spectrum of the DAs included in the decision committees is

presented in Table 3. The DAs of each decision committee

are assigned with the responsibility of the whole assess-

ment process. They go through a number of brainstorming

sessions for several hours to get the desired outcome. They

initially choose criteria like quality loss, delay in order

delivery, operational flexibility and environ safety. At a

later stage, they incorporate the installation costs of the

AMTs in the form of objective factor measure (OFM) and

make ranking as per the values of evaluation indices (EIs).

Three different ranking sequences are obtained for the

three decision committees. Post-optimality treatment of the

parameters is also accomplished for the decision commit-

tees by instituting a new factor, i.e., coefficient of cogni-

tion, c. The value of the same has to be set between 0 and 1.

The cognitive minds of the DAs play a pivotal role in

taking comprehensive decision. Explicit knowledge of all

the DAs is known and certain. But what’s about their tacit

knowledge? Submerged iceberg could represent the tacit

knowledge that includes attitude, emotion, commitment

and empathy of individual DA. These are the things we

cannot judge from outside. That’s why, variation is found

in decision-making among the DAs. An optimistic DA sets

a high value of c. On the other hand, the value of the same

is less for a pessimistic approach. The cognitive mind of

the DA is like that iceberg comprising of explicit and tacit

knowledge as shown in Fig. 10.

The higher officials of a manufacturing firm would like

to implement AMT as it has the leading edge in manu-

facturing environment worldwide at this day and age. They

are forced to efficiently customize their products in a cost-

effective manner while keeping the customer satisfaction

intact. A successful implementation of AMT offers great

productivity, flexibility and profitability. But, on the other

hand, implementation of AMT leads to replacing a good

amount of manual labor with automated systems requiring

large capital investment. It could be a nightmare for the

firm if the project goes wrong. So, considering the scenario,

the officials formed three decision-making committees.

The three decision committees involved four, three and

four DAs, respectively, having different profiles and varied

fields of expertise. They have given the responsibility to

come to a solution individually although the chosen deci-

sion criteria and alternatives are same for all of them. There

are five alternatives, namely AMT1, AMT2, AMT3, AMT4

and AMT5, among which the optimum selection should be

implemented in the firm. They DAs choose four selection

criteria which are the most important ones in the given

scenario. Two of them are non-beneficial criteria, supposed

to be minimized, namely product quality loss (CR1) and

delay in order delivery (CR3). The other two are beneficial

ones, ought to be maximized, namely operational flexibility

(CR2) and environ safety (CR4). The range, target value

and specification limits of the decision criteria are given in

Table 4 based on the past literature by Pi and Low [45].

From quality perspective, the DAs could set the values

according to the convenience and requirement of the firm.

They set the percentage target loss at zero, and USL could

be set at 2.5%. On time delivery or no delay is one of the

most important aspects of AMT implementation. The firm

could incur huge loss if there is delay in order delivery. So,

the specification limit is set to a maximum of four working

days delay, i.e., four working days delay will incur 100%

loss. For flexibility, the loss will be zero if flexibility is

100%. The specification limit is set to 65%, i.e., loss will

be 100% if the flexibility goes down to 65%. The fourth

criteria, environ safety, gets a lot of attention in changing

global environment. The outcomes of the AMTs have to be

environment-friendly and could save natural environment

of surroundings without creating any health hazard to the

people. The specification limit, in this case, is set to 80%,

at which the loss will be 100%.

Operational Steps

The weights for the decision criteria and values of alter-

natives are given by DAs of three committees distinctively,

as in Tables 5 and 6. The uncertainty and fuzziness asso-

ciated with the subjective factors can be coped with the

introduction of linguistic variables. Thus, the decision

matrix is formed with the same. This is, then, converted

into TFNs, as in Table 7 and normalized to get unit-free

values, as in Table 8. Weights of decision criteria are

converted into crisp numerical values corresponding to the

DAs of different committees. Taguchi loss function is then

put to use according to the nature of individual criterion.

The values of loss coefficient are identified as 160,000,

6.25, 42.25, 64 for the decision criteria, following Eqs. 3 or

4, depending on the beneficial or non-beneficial nature. The

values are integrated with decision matrix to measure fuzzy

loss values of alternatives, exhibited in Table 9. Weights of
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Table 3 Spectrum of decision associates (DAs)

Decision

committee

Decision associate

(DA)

Age

(years)

Academic

qualification

Working

experience

Expertise

K1 DA1 39 BE 18 Advanced manufacturing planning and

control

DA2 55 PhD 28 Supply chain management

DA3 63 MBA 38 Marketing management

DA4 45 ME 20 Artificial intelligence

K2 DA1 58 PhD 26 Sustainability engineering and science

DA2 35 BE 13 Enterprise resource planning

DA3 49 MBA 23 Operation management

K3 DA1 57 PhD 25 Finance and strategic management

DA2 62 MBA 36 Human resource

DA3 47 ME 22 Productivity and quality management
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decision criteria are incorporated with the loss values to

find out fuzzy weighted loss of alternatives given in

Table 10. The fuzzy attributes values till the later stage of

the problem-solving phase helped in keeping the much

required information initially contained in the problem.

The values are lastly defuzzified to get a comprehensive

ranking of the alternatives. The same is presented in

Table 11. The lower the weighted loss value, the higher the

ranking of the alternative.

Although the basic reasons to implement AMT system is

to enhance productivity, quality, flexibility, etc., the ulti-

mate rationale has to be established with economy. The

DAs go through market survey and their knowledge base to

fix the installation costs of the AMTs as given in Table 12.

A mathematical model combining cost-factor components

Table 3 continued

Decision

committee

Decision associate

(DA)

Age

(years)

Academic

qualification

Working

experience

Expertise

DA4 38 BE 16 Decision theory

Explicit knowledge 
(5%)

Tacit knowledge 
(95%) --Age

--Educational 
Qualification
--Working 
Experience

--Attitude 
of mind

--Temperament
--Responsiveness
--Commitment
--Amicability
--Empathetic
--Co-operative

Decision 
Analyst

Decision 
Analyst,
the known

Decision 
Analyst, the 
unknown

Fig. 10 Iceberg-cognitive mind of decision associate representing explicit and tacit knowledge

Table 4 Decision criteria for selected alternatives

Decision criteria Range Target value Specification limit Nature

Quality loss (CR1) 0–2.5% 0% 2.5% Lower the better

Delay in order delivery (CR2) 0–4 working days No time delay 4 working days Lower the better

Operational Flexibility (CR3) 100% to 65% 100% 65% Higher the better

Environ safety (CR4) 100% to 80% 100% 80% Higher the better

Table 5 Criteria weights by DAs in linguistic values

Decision committee K1 Decision committee K2 Decision committee K3

Decision criteria DA1 DA2 DA3 DA4 DA1 DA2 DA3 DA1 DA2 DA3 DA4

CR1 EHI VHI VHI EHI VHI EHI HI VHI VHI EHI HI

CR2 VHI VHI HI VHI VHI HI HI HI VHI VHI EHI

CR3 HI HI VHI VHI VHI HI VHI HI HI VHI HI

CR4 EHI EHI EHI VHI VHI VHI VHI EHI EHI VHI EHI
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Table 6 Linguistic values of alternatives by DAs in correspondence with decision criteria

Decision criteria Alternatives Decision committee K1 Decision committee K2 Decision committee K3

DA1 DA2 DA3 DA4 DA1 DA2 DA3 DA1 DA2 DA3 DA4

CR1 AMT1 HP MP MP HP HP HP MP HP HP MP MP

AMT2 MP HP MP HP MP HP VHP VHP MP MP HP

AMT3 HP HP HP HP VHP HP MP HP MP MP VHP

AMT4 MP MP HP HP VHP HP MP MP MP VHP VHP

AMT5 MP HP HP HP VHP HP HP HP HP VHP VHP

CR2 AMT1 HP HP VHP MP MP MP VHP VHP VHP HP MP

AMT2 VHP VHP VHP MP HP HP HP HP HP MP VHP

AMT3 VHP VHP VHP VHP HP HP VHP HP VHP VHP HP

AMT4 LP LP MP MP MP MP MP HP MP MP MP

AMT5 LP MP LP MP HP MP LP HP HP MP MP

CR3 AMT1 HP HP VHP HP VHP VHP MP MP MP HP VHP

AMT2 MP HP LP MP HP MP MP HP MP MP MP

AMT3 LP MP MP LP MP MP MP MP MP LP MP

AMT4 HP MP HP VHP HP HP VHP HP VHP VHP MP

AMT5 HP HP MP HP MP MP HP VHP VHP MP HP

CR4 AMT1 MP MP HP MP LP MP MP HP MP MP MP

AMT2 HP MP HP MP HP HP MP MP MP HP HP

AMT3 VHP HP HP VHP VHP HP VHP VHP HP HP VHP

AMT4 VHP VHP MP MP HP HP HP MP MP HP VHP

AMT5 HP MP HP MP HP HP VHP HP VHP VHP HP

Table 7 Decision matrix in the form of TFNs combining the values given by DAs

Decision criteria Alternative Decision committee

K1 K2 K3

CR1 AMT1 (4.5, 6.5, 8.5) (5.33, 7.33, 9.33) (5, 7, 9)

AMT2 (5, 7, 9) (6, 8, 9.33) (5.5, 7.5, 9)

AMT3 (6, 8, 10) (6, 8, 9.33) (5.5, 7.5, 9)

AMT4 (5, 7, 9) (6, 8, 9.33) (6, 8, 9)

AMT5 (6, 8, 10) (6.67, 8.67, 10) (7, 9, 10)

CR2 AMT1 (6, 8, 9.5) (5.33, 7.33, 8.67) (6.5, 8.5, 9.5)

AMT2 (7, 9, 9.5) (6, 8, 10) (6, 8, 9.5)

AMT3 (8, 10, 10) (6.67, 8.67, 10) (7, 9, 10)

AMT4 (3, 5, 7) (4, 6, 8) (4.5, 6.5, 8.5)

AMT5 (3, 5, 7) (4, 6, 8) (5, 7, 9)

CR3 AMT1 (6.5, 8.5, 10) (6.67, 8.67, 9.33) (5.5, 7.5, 9)

AMT2 (4, 6, 8) (4.67, 6.67, 8.67) (5, 7, 9)

AMT3 (3, 5, 7) (4, 6, 8) (3.5, 5.5, 7.5)

AMT4 (6, 8, 9.5) (6.67, 8.67, 10) (6.5, 8.5, 9.5)

AMT5 (5.5, 7.5, 9.5) (4.67, 6.67, 8.67) (6.5, 8.5, 9.5)

CR4 AMT1 (4.5, 6.5, 8.5) (3.33, 5.33, 7.33) (4.5, 6.5, 8.5)

AMT2 (5, 7, 9) (3.33, 5.33, 7.33) (5, 7, 9)

AMT3 (7, 9, 10) (7.33, 9.33, 10) (7, 9, 10)

AMT4 (6, 8, 9) (6, 8, 10) (5.5, 7.5, 9)

AMT5 (5, 7, 9) (6.67, 8.67, 10) (7, 9, 10)
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with weighted loss values is established, the basic of which

is proposed by Bhattacharya et al. [53] as mentioned ear-

lier. As weighted loss is a minimization function, the

inverse of the same is considered as subjective factor

measure, to be maximized. In doing so, the cognitive minds

of DAs are also analyzed and coefficient of cognition (c)

Table 8 Normalized decision matrix

Decision committee Alternative Criteria

CR1 CR2 CR3 CR4

K1 AMT1 (0.53, 0.69, 1) (0.32, 0.38, 0.50) (0.65, 0.85, 1) (0.45, 0.65, 0.85)

AMT2 (0.5, 0.64, 0.9) (0.32, 0.33, 0.43) (0.4, 0.6, 0.8) (0.5, 0.7, 0.9)

AMT3 (0.45, 0.56, 0.75) (0.3, 0.3, 0.38) (0.3, 0.5, 0.7) (0.7, 0.9, 1)

AMT4 (0.5, 0.64, 0.9) (0.43, 0.6, 1) (0.6, 0.8, 0.95) (0.6, 0.8, 0.9)

AMT5 (0.45, 0.56, 0.75) (0.43, 0.6, 1) (0.55, 0.75, 0.95) (0.5, 0.7, 0.9)

Criteria weight (wj) 0.27 0.236 0.22 0.275

K2 AMT1 (0.57, 0.73, 1) (0.46, 0.55, 0.75) (0.67.0.87, 0.93) (0.33, 0.53, 0.73)

AMT2 (0.57, 0.67, 0.89) (0.4, 0.5, 0.67) (0.47, 0.67, 0.87) (0.53, 0.73, 0.93)

AMT3 (0.57, 0.67, 0.89) (0.4, 0.46, 0.6) (0.4, 0.6, 0.8) (0.73, 0.93, 1)

AMT4 (0.57, 0.67, 0.89) (0.5, 0.67, 1) (0.67, 0.87, 1) (0.6, 0.8, 1)

AMT5 (0.53, 0.61, 0.86) (0.5, 0.67, 1) (0.47, 0.67, 0.87) (0.67, 0.87, 1)

Criteria weight (wj) 0.26 0.224 0.25 0.27

K3 AMT1 (0.56, 0.71, 1) (0.47, 0.53, 0.69) (0.58, 0.79, 0.95) (0.45, 0.65, 0.85)

AMT2 (0.56, 0.67, 0.9) (0.47, 0.56, 0.75) (0.53, 0.74, 0.95) (0.5, 0.7, 0.9)

AMT3 (0.56, 0.67, 0.9) (0.45, 0.5, 0.64) (0.37, 0.58, 0.79) (0.7, 0.9, 1)

AMT4 (0.56, 0.63, 0.83) (0.53, 0.69, 1) (0.68, 0.89, 1) (0.55, 0.75, 0.9)

AMT5 (0.5, 0.56, 0.71) (0.5, 0.64, 0.9) (0.68, 0.89, 1) (0.7, 0.9, 1)

Criteria weight (wj) 0.254 0.254 0.213 0.28

Table 9 Taguchi loss values of alternatives with respect to criteria

Decision committee Alternative Criteria

CR1 CR2 CR3 CR4

K1 AMT1 (44,944, 76,176, 160,000) (0.64, 0.9, 1.56) (100, 58.48, 42.25) (316, 151.4, 88.6)

AMT2 (40,000, 65,536, 129,600) (0.64, 0.68, 1.16) (264.1, 117.36, 66.02) (256, 130.6, 79)

AMT3 (32,400, 50,176, 90,000) (0.56, 0.56, 0.9) (469.4, 169, 86.2) (130.6, 79, 64)

AMT4 (40,000, 65,536, 129,600) (1.16, 2.25, 6.25) (117.4, 66, 46.8) (177.8, 100, 79)

AMT5 (32,400, 50,176, 90,000) (1.16, 2.25, 6.25) (189.7, 75.1, 46.8) (256, 130.6, 79)

Criteria weight (wj) 0.27 0.236 0.22 0.275

K2 AMT1 (51,984, 85,264, 160,000) (1.32, 1.89, 3.52) (94.12, 55.82, 48.85) (587.7, 227.8, 120.1)

AMT2 (51,984, 71,824, 126,736) (1, 1.56, 2.81) (191.26, 94.12, 55.82) (227.8, 120.1, 74)

AMT3 (51,984, 71,824, 126,736) (1, 1.32, 2.25) (264.1, 117.36, 68) (120.1, 74, 64)

AMT4 (51,984, 71,824, 126,736) (1.56, 2.81, 6.25) (94.12, 55.82, 42.25) (177.78, 100, 64)

AMT5 (44,944, 59,536, 118,336) (1.56, 2.81, 6.25) (191.26, 94.12, 55.82) (142.57, 84.56, 64)

Criteria weight (wj) 0.26 0.224 0.25 0.27

K3 AMT1 (50,176, 80,656, 160,000) (1.38, 1.76, 2.98) (125.6, 67.7, 46.8) (316, 151.48, 88.58)

AMT2 (50,176, 71,824, 129,600) (1.38, 1.96, 3.52) (150.41, 77.15, 46.8) (256, 130.6, 79)

AMT3 (50,176, 71,824, 129,600) (1.27, 1.56, 2.56) (308.62, 125.6, 67.7) (130.6, 79, 64)

AMT4 (50,176, 63,504, 110,224) (1.76, 2.93, 6.25) (91.37, 53.34, 42.25) (211.57, 113.78, 79)

AMT5 (40,000, 50,176, 80,656) (1.56, 2.56, 5.06) (91.37, 53.34, 42.25) (130.6, 79, 64)

Criteria weight (wj)WLi 0.254 0.254 0.213 0.28
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value is set as 0.67. c is the measure of positivity in a DA.

It makes a balance between the subjective and the objective

factor associated with a decision problem. The higher the

value, the more optimistic is the DA. So, the value 0.67 is

regarded as the mean of the optimism expressed by the

DAs across each decision committee. The final deciding

factor, i.e., the evaluation indices, is calculated for the

AMTs by three decision committees following Eq. 14. The

corresponding values and finalized rankings are presented

in Table 13. The optimum selection decision is same

throughout the committees, and the selection is AMT5.

Post-optimality Treatment

Post-optimality treatment, as the name suggests, is carried

out only after the optimum solution to the problem is

reached. It is carried out to establish the robustness of the

proposed model and also termed as sensitivity or uncer-

tainty analysis. It is used to determine the sensitivity of the

model to changes in the input parameters. Any vagueness

at the level of input data is managed by TFNs. At the

design level, this is carried out by post-optimality analysis.

In the presented model, post-optimality treatment is carried

out owing to establish a design range for coefficient of

cognition (c), over which we can have optimum selection.

This has something to do with the cognitive mind of DAs.

This expresses the positivity or the negativity of the DAs. If

the group of DAs is optimistic in nature, they see oppor-

tunities in challenges. And, the c value tends to move to the

higher side, getting close to 1. On the other hand, a pes-

simistic group could find out problems even in opportuni-

ties and the c value could move to the lower side close to 0.

The value of c in the present problem is set to 0.67. Post-

optimality treatments for three different decision commit-

tees are portrayed in Figs. 11, 12 and 13, respectively. The

analysis of the same is presented in Table 14.

Application and Result Analysis

The current section presents the applicability of the pro-

posed method in comparison with others and analysis of

the result thereafter. It is a bit tedious task to make sure that

a new kid on the block is having more competitive

advantage than the other big guns, and that, it has got

robustness. To prove the same, we have pitted the proposed

Table 10 Weighted Taguchi loss values

Alternative Decision committee

K1 K2 K3

Weighted loss () Weighted loss (WLi) Weighted loss (WLi)

AMT1 (12,245.11, 20,622.23, 43,233.76) (13,698.34, 22,244.79, 41,645.44) (12,859.91, 20,543.70, 40,675.86)

AMT2 (10,928.88, 17,756.61, 35,028.39) (13,625.38, 18,730.55, 32,985.94) (12,848.32, 18,296.56, 32,951.71)

AMT3 (8886.09, 13,606.56, 24,336.80) (13,614.51, 18,723.86, 32,986.15) (12,846.40, 18,292.19, 32,951.86)

AMT4 (10,875.41, 17,737.27, 35,025.30) (13,587.71, 18,715.83, 32,980.63) (12,823.57, 16,173.82, 28,029.90)

AMT5 (8860.93, 13,600.49, 24,333.30) (11,772.09, 15,526.35, 30,800.02) (10,216.15, 12,778.68, 20,515.12)

Table 11 Weighted Taguchi loss (crisp value) and preliminary ranking

Alternatives Committee K1 Committee K2 Committee K3

Crisp WLi Preliminary ranking Crisp WLi Preliminary ranking Crisp WLi Preliminary ranking

AMT1 22,994.563 5 24,053.82 5 22,618.43 5

AMT2 19,497.29 4 20,255.59 4 19,831.05 4

AMT3 14,608.19 2 20,249.35 3 19,827.84 3

AMT4 19,474.97 3 20,238.61 2 17,591.46 2

AMT5 14,599.37 1 17,446.25 1 13,641.00 1

Table 12 Implementation cost of alternatives and objective factor

measure

Alternatives AMT installation cost (Ri)

(millions of $)

Objective factor

measure (OFMi)

AMT1 4.087 0.223

AMT2 5.178 0.176

AMT3 4.256 0.215

AMT4 4.339 0.210

AMT5 5.203 0.176
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method with a well-established fuzzy VIKOR method and

exhibited the comparison result. We have compared the

findings of decision committee K3, of the proposed

method, with fuzzy VIKOR, to get an overall understand-

ing about the applicability and practicality of the same.

VIKOR (Serbian language: VlseKriterijumska Opti-

mizacija I Kompromisno Resenje) is a multi-criteria opti-

mization and compromise solution, first showcased by S.

Opricovic in his PhD defense in the year 1979. An appli-

cation of the same was published later in 1980 [54] with a

view to solve decision problems with conflicting criteria

with acceptable agreement for conflict resolution. VIKOR

brings in compromised solution that is the closest to the

ideal condition and provide ranking of alternatives. Com-

promise solution in MCDM was first introduced by Yu [55]

and Zeleny [56]. The real applications of VIKOR were

presented in 1998 [57], and eventually, it was interna-

tionally recognized [58].

The steps of fuzzy VIKOR include the following:

0.24 7 

0.22 6 

0.20 5 

0.18 4 : AMT5

0.16 3 : AMT4

0.14 2 : AMT3

0.12 1 : AMT2

0.10 0 : AMT1

0 0.0032 ɣ 0.565 1 

Legends

Optimum selection zone
Fig. 11 Post-optimality

treatment (Decision committee

K1)

Table 13 Evaluation index and final ranking

Alternatives Committee K1 Committee K2 Committee K3

Evaluation Index

(EIi)

Finalized

ranking

Evaluation Index

(EIi)

Finalized

ranking

Evaluation Index

(EIi)

Finalized

ranking

AMT1 3.015 5 2.867 5 3.089 5

AMT2 3.530 4 3.375 4 3.428 4

AMT3 4.680 2 3.394 3 3.448 3

AMT4 3.573 3 3.406 2 3.868 2

AMT5 4.687 1 4.031 1 4.835 1

0.24 7

0.22 6

0.20 5

0.18 4 : AMT5

0.16 3 : AMT4

0.14 2 : AMT3

0.12 1 : AMT2

0.10 0 : AMT1

0 0.010 ɣ 0.038 1

Legends

Optimum selection zone

Fig. 12 Post-optimality

treatment (Decision committee

K2)
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Step 1 Aggregation of fuzzy weights of criteria into

TFNs (Table 15) and criteria values of alternatives by

following Eqs. 5 and 6.

Step 2 Formation of fuzzy decision matrix as given in

Table 7 earlier, same as that of our proposed method.

Step 3 Determination of best fuzzy values f �i and worst

fuzzy values f�i for all the selected criteria, where f �j ¼
max;ij; if the jth criterion is beneficial in nature and

f�j ¼ min;ij; if the jth criterion is non-beneficial in

nature. The same is presented in Table 15.

Step 4 Computation of weighted and normalized Man-

hattan distance (Mi), weighted and normalized Cheby-

shev distance (Ci), by following Eqs. 15 and 16:

Mi ¼
X

wj f �j � ;ij
� �

= f �j � f�j

� �
ð15Þ

Ci ¼ max½
X

wj f �j � ;ij
� �

= f �j � f�j

� �
� ð16Þ

The same is displayed in Table 16.

Step 5 Calculating the index values of AMTs ( �Qi) for the

three limits, by following Eq. 17:

�Qi ¼ r Mi �M�ð Þ= M� �M�ð Þ
þ 1�rð Þ Ci � C�ð Þ= C� � C�ð Þ ð17Þ

where M� ¼ minMi;M
� ¼ maxMi;C

� ¼ minCi;C
� ¼

maxCi;
Calculating the average index value, Qi ¼ �Qi=3; and,

inverse of, i.e.,Q�
i , Q

�
i ¼ Q�1

i . These values are presented

in Table 17.

r is the maximum group utility, i.e., strategic weight for

the majority of criteria. The strategies arrive to a com-

promise solution by taking r as 0.5.

Step 6 The index value in VIKOR follows the lower the

better principle. So, the inverse of the average index

values (Q�
i ) is taken as the subjective factor measure. On

the contrary, the implementation cost of alternative

(Table 12) is taken into account to get the measure of

objective factor (OFMi) by Eq. 13 presented earlier.

Step 7 Calculating the VIKOR selection Index (VSIi) for

each alternative by following Eq. 18:

VSIi ¼ c � SFMið Þ þ 1� cð Þ OFMið Þ ð18Þ

where SFMi = subjective factor measure = Q�
i , c = coef-

ficient of cognition mentioned earlier in Sect. 4.

Subsequent ranking of the AMTs are determined. Higher

value of VSIi betters the ranking of the same. Table 18

shows the values of VSIi and the ranking result as well.

0.26 8

0.24 7

0.22 6

0.20 5

0.18 4 : AMT5

0.16 3 : AMT4

0.14 2 : AMT3

0.12 1 : AMT2

0.10 0 : AMT1

0 0.011 0.023 1

Ɣ

Legends

Optimum selection zone

Fig. 13 Post-optimality

treatment (Decision committee

K3)

Table 14 Analysis of post-optimality treatment

Committee K1 Committee K2 Committee K3

Value of c Optimum selection Value of c Optimum selection Value of c Optimum selection

c B 0.0032 AMT1 c B 0.01 AMT1 c B 0.011 AMT1

0.0032 B c B 0.565 AMT3 0.01 B c B 0.038 AMT3 0.011 B c B 0.023 AMT4

c C 0.565 AMT5 c C 0.038 AMT5 c C 0.023 AMT5
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Experimental Result

The results of the model exhibit that values of evaluation

indices for AMT3 and AMT5, measured by committee K1,

are pretty close. Although AMT5 retains its winning place

carrying forward from the Taguchi weighted loss value, the

difference is too marginal. But for the other committees,

AMT5 emerges out as a clear and distant winner. The

inclusion of cost factor does not change the ranking of the

alternatives previously made out of the values of weighted

loss. So, the final result is as clear as daylight. The opti-

mum selection is AMT5 although the cost of implemen-

tation is a little on the higher side. If an organization is

tight on budget, it can choose between AMT3 and AMT4,

as they are occupying the second or the third place of

priority in the rankings of all the decision committees.

Also, the implementation costs of both of them are much

lower than that of AMT5. Having said that, it excels highly

in all other departments. For this obvious reason, it should

be the automatic choice for long run, for any manufactur-

ing organization trying to shift to AMT from traditional

ones and get immense benefit out of the same. The post-

optimality treatment reveals the desired robustness present

in the design of the model. The selection of alternative

AMT5 on the values of evaluation index is proving to be

the most optimum one in post-optimality treatment too.

Almost for the entire range of coefficient of cognition, c,
AMT5 remains the only choice. If the value of c is zero,

i.e., the most pessimistic approach, the DAs would make

the selection decision based only on cost factor. But, a unit

value of c, the most optimistic one, would therefore nullify

the cost factor and make the decision only on the basis of

Taguchi weighted loss of alternatives for which the lowest

value is the most preferable one. The comparison with

fuzzy VIKOR clears that the second highest ranked alter-

native by committee K3 in loss function is the top scorer

here in VIKOR, i.e., AMT4. Though the AMT5, the first

choice by committee K3 in loss function, is the third choice

by the VIKOR method, the difference in overall score is

too nominal. So, according to that, AMT5 comes out as the

best choice overall in the proposed case study.

Conclusion

Several conclusions have been drawn from the proposed

model, and the same has been profoundly discussed in this

section. Implementation of AMT by the manufacturing

organizations is the need of the hour for achieving sus-

tainable development. Otherwise, gradual decay of the

organizations is quite obvious. A framework is proposed in

this paper for performance assessment of AMTs using

Taguchi loss function to a fuzzy decision model. Some

experts in decision-making played a pivotal role in real-

izing the model. They chose the criteria that could best

expound the alternatives from the perspective of the man-

ufacturing firm. Finally, they analyzed the results of the

proposed model and rendered their verdict.

Table 15 Weights of criteria in TFNs, best fuzzy value and worst fuzzy value (VIKOR) (Committee K3)

Criteria Decision committee K3

Criteria weights Best fuzzy value (f � ) Worst fuzzy value (f-)

CR1 (0.675, 0.775, 0.875) 5 7 9 7 9 10

CR2 (0.675, 0.775, 0.875) 4.5 6.5 8.5 7 9 10

CR3 (0.55, 0.65, 0.75) 6.5 8.5 9.5 3.5 5.5 7.5

CR4 (0.75, 0.85, 0.95) 7 9 10 4.5 6.5 8.5

Table 16 Values of Si and Ri (Committee K3)

Alternatives Si Ri

AMT1 1.470 1.590 1.720 0.750 0.850 0.950

AMT2 1.450 1.655 1.400 0.600 0.680 0.580

AMT3 1.395 1.619 1.625 0.675 0.775 0.875

AMT4 0.788 0.898 0.633 0.450 0.510 0.633

AMT5 1.177 1.360 1.542 0.675 0.775 0.875

Table 17 Index values (Qi) (Committee K3)

Alternatives Q
^

i Qi Q�
i

AMT1 1.000 0.955 1.000 0.985 1.015

AMT2 0.736 0.750 0.355 0.610 1.639

AMT3 0.820 0.864 0.854 0.846 0.639

AMT4 0.370 0.680 0.720 0.590 1.695

AMT5 0.660 0.695 0.820 0.725 1.379

Table 18 VIKOR selection index and final ranking

Alternatives VIKOR selection index (VSIi) Final ranking

AMT1 0.75364 5

AMT2 1.15621 2

AMT3 0.86289 4

AMT4 1.20400 1

AMT5 0.98201 3
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The proposed methodology combines Taguchi loss

function with the fuzzy decision model, consolidated gain as

subjective factor measure of alternatives and the installation

cost as objective factor measure of alternatives. It can be

implemented successfully in supplier selection, robot

selection and many more MCDM problems prevailing in

today’s manufacturing scenario. It upped the novelty by

drawing in comparison with the traditional VIKOR method.

Also, in Taguchi loss function, fuzziness present in the

initial stage is carried forward deep into the problem. We

get the Taguchi loss values in terms of TFNs only, during

the final legs of the problem solving. Defuzzification is

done at a quite later stage. So, the loss of information is

significantly less as compared to some traditional decision

tools available. The comparison with VIKOR method

establishes the same.

The numbers of DAs in decision committees are vary-

ing. Expertise of DAs in the committees is not uniform nor

their experience. So, there might be slight variation in the

end result. But it is in the hand of manufacturing firm, to

choose the outcome of a particular committee depending

on its own optimized requirements.

Then also, we have the outcome of the post-optimality

treatment that could yield a considerable range of c, where the
optimum selection for all the committees is same, i.e., AMT5.

On the contrary, it depicts no mathematical comparison

between the results obtained from the manuscript and the

traditional loss function.

Future scope would include undertaking another form of

post-optimality treatment where the weights of criteria

would be interchanged and analyzing the final result for the

robustness of the problem. This particular research could

also be channelized toward investigating group decision-

making models in multi-attribute problems under uncer-

tainty and fuzziness. These are considered in cases of

fuzziness persistent, be it preliminary stage or be it prob-

lem-solving stage.

Lastly, we can say that fuzzy Taguchi loss method with

consolidated gain and consolidated loss concept stands

right up there and is very much suited for various kinds of

critical problems that manufacturing establishments pass

through.
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15. D. Rohrmus, V. Döricht, N. Weinert, Green factory supported by

advanced carbon-based manufacturing. Procedia CIRP 29, 28–33
(2015)

16. K. Efthymiou, K. Sipdas, D. Mourtzis, G. Chryssolouris, On

knowledge reuse for manufacturing systems design and planning: a

semantic technology approach.CIRPJ.Manuf. Sci. Technol.8, 1–11
(2015)

17. S. Nath, B. Sarkar, Performance evaluation of advanced manu-

facturing technologies: a denovo approach. Comput. Ind. Eng.

110, 364–378 (2017)

18. S.-J. Chuu, Selecting the advanced manufacturing technology

using fuzzy multiple attributes group decision making with mul-

tiple fuzzy information. Comput. Ind. Eng. 57, 1033–1042 (2009)

19. S.-J. Chuu, Group decision-making model using fuzzy multi-at-

tributes analysis for the evaluation of advanced manufacturing

technology. Fuzzy Sets Syst. 160, 586–602 (2009)

20. A.M.A. Al-Ahmari, A methodology for selection and evaluation

of advanced manufacturing technologies. Int. J. Comput. Integr.

Manuf. 21(7), 778–789 (2008)

123

490 J. Inst. Eng. India Ser. C (June 2020) 101(3):473–491

https://doi.org/10.1016/j.eswa2007.09.055
https://doi.org/10.1109/tsmc.2018.2874942
https://doi.org/10.1007/s12597-016-0262-9


21. S. Ahmed, N.V. Sahinidis, Selection, acquisition and allocation

of manufacturing technology in a multi-period environment. Eur.

J. Oper. Res. 189, 807–821 (2008)

22. S.-T. Liu, A fuzzy DEA/AR approach to the selection of flexible

manufacturing systems. Comput. Ind. Eng. 54, 66–76 (2008)

23. A.K. Choudhury, R. Shankar, M.K. Tiwari, Consensus-based

intelligent group decision-making model for the selection of

advanced technology. Decis. Support Syst. 42, 1776–1799 (2006)

24. M. Yurdakul, Selection of computer-integrated manufacturing

technologies using a combined analytic hierarchy process and

goal programming model. Robot. Comput. Integr. Manuf. 20,
329–340 (2004)

25. E.E. Karsak, Distance-based fuzzy MCDM approach for evalu-

ating flexible manufacturing system alternatives. Int. J. Prod. Res.

40(13), 3167–3181 (2002)

26. E.E. Karsak, O. Kuzgunkaya, A fuzzy multiple objective pro-

gramming approach for the selection of a flexible manufacturing

system. Int. J. Prod. Econ. 79, 101–111 (2002)

27. R.M. Yusuff, K.P. Yee, M.S.J. Hashmi, A preliminary study on

the potential use of the analytic hierarchy process (AHP) to

predict advanced manufacturing technology (AMT) implemen-

tation. Robot. Comput. Integr. Manuf. 17, 421–427 (2001)

28. A. Kengpol, C. O’Brien, The development of a decision support

tool for the selection of advanced technology to achieve rapid

product development. Int. J. Prod. Econ. 69, 177–191 (2001)

29. E.E. Karsak, E. Tolga, Fuzzy multi-criteria decision-making

procedure for making advanced manufacturing system invest-

ments. Int. J. Prod. Econ. 69, 49–64 (2001)

30. F.T.S. Chan, M.H. Chan, N.K.H. Tang, Evaluation technologies

for technology selection. J. Mater. Process. Technol. 107,
330–337 (2000)

31. N.C. Demirel, G.N. Yucenur, The cruise port place selection

problem with extended VIKOR and ANP methodologies under

fuzzy environment, in Proceedings of the World Congress on

Engineering, vol II, London, UK (2011)

32. M.M. Fouladgar, A. Yazdani-Chamzini, S.H. Yakhchali, M.H.

Ghasempourabadi, N. Badri, Project portfolio selection using

VIKOR technique under fuzzy environment, in 2nd International

Conference on Construction and Project Management IPEDR,

vol 15 (2011)

33. N. Mirahmadi, E. Teimoury, A fuzzy VIKOR model for supplier

selection and evaluation: case of EMERSUN company. J. Basic

Appl. Sci. Res. 2(5), 5272–5287 (2012)

34. L. Ramachandran, N. Alagumurthi, Lean manufacturing facili-

tator selection with VIKOR under fuzzy environment. Int. J. Curr.

Eng. Technol. 3(2), 356–359 (2013)

35. C. Samantra, S. Datta, S.S. Mahapatra, Application of fuzzy

based VIKOR approach for multi-attribute group decision mak-

ing (MAGDM): a case study in supplier selection. Decis. Mak.

Manuf. Serv. 6(1), 25–39 (2012)

36. M. Modiri-Delshad, S.H.A. Kaboli, E. Taslimi- Renani, N.A.

Rahim, Backtracking search algorithm for solving economic

dispatch problems with valve-point effects and multiple fuel

options. Energy 116, 637–649 (2016)

37. S.H.A. Kaboli, J. Selvaraj, N.A. Rahim, Long-term electric

energy consumption forecasting via artificial cooperative search

algorithm. Energy 115, 857–871 (2016)

38. S.H.A. Kaboli, A. Fallahpour, J. Selvaraj, N.A. Rahim, Long-

term electrical energy consumption formulating and forecasting

via optimized gene expression programming. Energy 126,
144–164 (2017)

39. A.R. Rafieerad, A.R. Bushroa, B. Nasiri- Tabrizi, S.H.A. Kaboli,

S. Khanahmadi, A. Amiri, J. Vadivelu, F. Yusof, W.J. Basirun, K.

Wasa, Toward improved mechanical, tribological, corrosion and

in vitro bioactivity properties of mixed oxide nanotubes on Ti–

6Al–7Nb implant using multi-objective PSO. J. Mech. Behav.

Biomed. Mater. 69, 1–18 (2017)

40. S.H.A. Kaboli, J. Selvaraj, N.A. Rahim, Rain-fall optimization

algorithm: a population based algorithm for solving constrained

optimization problems. J. Comput. Sci. 19, 31–42 (2017)

41. H. Asadi, S.H.A. Kaboli, A. Mohammadi, M. Oladazimi, Fuzzy-

control-based five-step Li-ion battery charger by using AC

impedance technique, in Fourth International Conference on

Machine Vision (ICMV 2011): Machine Vision, Image Process-

ing, and Pattern Analysis, vol 8349 (International Society for

Optics and Photonics, 2012)

42. M.I. Hlal, V.K. Ramachandaramurthya, S. Padmanaban, H.R.

Kaboli, A. Pouryekta, T.A.R.B.T. Abdullah, NSGA-II and

MOPSO based optimization for sizing of hybrid PV/wind/battery

energy storage system. Int. J. Power Electron. Drive Syst. 10(1),
463–478 (2019)

43. H.J. Zimmermann, Fuzzy Set Theory and Its Applications

(Kluwer, Boston, 1991)

44. T.L. Albright, H.P. Roth, Managing quality through the quality

loss function. J. Cost Manag. (Winter) 7(4), 20–37 (1994)

45. W.-N. Pi, C. Low, Supplier evaluation and selection using

Taguchi loss functions. Int. J. Adv. Manuf. Technol. 26, 155–160
(2005)

46. R.B. Kethley, B.D. Waller, T.A. Festervand, Improving customer

service in the real estate industry: a property selection model using

taguchi loss functions. Total Qual. Manag. 13(6), 739–748 (2002)
47. C. Quigley, C. McNamara, Evaluating product quality: an

application of the taguchi quality loss concept. Int. J. Purch.

Mater. Manag. 28(3), 19–25 (1992)

48. P.J. Ross, Taguchi Techniques for Quality Engineering, 2nd edn.

(McGraw Hill Professional, New York, 1996)

49. C.-N. Liao, H.-P. Kao, Supplier selection problem using Taguchi

loss function, analytic hierarchy process and multi-choice goal

programming. Comput. Ind. Eng. 58(4), 571–577 (2010)

50. B. Ramakrishnan, S.S. Rao, Robust optimization approach using

Taguchi’s loss function for solving nonlinear optimization

problems, in American Society of Mechanical Engineers, ed. By

Design Engineering Division (Publication) DE, pt 1 ed., vol 32

(ASME, New York, 1991), pp. 241–248

51. S. Sharma, S. Balan, An integrative supplier selection model

using Taguchi loss function, TOPSIS and multi criteria goal

programming. J. Intell. Manuf. 24, 1123–1130 (2013)

52. J. Antony, Multi-response optimization in industrial experiments

using Taguchi’s quality loss function and principal component

analysis. Qual. Reliab. Eng. Int. 16, 3–8 (2000)

53. A. Bhattacharya, B. Sarkar, S.K. Mukherjee, Integrating AHP

with QFD for robot selection under requirement perspective. Int.

J. Prod. Res. 43(17), 3671–3685 (2005)

54. L. Duckstein, S. Opricovic, Multiobjective optimization in river

basin development. Water Resour. Res. 16(1), 14–20 (1980)

55. P.L. Yu, A class of solutions for group decision problems.

Manag. Sci. 19(8), 936–946 (1973)

56. M. Zeleny, Compromise programming, in Multiple Criteria

Decision Making, ed. by J.L. Cochrane, M. Zeleny (University of

South Carolina Press, Columbia, 1973)

57. S. Opricovic, Multicriteria Optimization in Civil Engineering (in

Serbian) (Faculty of Civil Engineering, Belgrade, 1998), p. 302,

ISBN 86-80049-82-4

58. S. Opricovic, G.-H. Tzeng, The Compromise solution by MCDM

methods: a comparative analysis of VIKOR and TOPSIS. Eur.

J. Oper. Res. 156(2), 445–455 (2004)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

123

J. Inst. Eng. India Ser. C (June 2020) 101(3):473–491 491


	An Integrated Fuzzy Group Decision Support Framework for Performance Assessment of Advanced Manufacturing Technologies: An Eclectic Comparison
	Abstract
	Introduction
	Literature Survey for AMT Assessment Model
	Background Knowledge
	The Fuzzy Decision Matrix
	Triangular fuzzy number (TFN)
	Taguchi Loss Functions

	The Proposed Methodology
	A Case Study
	Experimental Setting
	Operational Steps
	Post-optimality Treatment

	Application and Result Analysis
	Experimental Result

	Conclusion
	Acknowledgements
	References




