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Abstract The work is devoted to studying the stability of

an elastic plate in a supersonic gas flow. This problem

arises in the study of the phenomenon of panel flutter,

buckling and vibration intensity of airplane and missile

thin-walled structures, excited by their interaction with the

airflow at high-speed flight. It is important to avoid the

panel flutter occurrence to increase the structure lifetime.

The vibrations of a rectangular isotropic thin plate in a

supersonic airflow are studied to find the flutter speed and

analyze it. Using Bubnov–Galerkin method and aerody-

namic model by piston theory in supersonic fluid dynamics,

effects of longitudinal and lateral stresses on the diver-

gence speed and flutter characteristics of the panel have

been analyzed by MATLAB coding. To this end, by find-

ing the panel vibration natural frequencies and drawing the

vibration graphs, flutter speed has been determined and

stress effects on this speed have been discussed. The

numerical results show that initial in-plane stresses have a

significant effect on flutter speed of the plate. Compressive

longitudinal stress will increase the panel dynamical

instability, and stretching stress in this direction will

decrease it. Furthermore, compressive stresses in lateral

(perpendicular to the flow) direction will decrease the panel

dynamical stability, and stretching stress in this direction

will increase it. Using this information, the most dynamic

stable and unstable zones in airplane structures can be

determined.

Keywords Panel flutter � Bubnov–Galerkin method �
Piston theory � Supersonic flow � Thin-walled structures �
High-frequency vibration

List of Symbols

a Plate length

b Plate width

D Bending stiffness of the plate

h Plate thickness

M Mach number

N In-plane stress

P Pressure

q Dynamic pressure

U Air velocity

W Plate deflection

b (M2 - 1)1/2

k The nondimensional dynamic pressure (2qa3/Db)
q Air density

Introduction

Panel flutter is an aeroelastic phenomenon causing fatigue

damage on skin panels of an aircraft in a supersonic gas

flow. If the flight speed is not too high, then the panel is

stable. Panel flutter or problems associated with it have

occurred on supersonic flight regimes on many supersonic

aircraft from the Second World War to the present days:

the German V-2 rocket in 1944, several experienced

American aircraft in the 1950, hypersonic aircraft X-15,

rocket Saturn V, American Apollo, Lockheed SR-71

Blackbird, F-117A, F-22. Usually, panel flutter, even in the

case of destruction of separate panels, directly does not
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lead to the collapse, but it can lead to a significant loss of

aircraft control, destruction of hydraulic systems and

increase in background noise inside the aircraft [1].

At present, the panel flutter phenomenon studies are not

enough, and effects of stresses in panel flutter occurrence

remain an urgent task. Improving aircraft performance

requires a reduction in mass and stiffness of the skin

panels, which increases the possibility of panel flutter.

Aircraft are designed and tested with flexible wings,

adapted to the conditions of flight and having a thin-walled

structure. Development of new geometric forms of aircraft

and production of new materials, including composites and

polymers changes the parameters of the airflow around the

panels and their physical properties, which can also lead to

flutter [1–3].

When the vehicle exceeds critical Mach number, the

panel becomes unstable and begins to vibrate. These

vibrations occur due to pumping energy from the flow to

the panel and may have a large amplitude, resulting in

aircraft fatigue damage or structural components [2].

Most studies till now devoted to the mathematical

modeling panel flutter of shells exposed to the gas flow can

be divided into two groups: using analytical or numerical

methods. The purpose of works belonging to the first group

is the conclusion of the analytic dependence of the critical

flutter frequency as a function that depends on the

parameters of a shell and the flow of gas. Second group can

also be divided into two areas: Solving a differential for-

mulation and an integrated formulation. A common point

for this group is to reduce the original problem to the

computation and analysis of complex eigenvalues of finite-

dimensional analogue of the problem [3].

One of the main differences between them is as follows:

In the first case, the equations of shell theory are written in

the form of a differential equation or a system of differ-

ential equations and a numerical solution is constructed

using the Galerkin method. In the second case, a variation

formulation is used for solving the problem, such as virtual

work, and a finite element method (FEM) is used for

realization of numerical variation equations [4].

In most studies until now, effects of stresses in panel

flutter are not studied. But in real situations (e.g., panels on

the supersonic plane wing), many stresses apply to wing

and its panels during the flight. As these stresses may

change the flutter boundaries and stability of the plate, they

can play a big role in structural designing of supersonic

vehicles. Many researches in this field up to now have been

done, which neglected these effects, and they cannot be

assumed in real-case designing.

These effects for the flutter boundary of a rectangular

plate (which mostly is used in real situations) by using the

Galerkin method and spectral numerical solutions are not

analyzed yet; therefore, the main purpose of this paper is

using these numerical methods to analyze effects of these

stresses on panel flutter characteristics and predict the most

critical zones in a sample supersonic airplane structure.

Numerical Model

Formulation

The most famous methods in FEM are Ritz and Bubnov

Galerkin. The characteristic feature of FEM is using local

basis functions (shape functions). The main advantage of

the method is the ability to divide any shape and area into

finite elements, which permits calculation of stress and

strain in real detail, including all their structural features

[3].

As is known, in solving the problem of the dynamics in

the force equilibrium equations of elasticity, inertia forces

distributed over the volume details should be included.

This approach may be realized within the framework of the

finite element method. The problem in this case may not be

the potential, and the Ritz method in the above formulation

is not applicable; the main method of solving problems is

the Bubnov–Galerkin method.

We assume that at the initial time the load was suddenly

applied to the plate [5] (Fig. 1).

To find the relation between small plate deflection w(x,

y) and applied load distribution DP(x, y), biharmonic

equation for Kirchhoff plate is used [2, 3, 5]:

D
o4W

ox4
þ 2

o4W

ox2oy2
þ o4W

oy4

� �
¼ Dp ð1Þ

Equation (1) is a basic equation of bending a thin plate.

It has the following properties:

• Linearity (a consequence of the linearity of the

geometric relationships);

• Invariance with respect to the interchange of the

coordinates (x, y) (this is a consequence of the isotropy

of the material)

Fig. 1 Panel figure
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After solving Eq. (1), by deflection w(x, y), all the

components of the stresses and strains at any point of the

plate can be determined. However, the solution of this

equation leads to the integration of constants. Finding them

is possible by using the boundary conditions.

On the plate contour can be implemented the following

main types of fixings:

1. Hinged

2. Rigidly clamped

3. The free edge

For satisfying the boundary conditions, deflection

function w(x, y) and its derivative at the plate edges is

assumed zero, which is corresponded only to the conditions

of rigidly clamped fixing.

Deflection function w(x, y) will be found in the form of a

linear combination of shape functions:

W ¼
X

CiWi x; yð Þ ð2Þ

Each set of basic functions w(x, y) and each set of

constants Ci may be used, and Eq. (1) is put into

correspondence with some loads p(x, y). By finding the

best Ci, p*(x, y) coincides with the given load p(x, y), and

then, expression (2) will give the exact solution.

In the case of incomplete (finite) set of shape functions,

obtaining an exact solution is not always possible, and the

load p*(x, y) is different from the set p(x, y) in the value of

r(x, y), which is called the residue. So, by choosing the Ci,

residual can be minimized, which can be carried out

according to various standards. In the Bubnov–Galerkin

method, the minimum residual does not perform work on

any of the basic functions is considered:ZZ
r x; yð ÞWi x; yð Þdxdy ¼ 0 ð3Þ

which gives a system of N equations for determining the

unknown constants Ci:ZZ
D

o4

ox4

X
CiWi þ 2

o4

ox2oy2

X
CiWi þ

o4

oy4

X
CiWi

� ��

�Dp x;yð Þ�Wj x;yð Þdxdy¼ 0

ð4Þ

That is:

X
Ci

ZZ
D

o4

ox4
Wi þ 2

o4

ox2oy2
Wi þ

o4

oy4
Wi

� �
�Wjdxdy

� �

�
ZZ

DP�Wjdxdy

¼ 0

ð5Þ

Expression (5) is a system of linear equations of the

form:

X
CiKij � fi¼0; i; j ¼ 1. . .N ð6Þ

Or in the traditional matrix form:

KC ¼ F ð7Þ

Thus, the Bubnov–Galerkin method, as well as the Ritz

method, reduces the problems of determining the stress–

strain state to solve a system of linear equations. As seen

from (5), the function should have fourth partial

derivatives.

During the motion, the plate deflection at each point is a

function of time: w = w(x, y, t). During accelerated motion

arise the forces of inertia, which can be considered by the

principle of d’Alembert:

D
o4

ox4
W þ 2

o4

ox2oy2
W þ o4

oy4
W

� �
¼ Dp� hq

o2W

ot2
ð8Þ

So, the solution of this equation should be found:

W x; y; tð Þ ¼
X

Ci tð ÞWi x; yð Þ; i ¼ 1; . . .;N ð9Þ

By repeating the above transformation:ZZ
D

o4

ox4

X
CiWi þ 2

o4

ox2oy2

X
CiWi þ

o4

oy4

X
CiWi

� ��

�Dp x;yð Þ þ hq
Xo2Ci

ot2
Wi

�
Wj x;yð Þdxdy¼ 0

ð10Þ

Or in matrix form:

M €C þ KC ¼ 0 ð11Þ

Here, C is a vector of unknown functions of time, and

not the vector of unknown constants, and the dot denotes

differentiation in time and the matrix M is the mass matrix.

From piston theory in fluid dynamics [2, 6], we can find

P in Eq. (1), i.e.,

DP ¼ �ðP� P1Þ ¼ �2q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1

p dW

dx
þ 1

U1

M2 � 2

M2 � 1

dW

dt

� �

ð12Þ

Unsteady aerodynamic load at supersonic flow can be

determined by piston theory, which is proposed by

Lighthill [2]. Theory of the piston is based on the

assumption that each surface element has the property of

a piston, perpendicular to the flow moving at a speed equal

to the downstream speed of w(x, y, t). This is recognized as

the relation between the motion of and pressure on a piston

in a tube where the total piston velocity includes both a

convection term and the direct velocity. Here, the plate is

the equivalent piston, and the fluid ‘tube’ is perpendicular

to the plate.

In addition, by adding the stresses (Nx and Ny) into

Eq. 1, this equation can be written in the complete form [7]
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D
o4

ox4
W þ 2

o4

ox2oy2
W þ o4

oy4
W

� �
þ hq

o2W

ot2
þ Nx

o2W

ox2
þ Ny

o2W

oy2

¼ 2q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1

p dW

dx
þ 1

U1

M2 � 2

M2 � 1

dW

dt

� �

ð13Þ

And in matrix form:

M €C þ B _C þ KC ¼ 0 ð14Þ

An explicit solver with time step Dt = 0.0001 (s) is used,

and results were compared with Matlab explicit solver

(ODE) for validation and clearly demonstrated the

accuracy of our solver.

Finding the Shape Functions

Trigonometric functions are often used as shape functions

with this general form [8]:

f̂ ¼
XM
m�1

Cm sinðmpx=LÞ ð15Þ

Functions must satisfy these conditions for a clamped

plate:

w 0; yð Þ ¼ w a; yð Þ ¼ w x; 0ð Þ ¼ w x; bð Þ ¼ 0

wx 0; yð Þ ¼ wx a; yð Þ ¼ wx x; 0ð Þ ¼ wx x; bð Þ ¼ 0

wy 0; yð Þ ¼ wy a; yð Þ ¼ wy x; 0ð Þ ¼ wy x; bð Þ ¼ 0

ð16Þ

In this case, there is no boundary edge corresponding

deflection (w = 0), and the internal normal to the contour

of the boundary edges (x = 0, a and y = 0, b) do not rotate.

Sinusoidal functions are good candidates for these

conditions [9, 10] So, the shape functions are chosen in

this form (Fig. 2):

W ¼ sin
ipx
a

sin
px
a
sin2

py
b
; i ¼ 1; 2; 3; 4 ð17Þ

Validation

To validate the present formulation, the flutter results for

rectangular simply supported isotropic panels are obtained

and compared with other computations.

For simply supported panels, functions must satisfy

these conditions:

w 0; yð Þ ¼ w a; yð Þ ¼ w x; 0ð Þ ¼ w x; bð Þ ¼ 0 ð18Þ

In this case, there is no boundary edge corresponding

deflection (w = 0).

So, the shape functions had been chosen in this form [2]:

W ¼ sin
ipx
a

sin
py
b
; i ¼ 1; 2; 3; 4 ð19Þ

The nondimensional dynamic pressure (k) in which

flutter begins, for a square panel (a/b = 1) obtained 506 and

for a rectangular panel (a/b = 2) obtained 1060. The

present formulation is in good agreement with results

obtained by Dowell [2] and Abdel-Motagaly et al. [11].

Results

First, the velocity of the flutter without any stress on the

plate should be computed. So, assuming the following

characteristics for plate, vibration frequencies of the plate

have been analyzed using MATLAB coding:

a = 0.6 m

b = 0.3 m

h = 0.002 m

Material = aluminum

Material density = 2.7 g/cm3

Young’s modulus = 70 GPa

Poisson’s ratio = 0.35

Assuming no stress condition for plate means Nx = Ny-

= 0. So, Eq. 13 should be written in this form:

D
o4

ox4
W þ 2

o4

ox2oy2
W þ o4

oy4
W

� �
þ hq

o2W

ot2

¼ �2q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1

p dW

dx
þ 1

U1

M2 � 2

M2 � 1

dW

dt

� � ð20Þ

To find the speed of starting panel flutter, natural

frequencies for panel have been computed and vibration

graphs (Z vs. time) for typical point of the panel at different

speeds have been drawn. For this reason, the central point

of panel has been selected [x = 0.3, y = 0.15 (m)]. Results

were as below:

U = 500, m = 1.47

See Fig. 3.

U = 700, m = 2.05

See Fig. 4.

U = 800, m = 2.35

See Fig. 5.

U = 830, m = 2.44

See Fig. 6.

U = 850, m = 2.5

See Fig. 7.
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It can be seen from Fig. 6 that flutter starts at the speed

of 830 m/s. Since in flutter situations, two frequencies

coincide, it is possible to find an accurate flutter speed. It

means that flutter occurs when two frequencies get com-

plex numbers [12]. Using this method, the first velocity in

which two frequencies coincide has been computed. By

MATLAB coding, the first panel flutter speed had been

computed as 808 m/s.

Analysis of the Effect of Stresses on Panel Flutter

For analyzing the stress effects on panel flutter, the com-

plete form of Eq. 13 should be used. For this reason, by

adding the stresses gradually and computing the flutter

3.1. U= 500, M= 1.47
Natural 
frequencies
11545.54
10769.29
11075.95
5079.33
4347.54
4637.34
931.62
1189.50
1517.07

Fig. 3 Deformation of central point versus time at 500 m/s

3.2. U=700, M= 2.05

Natural 
frequencies
11545.09
10769.45
11076.27
953.01
1232.55
1468.65
4348.57
4639.16
5076.79

Fig. 4 Deformation of central point versus time at 700 m/s

3.3. U=800, M= 2.35

800m/s

Natural 
frequencies
11544.73
10769.57
11076.52
967.37
1296.07
1403.11
4349.38
4640.63
5074.75

Fig. 5 Deformation of central point versus time at 800 m/s

3.4. U=830, M= 2.44

830m/s

Natural 
frequencies
11544.61
10769.61
11076.61
971.66
1349.48 + 
31.39i
1349.48-
31.39i
4349.65
4641.13
5074.07

Fig. 6 Deformation of central point versus time at 830 m/s

3.5. U=850, M= 2.5

850m/s

Natural 
frequencies
11544.53
10769.64
11076.67
974.48
1349.46 + 
60.72i
1349.46 -
60.72i
4349.83
4641.47
5073.59

Fig. 7 Deformation of central point versus time at 850 m/s

Fig. 2 W1, W2
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velocity by a method which had been explained in the

previous section, graphics of relationship between flutter

dynamic pressure and longitudinal and lateral stresses has

been drawn.

From Fig. 8, the relationship between divergence

velocity and longitudinal stresses is clear. Compressive

stresses reduce flutter speed and stability, and stretching

increases them. And from Fig. 9, the relationship between

divergence velocity and lateral stresses is clear. Compres-

sive stresses reduce flutter speed and stability, and

stretching increases them too, but longitudinal stresses

(particularly the stretching stresses) have a greater effect on

plate stability than lateral stresses.

Conclusions

The modeling for analysis of panel flutter and effect of

stresses on divergence speed are presented. A numerical

model using Galerkin method is developed with piston

theory in supersonic aerodynamics to detect the vibration

characteristics of a rectangular panel. This model allows

designing the geometrical and material features of panels to

avoid dynamic instability of a supersonic aircraft structure.

It is demonstrated that increasing the velocity of fluid

will lead to decreasing the vibration frequencies. Also,

longitudinal (in direction of flow) compressive stresses in

the panel will decrease the divergence velocity, which

means that compressive longitudinal stress will increase

the panel dynamical instability, and stretching stress in this

direction will decrease it. Furthermore, compressive stres-

ses in lateral (perpendicular to the flow) direction will

increase the panel dynamical instability, and stretching

stress in this direction will decrease it.

Using this information, the most dynamic stable and

unstable zones in airplane structures can be determined.

The safest zones are shown in red color in Fig. 10, and

the most critical zones are shown in green color in Fig. 11.

Since the maximum stress applied to the airplane wing

skin is created from bending stress caused by the lift force,

compressive stress is applied on the upper wing skin and

stretching stress perpendicular to the flow is applied on the

lower wing skin. These stresses have the maximum value

near the root of the wing, so the safest zones are located on

the lower wing skin near the root, because the compressive

lateral stress decreases the stability.

Fig. 8 Flutter velocity versus Nx

Fig. 9 Flutter velocity versus Ny

Fig. 10 The safest zones on airplane structure

Fig. 11 The most critical zones on airplane structure
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In addition, the most critical zones are located on the

upper wing skin near the root, because the compressive

lateral stress increases the instability. In aircraft structural

design, this instability should be considered in computing

the wing skin material, thickness and aspect ratio of panels.
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