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Abstract Analytical two-dimensional (2D) piezoelasticity

free vibration solution is presented for the beams under

different combinations of support conditions, using the

multi-term multi-field extended Kantorovich method

(MMEKM). Piezoelasticity-based extended Hamilton

principle with the mixed variational field is applied to

derive the governing equations in terms of stresses, dis-

placements along with electric displacements and electric

potential. Therefore, boundary conditions, both natural and

essential, are satisfied in an exact manner at all points. By

employing MMEKM, the first-order differential–algebraic

system of 8n equations is obtained along the z-direction

(thickness) for each layer and another set along the x-di-

rection (in-plane). The final solution of these first-order

ODEs is obtained in closed form. The numerical results are

verified by comparing against the exact 2D solution

available in the literature for the simply supported bound-

ary condition case and with 2D finite element results for

other support conditions. New benchmark results for free

vibration are presented for piezoelectric beams subjected to

arbitrary boundary conditions.

Keywords Extended Kantorovich method �
Piezoelectric beam � Free vibration � 2D piezoelasticity �
Analytical � Energy harvesting

List of Symbols

x, z Coordinates in axial and thickness directions

a, h Span length, thickness of beam

u;w Displacement along x and z, respectively

ri, ei Normal stresses and normal strains

sij, cij Shear stresses and shear strains

Ei, Di, / Electric field, electric displacements and

electric potential

Yi, Gij, mij Young’s moduli, shear moduli and Poisson’s

ratio

�eij, gij Constant stress field dielectric permittivities,

constant strain dielectric permittivities

�sij, �dij, q Transformed elastic compliances,

piezoelectric strain constants and density

xn, �x Natural frequency, non-dimensionalized

frequency parameter

Introduction

Laminates integrated with piezoelectric layers are known

as ‘smart structures.’ Piezoelectric material layers are used

to regulate the static and dynamic behavior of the structures

through actuation and sensing and also used to control the

vibration generated during operation which increases

safety, usability and durability of structures [1]. Thus, the

application of piezoelectric composite laminates in struc-

tural components has increased extensively in the field of

civil engineering, automobile, aeronautics and medical

fields. In engineering and medical fields, we use load cells,

pressure sensors, accelerometers, gyroscopes and ultra-

sonic transducers in which piezoelectric beams or disks act

as sensing and actuating mechanism. Piezoelectric beams

are also used in small-scale energy harvesting devices,

which convert vibrational energy into an electrical voltage

or DC power with the help of an electronic circuit.
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Therefore, for proper functioning and designing of these

components, it is very important to know the dynamic

behavior of piezoelectric beams under various boundary

conditions.

Bailey and Hubbard [2] employed distributed parameter

control theory to design and analyze the active vibration

damper for a thin cantilever beam. Using Euler–Bernoulli

beam theory, Crawley and De Luis [3, 4] developed static

and dynamic computational models for beams with highly

distributed actuators and sensors which were either bonded

on their top surface or embedded in between the elastic

layers. Yang and Lee [5] presented an analytical model to

obtain mode shapes and the fundamental frequencies of a

stepped piezoelectric cantilever beam having surface-bon-

ded piezoelectric layers. By developing the constituent

equations for piezoelectric bimorph beam, Low and Guo

[6] presented a dynamic model with hysteresis for three-

layered piezoelectric bimorph beam. Sunar [7] documented

the application of piezoelectric materials in the field of

sensing and active control of flexible structures in his

review article. Saravanos and Heyliger [8] and Gopinathan

et al. [9] presented a detailed review of several theories and

analytical model for the analysis of smart piezoelectric

structures.

Kapuria et al. [10] developed a new efficient one-di-

mensional coupled model, on the basis of third-order zig-

zag approximation, for the dynamic analysis of simply

supported piezoelectric composite beams. Further, Kapuria

et al. [11] presented a new coupled consistent third-order

theory (CTOT) to obtain an analytical solution for dynamic

and static analysis of simply supported hybrid piezoelectric

beams. Using the pseudospectral method, Kekana [12]

presented the free vibration solution for composite beams

mounted with piezopatch acting as sensors and actuators.

Based on the Euler–Bernoulli beam theory and Rayleigh–

Ritz approximation, Della and Shu [13] developed a

micromechanics technique to obtain the free vibration

solution for beams embedded with piezoelectric material

actuators and sensors. Further, Della and Shu [14] extended

this approach to develop a dynamic solution for beams with

piezoelectric inclusions. Using the transfer matrix, Wang

[15] obtained fundamental frequencies and corresponding

mode shapes of a beam with surface-bonded pair of

piezoelectric segments. Khdeir et al. [16] presented ana-

lytical solutions for the free vibration analysis of cross-ply

piezolaminated beams embedded with piezoelectric actu-

ators. The state-space approach is applied to obtain fun-

damental frequencies and corresponding mode shapes for

different combinations of support conditions. Further,

Khdeir and Aldraihem [17] presented a novel zigzag theory

for free vibration analysis of sandwich beams with soft-

core. Muthalif and Nordin [18] developed an approach to

find an optimum shape for cantilever-type energy harvester

to improve its performance. Fu et al. [19] and Li et al. [20]

presented free vibration analysis of functionally graded

(FG) beams with piezoelectric sensors and actuators.

Nilanjan Chattaraj and Ranjan Ganguli [21–23] presented

Euler–Bernoulli-based 1D nonlinear analytical model to

analyze the detailed electromechanical behavior of piezo-

electric bimorph actuators at the high electric field. Most of

the above works on piezoelectric beam are based on one-

dimensional theories. Kapuria et al. [24] presented the

exact 2D piezoelasticity solution for simply supported

beams with damping under harmonic electromechanical

loads. A review of the literature on the free vibration

analysis of elastic and piezoelectric beams can be found in

the recent review articles [25–28]. An extensive literature

survey has revealed that analytical 2D piezoelasticity free

vibration solution for arbitrary supported beams is not

available in the literature [27].

Due to the coupled constitutive relation between elastic

and electric field, the behavior of these types of hybrid

beam structures is very complex. Hence, an efficient

solution method is needful to predict the complex behavior

of arbitrarily supported piezoelectric laminated beams

which will also act as a benchmark for assessing other

approximate or numerical method. Analytical techniques

are preferred because of its simplicity and high accuracy.

Moreover, the closed-form 2D piezoelasticity solution

helps to understand the electromechanical behavior of

hybrid beams and helps to make a suitable assumption for

the kinematic and the kinetic field for 1D theories of the

beam.

The EKM, proposed by Kerr [29, 30], is a very powerful

and elegant analytical method for solving partial differen-

tial equations (PDEs). Recently, extended Kantorovich

method becomes popular to analyze the dynamic and static

behavior of structures. The detailed literature on extended

Kantorovich method can be found in a recent review article

presented by Wu et al. [31] and Singhatanadgid and

Singhanart [32]. Recently, Kapuria and Kumari [33] pre-

sented an extended Kantorovich approach for the three-

dimensional (3D) piezoelasticity solution of the piezo-

electric plate under cylindrical bending and subjected to

arbitrary support condition. Kumari et al. [34] also used

this approach to obtain three-dimensional piezoelasticity

solution for static analysis of piezoelectric laminated plates

subjected to Levy-type supports. Further, Kumari and

Behera [35] extended this approach to develop 3D free

vibration solution for a rectangular composite plate under

Levy-type support conditions. Recently, Kumari et al.

[36–38] extended this approach to obtain an analytical

solution for the in-plane functionally graded flat panels and

rectangular plates. Recently, Moeenfard and Maleki [39]

applied extended Kantorovich method to obtain the static

response of microplates under electrostatic actuation.
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In this paper, analytical 2D piezoelasticity free vibration

solution is presented for the beams under different com-

binations of support conditions, using the multi-term multi-

field extended Kantorovich method (MMEKM). Piezoe-

lasticity-based extended Hamilton principle with the mixed

variational field is applied to derive the governing equa-

tions in terms of stresses, displacements along with electric

displacements and electric potential. Therefore, boundary

conditions, both natural and essential, are satisfied in an

exact manner at all points. By employing MMEKM, the

first-order differential–algebraic system of 8n equations is

obtained along the z-direction (thickness) for each layer

and another set along the x-direction (in-plane). The final

solution for these first-order ODEs is obtained in closed

form. The numerical results are verified by comparing

against the exact 2D solution, available in the literature, for

the simply supported boundary condition case and with 2D

finite element (FE) results for other support conditions.

New benchmark results for free vibration are presented for

piezoelectric beams subjected to arbitrary boundary

conditions.

Mathematical Modeling

A hybrid cross–ply laminated beam having total thickness

‘h’ along the z-axis and length ‘a’ along the x-axis, as

shown in Fig. 1, is considered for modeling. The hybrid

laminated beam has ‘L’ number of perfectly bonded lam-

inas which is generally orthotropic, and a few of them can

be orthotropic piezoelectric/PFRC material which could be

utilized as distributed sensors and actuators, and these

piezoelectric/PFRC laminas are poled along the thickness

direction z. The governing equations hold for each layer

(kth layer) having thickness t(k), and its bottom surface is

denoted by zk-1, where the interface of kth and (k ? 1)th

ply symbolized as the kth interface.

For the plane stress condition, electric field–potential

and strain–displacement relations are as follows [10]:

ex ¼ u;x; czx ¼ w;x þ u;z; ez ¼ w;z; Ez ¼ �/;z;

Ex ¼ �/;x

ð1Þ

where a subscript comma represents differentiation.

ex ; ez ; czx ; Ex and Ez can be represented in terms of

rx, rz, sxy, Dx and Dz as [33]:

ex ¼ �s11rx þ �s13rz þ �d31Dz ; ez ¼ �s13rx þ �s33rz þ �d33Dz ;

Ez ¼ � ð�d31rx þ �d33rz � �e33DzÞ ; czx ¼ �s55szx þ �d15Dx ;

Ex ¼ �e11Dx � �d15szx

ð2Þ

where �sij ¼ sij � d3i�d3j; �d3i ¼ d3i=e33; �eii ¼ 1=eii for

i; j = 1,3. The displacement elements u and w are taken

along x and z axes, respectively. ri and ei denote the normal

stress and normal strains components, respectively. sij and
cij denote shear stress and shear strains, and Ei denotes

electric field. Di and / denote the electric displacements

and electric potential, and q is the density of the material.�sij
represents the transformed elastic compliances, where �dij
and �eii represent piezoelectric strain constants and dielec-

tric permittivity’s constants at constant stress field,

respectively.

Piezoelasticity-based extended Hamilton principle in a

mixed form, without any internal charge and body force

source, for the bending case can be written as:Z

t

Z

a

Z

h

½du ðrx;x þ sxz;z � q€uÞ þ dwðszx;x þ rz;z � q €wÞ

þ drxð�s11rx þ �s13rz þ �d31Dz � u;xÞ
þ drzð�s31rx þ �s33rz þ �d33Dz � w;zÞ
þ dszxð�s55szx þ �d15Dx � u;z � w;xÞ
þ d/ðDx;x þ Dz;zÞ þ dDxð�d15szx � �e11Dx � /;xÞ
þ dDzð�d31rx þ �d33rz � �e33Dz � /;zÞ�dz dx dt ¼ 0

ð3Þ

Here, t is the time variable. The bottom and top surfaces

of the beam are shear traction free (szx ¼ 0). Dimensionless

in-plane coordinates considered are n ¼ x=a along the x-

direction, respectively. A thickness coordinate f for a layer
along the z-direction is defined which varies from 0 to 1.

The boundary conditions considered at the top and bottom

surfaces are at z ¼ �h=2, szx ¼ 0; rz ¼ 0;

for open circuitDz ¼ 0 and for close circuit/ ¼ 0. Along

the x-axis, beam can have any type of support such as

simply supported (S): w ¼ 0; rx ¼ 0; free (F):

szx ¼ 0; rx ¼ 0; clamped (C): w ¼ 0; u ¼ 0.

The Generalized EKM

These are eight primary field variables X ¼
½u w rx rz szx / Dx Dz� which are to be solved.

Using multi-term EKM, the field variable for the kth

lamina is expressed as:

Fig. 1 Geometry of a hybrid beam
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Xlðn; fÞ ¼
Xn
i¼1

f il ðnÞgilðfÞ for l ¼ 1; 2; . . .. . .:8 ð4Þ

where f il ðnÞ and gilðfÞ are the unknown functions of n and f,
respectively. The functions gilðfÞ are dependent on the kth

layer, while functions f il ðnÞ are valid for all layers. These

unknown functions of f and n are to be solved in two

iterative steps by satisfying all homogenous support

conditions.

First Iteration Step Along the Thickness Direction

Functions f il ðnÞ, along n-direction, are considered for the

variation dXl

dXl ¼
Xn
i¼1

f il ðnÞ dgil l ¼ 1; 2; . . .. . .. . .8 ð5Þ

Functions gilðfÞ are segregated into two column vectors
�G and Ĝ, where �G contains these particular six variables

which come in the support and interface conditions along

f-direction, and Ĝ contains the remaining variables:

�G ¼ g11. . .g
n
1 g

1
2. . .g

n
2 g

1
4. . .g

n
4 g

1
5. . .g

n
5 g

1
6. . .g

n
6 g

1
8. . .g

n
8

� �
Ĝ ¼ g13. . .g

n
3 g

1
7. . .g

n
7

� �

Substitute Eqs. (4) and (5) in Eq. (3) and perform the

integrations along n-direction. Since variations for dgil are
arbitrary, the coefficients of dgil must vanish (equal to zero)

which generates the following set of 8n governing

differential–algebraic equations for each layer:

M �G;f ¼ �A �Gþ ÂĜ ð6Þ

KĜ ¼ ~A �G ð7Þ

where M6n�6n; �A6n�6n; Â6n�2n; K2n�2n and ~A2n�6n are

known matrices. Nonzero elements of the matrices are

given below:

The algebraic Eq. (7) is solved to obtain Ĝ and put into

Eq. (6) which yields a set of 6n first-order homogeneous

ODEs as:

�G;f ¼ A �G ð8Þ

where A ¼ M�1½�Aþ ÂK�1 ~A�. Equation (8) represents a set

of 6n homogeneous first-order ODEs with constant

coefficient. The general solution of Eq. (8) is obtained by

applying the approach given in Ref. [35], and the final

solution is:

�GðfÞ ¼
X6n
i¼1

FiðfÞCi ð9Þ

where FiðfÞ are column vector which depend upon

eigenvector and eigenvalue and Ci unknown constant.

After applying top and bottom boundary conditions and

interface conditions, Eq. (9) yields,

X6n
i¼1

KdiðfÞCi ¼ 0 ð10Þ

where the coefficient matrix Kd is a function of x. For
nontrivial solutions, its determinant should be zero and x
can be obtained by root finding of the equation j detðKdÞj ¼
0 using bisection method. The un-damped natural fre-

quencies x01 ¼ xn are determined by using the approach

of Kapuria and Acharya [40].

Second Iteration Step Along the x-axis

Now gilðfÞ is known from the first step, and arbitrary

variation is considered along the x-direction. Therefore, the

variation for this case is written as:

dXl ¼
Xn
i¼1

gilðnÞ df il l ¼ 1; 2; . . .. . .::8 ð11Þ

Mi1j1 ¼ Mi4j4 ¼ f i5f
j
1

� �
a
; Mi2j2 ¼ Mi3j3 ¼ f i4f

j
2

� �
a

Mi5j5 ¼ Mi6j6 ¼ f i8f
j
6

� �
a
;

�Ai1j2
¼ �t

a
f i5f

j
2;n

D E
a
; �Ai1j4

¼ t �s55 f i5f
j
5

� �
a
; Âi1j2

¼ t �d15 f i5f
j
7

� �
a
;

Âi2j1
¼ t �s13 f i4f

j
3

� �
a
; �Ai2j3

¼ t �s33 f i4f
j
4

� �
a
; �Ai2j6

¼ t �d33 f i4f
j
8

� �
a
;

�Ai3j4
¼ �t

a
f i2f

j
5;n

D E
a
; Âi4j1

¼ �t

a
f i1f

j
3;n

D E
a
; �Ai5j3

¼ t �d33 f i8f
j
4

� �
a
;

Âi5j1
¼ t �d31 f i8f

j
3

� �
a
; �Ai5j6

¼ �t �e33 f i8f
j
8

� �
a
; Âi6j2

¼ �t

a
f i6f

j
7;n

D E
a
;

Ki1j1
¼ �s11 f i3f

j
3

� �
a
; ~Ai1j1

¼ 1

a
f i3f

j
1;n

D E
a
; ~Ai1j3

¼ � �s13 f i3f
j
4

� �
a
;

Ki2j2
¼ �e11 f i7f

j
7

� �
a
; ~Ai1j6

¼ � �d13 f i3f
j
4

� �
a
; ~Ai2j5

¼ � 1

a
f i7f

j
6;n

D E
a
;

~Ai2j4
¼ � �d15 f i7f

j
5

� �
a
; �Ai4j1

¼ �qx2t f i1f
j
1

� �
a
; �Ai3j2

¼ �qx2t f i2f
j
2

� �
a
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Fig. 2 Flowchart of applied

multi-term EKM approach

Fig. 3 Configuration of

piezoelectric beam and elastic

beam
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Similarly, like the first step, f il ðnÞ are segregated into

two column vectors �F and F̂, where �F carries these

particular six variables which come in the support

conditions at edges n = 0, 1 and F̂ contains the

remaining two variables.

�F ¼ f 11 . . .f
n
1 f 12 . . .f

n
2 f 13 . . .f

n
3 f 15 . . .f

n
5 f 16 . . .f

n
6 f 17 . . .f

n
7

� �
F̂ ¼ f 14 . . .f

n
4 f 18 . . .f

n
8

� �

Substitute Eqs. (4) and (11) into Eq. (3) and perform

integration along the z-axis on the known functions gilðfÞ.
Since variations for df il are arbitrary, the coefficients of df

i
l

must vanish (equal to zero) which generates the following

set of 8n governing differential–algebraic equations:

N �F;n ¼ �B �F þ B̂F̂

LF̂ ¼ ~B �F
ð12Þ

where N6n�6n; �B6n�6n; B̂6n�2n; L2n�2n and ~B2n�6n are

known matrices. The nonzero terms of these matrices are

given as:

The same procedure is followed as in the first step, and a

set of 6n first-order homogeneous ODEs are obtained for f il ,

which are solved in a similar fashion as mentioned in the

previous step.

The flowchart of iterative procedure for multi-term

extended Kantorovich method is shown in Fig. 2.

Numerical Results

In this section, various numerical results are presented and

discussed for a hybrid beam (a) consisting of a laminate

substrate having a piezoelectric (PZT-5A) layer of thick-

ness 0.1 h (a = 1) bonded at the top of the beam. The

piezoelectric substrate is grounded at the bottom and top

surfaces. The composite substrate of the beam has

symmetric 4-ply laminate [0�/90�/90�/0�] of graphite–

epoxy (Material 1) with layers of equal thickness 0.225 h,

as shown in Fig. 3. Beam (b) is an elastic composite beam

with symmetric 4-ply laminate [0�/90�/90�/0�] of Material

1 and each lamina of equal thickness 0.25 h, as shown in

Fig. 3.

The material properties like Young’s moduli (Yi), shear

moduli (Gij), Poisson’s ratios (mij), constant strain electric

permittivities (gij), and piezoelectric strain constants (dij)

are taken from Ref. [10] as:

[Y1, Y2, Y3, G12, G23, G31, m12, m13, m23]: Material 1:

[(181, 10.3, 10.3, 7.17, 2.87, 7.17) GPa, 0.28, 0.28, 0.33],

PZT-5A: [(61, 61, 53.2, 22.6, 21.1, 21.1) GPa, 0.35, 0.38,

0.38], [(g11, g22, g33); (d31, d32, d33, d15, d24)] = [(1.53,

1.53, 1.5) 9 10-8 F/m; (-171, -171, 374, 584,

584) 9 10-12 m/V]. The densities of materials 1 and PZT-

5A are 1578 and 7600 kg/m3, respectively. The natural

frequency xn, the modal displacements, stresses and elec-

trical state variables are non-dimensionalized as:

�x ¼ xnaS
ffiffiffiffiffiffiffiffiffiffiffiffi
q0=Y0

p
; ð�u; �wÞ ¼ ðu; wÞ=maxðu; wÞ

ð�rx; �szxÞ ¼ ðrx; szxÞSh=Y0maxðu; wÞ;
�/ ¼ / d0=maxðu; wÞ; �Dx ¼ DxSh=d0Y0maxðu; wÞ

where S (a/h) denotes span-to-thickness ratio. Max (u,

w) denotes the largest value of (u, w) through the thickness

for a particular mode. Y0 = 10.3 GPa, q0 = 1578 kg/m3

and d0 ¼ d33 pm/V. The length of piezoelectric beam is

assumed equal to unity for all cases, and thickness of beam

is taken according to span-to-thickness ratio (S = a/h). For

S = 5, 10, 20, the values of ‘h’ are 0.2, 0.1, 0.05,

respectively.

Dimensionless natural frequencies for the first three

bending modes of the hybrid beam are given in Table 1 for

the simply supported boundary conditions. Presented

Ni1j1 ¼ Ni3j3 ¼ gi3g
j
1

� �
h
; Ni2j2 ¼ Ni4j4 ¼ gi5g

j
2

� �
h
; Ni5j5 ¼ Ni6j6 ¼ gi7g

j
6

� �
h
;

�Bi1j3
¼ �s11g

i
3g

j
3

� �
h
; B̂i1j1

¼ �s13g
i
3g

j
4

� �
h
; B̂i1j2

¼ �d31g
i
3g

j
8

� �
h
;

�Bi2j1
¼ � 1

t
gi5g

j
1;f

D E
h
; �Bi2j4

¼ �s55g
i
5g

j
5

� �
h
; �Bi2j6

¼ �d15g
i
5g

j
7

� �
h
;

�Bi3j4
¼ 1

t
gi5;fg

j
1

D E
h
; B̂i4j1

¼ � 1

t
gi2g

j
4;f

D E
h
; �Bi5j6

¼ � �e11gi5g
j
5

� �
h
;

�Bi5j4
¼ �d15g

i
7g

j
5

� �
h
; B̂i6j2

¼ � 1

t
gi1g

j
8;f

D E
h
; Li1j1 ¼ �s33g

i
4g

j
4

� �
h
;

~Bi1j3
¼ � �s13g

i
4g

j
3

� �
h
; ~Bi1j2

¼ 1

t
gi4g

j
2;f

D E
h
; Li1j2 ¼ �d33g

i
8g

j
4

� �
h
;

Li2j2 ¼ � �e33gi8g
j
8

� �
h
; Li2j1 ¼ Li1j2 ~Bi2j3

¼ � �d31g
i
8g

j
3

� �
h
;

~Bi2j5
¼ 1

t
gi8g

j
6;f

D E
h
; �Bi3j1

¼ �aqx2 gi1g
j
1

� �
h
; �Bi4j2

¼ �aqx2 gi2g
j
2

� �
h
;
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results are compared with exact 2D results of Kapuria et al.

[11]. It is noticed that the presented results match excel-

lently with Ref. [11]. Since there is no 2D analytical free

vibration solution for a beam with other combination of

support conditions, present numerical results are compared

with 2D FE (Abaqus) for other combination of boundary

conditions.

The 2D FE solution is obtained using the Abaqus soft-

ware. In the 2D FE analysis, eight-node brick elements of

type CPS8RE for piezoelectric layers and CPS8R for

elastic layers with reduced integration are used. Converged

results are obtained with a mesh size of 50 (length) 9 18

(thickness), as shown in Figs. 4 and 5.

The lowest three natural frequencies are presented in

Tables 2, 3, and 4 for different combinations of support

conditions: clamped–simply supported (C–S), clamped–

free (C–F) and clamped–clamped (C–C)) for three span-to-

thickness ratios (S = 5, 10 and 20). The present results are

compared with 2D FE solution. It is observed that the

present EKM results match excellently with 2D FE results.

It is observed that for the thick beam, S = 5, the difference

between the present and 2D FE results is more than mod-

erately thick to thin beams for all modes and all boundary

conditions.

Boundary conditions have a significant effect on fun-

damental frequencies. One can easily observe from

Tables 2, 3 and 4 that first fundamental frequency is the

highest for C–C case for all three values of S (a/h) and

lowest for C–F case. For higher modes, such as 2 and 3, the

frequencies are near to S–S case for C–C and C–S condi-

tions, whereas, for C–F boundary condition, the

Table 2 Lowest three natural frequencies of the piezoelectric com-

posite beam (a) under clamped–simply supported boundary

conditions

Modes S C–S

EKM 2D FE

1 5 6.1456 6.2829

10 9.5316 9.6206

20 12.1196 12.1471

2 5 13.8817 14.1829

10 23.3668 23.6842

20 34.0563 34.2091

3 5 22.2271 22.5827

10 38.7888 39.2901

20 61.1997 61.6108

Table 3 Lowest three natural frequencies of the piezoelectric com-

posite beam (a) under clamped–free boundary conditions

Modes S C–F

EKM 2D FE

1 5 2.3545 2.3860

10 2.8586 2.8629

20 3.0436 3.0411

2 5 8.2096 8.6002

10 12.9698 13.1635

20 17.0363 17.0052

3 5 16.6309 17.2238

10 28.1884 28.7445

20 41.3175 41.5772

Table 4 Lowest three natural frequencies of the piezoelectric com-

posite beam (b) under clamped–clamped boundary conditions

Modes S C–C

EKM 2D FE

1 5 7.0624 7.2014

10 11.2637 11.8480

20 16.3091 16.3476

2 5 14.2002 14.7325

10 24.5828 25.1293

20 38.6841 38.4834

3 5 22.5344 23.1754

10 39.6405 40.5910

20 64.5903 65.3785

Table 1 Lowest five natural frequencies of piezoelectric simply

supported composite beam (a)

Modes S EKM Exact 2D [11] 2D FE (Abaqus)

1 5 5.5165 5.5165 5.5165

10 7.4119 7.4119 7.4119

20 8.3308 8.3308 8.3307

2 5 13.5887 13.589 13.5890

10 22.0661 22.066 22.0662

20 29.6476 29.647 29.6476

3 5 22.0016 22.002 22.0023

10 38.0200 38.020 38.0211

20 57.6204 57.620 57.6218

Fig. 4 Two-dimensional FE

model with mesh discretization

50 (length) 9 18 (thickness)
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frequencies for all modes and all S (5, 10, 20) are the

lowest. It is observed that as the thickness-to-span ratio

(S) increases, the non-dimensionalized natural frequency

parameters increase for all types of boundary conditions

and the increment is more pronounced at higher modes as

compared to the first mode which can also be observed

from Fig. 6 where the non-dimensionalized frequency

parameters are plotted against thickness-to-span ratio

(S) numbers for S–S, C–C, C–S and C–F cases.

In Fig. 7, the longitudinal variation of field variables (�u;
�w, �rx, �szx, �Dx, �/) is presented for the first mode of beam

(a) (S = 10) under S–S boundary conditions. Similarly, the

longitudinal variation of field variables (�u; �w, �rx, �szx, �Dx,
�/) for the third mode of beam (a) (S = 10) under S–S

boundary conditions is plotted in Fig. 8. Converged results

of single-term EKM are presented for both cases which are

in excellent agreement with 2D FE results for both mode

shapes. Similarly, the longitudinal variation of displace-

ments (�u), normal stress (�rx) and shear stress (�szx) is pre-
sented in Fig. 9 for piezoelectric beam (a) (S = 10) under

C–F and C–C cases, respectively. For these cases also,

present EKM results match excellently with the 2D FE

results.

The through-thickness distributions of in-plane dis-

placement (�u) and stresses (�rx and �szx) are compared in

Fig. 10 for beam (a) and beam (b) (S = 10) subjected to C–

C and C–F boundary conditions. It is observed that the

piezoelectric layer (PZT-5A), on the top of the elastic

beam, significantly affects the behavior and natural fre-

quency of the beam. The first-mode non-dimensionalized

natural frequency parameter for beam (b) (elastic beam,

S = 10) is �xCC = 14.3008 and �xCF = 3.62942 for C–C and

Fig. 6 Effect of span-to-

thickness ratio (S) on frequency

parameter of beam (a) for

different boundary conditions

Fig. 5 Two-dimensional FE

model of hybrid beam (S = 10)

under S–S boundary conditions
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Fig. 8 Longitudinal variation

of displacements, stresses and

electrical variables for the third

modes of beam (a) under S–S
boundary conditions

Fig. 7 Longitudinal variation

of displacements, stresses and

electrical variables for the first

modes of beam (a) under S–S

boundary conditions
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C–F conditions, respectively. Then the inclusion of

piezoelectric (PZT-5A) layer, of thickness 0.1h, on the top

of beam decreases the natural frequency parameter to

�xCC = 11.2637 and �xCF = 2.8586 for C–C and C–F con-

ditions, respectively.

Conclusion

A coupled 2D piezoelasticity solution is presented for the

free vibration analysis of a piezoelectric beam. The fun-

damental frequencies and corresponding mode shapes are

presented for the laminated piezoelectric beams under

different combinations of support conditions. The present

numerical results are compared with the 2D exact solution

for simply supported support conditions and with 2D FE

results for other combination of boundary conditions. It is

noticed that the present EKM results match excellently

with 2D FE results. It is also determined that as the span-

to-thickness ratio increases, the non-dimensionalized nat-

ural frequency parameters increase and the increment is

more pronounced for clamped–clamped boundary condi-

tion. It is observed that the piezoelectric layer (PZT-5A),

on the top of the elastic beam, significantly affects the

Fig. 9 Longitudinal variation

of displacements and stresses

for the first modes of beam

(a) under C–F and C–C

boundary conditions
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behavior and natural frequency of the beam. The presented

results can be utilized for assessing 1D theories.
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