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Abstract A numerical study was conducted by using the

finite difference technique to investigate the mechanism of

the fully developed turbulent flow and heat transfer in a

circular tube in company of large Reynolds number with

constant heat flux and at constant wall temperature condi-

tion. The methodology of solving the thermal problem is

based on the equation of energy for a fluid of constant

properties while taking into consideration the hypothesis of

the axisymmetric and fully developed pipe flow in steady

state. The global equation and the initial and boundary

conditions acting on the problem have been configured

here in dimensionless form in order to predict the turbulent

behavior of the fluid inside the tube. Thus, using Thomas’

algorithm, a program in FORTRAN version 95 was

developed in order to numerically solve the discretized

form of the system of equations describing the problem.

Finally, thanks to this elaborate program, we were able to

play on some parameters involved such as the Reynolds

number, the number of Peclet, and the longitudinal coor-

dinate to obtain important results of the treated thermal

model which are discussed and well detailed of this work.

Comparison between the literature correlation data and the

calculated simulation indicates that it is a good match of

the results.

Keywords Finite difference method � Nusselt number �
Fully developed flow � Reynolds number � Friction factor �
Turbulent � Pipe flow

List of symbols

Aj Coefficient in Eq. (36)

Bj Coefficient in Eq. (36)

Cj Coefficient in Eq. (36)

cp Specific heat at constant pressure (J/kg/K)

C1, C2 K–e Model constants

D Inner diameter (m)

Dj Coefficient in Eq. (36)

E Inner energy (J/kg)

E Dimensionless variable

f Fanning friction factor

F Function

k Turbulent kinetic energy (J/kg)

L Tube length (m)

M Tridiagonal matrix of dimensions (N 9 N)

NuD Nusselt number

NuiD Local Nusselt number

P Mean pressure (Pa)

Pr Prandtl number

Prt Turbulent Prandtl number

qx Heat transfer rate at the wall

r Radial coordinate (m)

R Dimensionless radial coordinate

ReD Reynolds number

t Time (s)

T Temperature (K)

Tb Bulk temperature (K)

Tc Centerline temperature (K)
�T Mean temperature (K)

Tx Wall temperature (K)

Ti Entrance temperature (K)
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uc Centerline mean velocity (m/s)

ui Mean velocity component (m/s)

�u Mean velocity (m/s)

�um Average velocity (m/s)

U Dimensionless velocity

�v Radial velocity component (m/s)

xi Cartesian coordinate (m)

y? Dimensionless distance from the cell center to the

nearest wall

z Axial coordinate (m)

Z Dimensionless axial coordinate

Greek letters

a Thermal diffusivity (m2/s)

dij Kronecker symbol

q Density of fluid (kg/m3)

h Dimensionless temperature

e Turbulent dissipation rate (m3/s2)

�H Eddy viscosity (kg/m/s)

l Dynamic viscosity (kg/m/s)

lt Eddy viscosity (kg/m/s)

U Scalar quantities

sx Wall-shear stress

k Thermal conductivity (W/m/K)

Subscripts

i, j, k Direction of coordinate

local Local value

out Outlet

t Turbulence

wall Tube wall

Introduction

The turbulent flow is a state of a fluid moving in the

direction of the flow guide, but with non-rectilinear tra-

jectories. There will be trajectory crossing for all layers of

fluid volume in motion which causes interactions between

the fluid volumes and collisions on the walls of the flow

guide. These collisions can cause noise. This type of flow is

very hard to analyze. Turbulent flows of fluids are of

importance in mechanical and engineering fields. They are

encountered in a variety of engineering applications, e.g.,

drilling hydraulics, sewage transport, processing of mineral

oil and polymer products, blood flow in arteries, and

applications involving relatively high heat transfer rates.

The fully developed turbulent flows of fluids in a stationary

cylindrical tube have been studied numerically by several

authors where they used the simulation of computer-based

computation codes at different Reynolds numbers to better

understand and analyze thermal problems. Jinnah [1]

investigated the shock-induced turbulent flow fields and

shock/turbulent-boundary layer interaction at the nozzle

divergent. Jinnah and Takayama [2] solved Reynolds-av-

eraged Navier–Stokes equations with k–e turbulence
model for numerical study of turbulent length scales.

Majumder et al. [3] studied experimentally the turbulent

fluid flow through a rectangular diffuser. Kumar et al. [4]

analyzed the laminar hydrodynamically developed and

thermally developing flow using finite volume method.

Several studies [5–11] whether digital or experimental on

fully developed turbulent channel flow were conducted

actively. Gnielinski [12] developed the equation describing

both the fully developed region of flow and the transition

region through channels and pipes using an experimental

data for high Prandtl and large Reynolds numbers. Taler

[13] developed a correlation for the Nusselt number Nu in

terms of the friction factor n (Re), Reynolds number Re,

and also Prandtl number Pr, which is valid for transitional

and fully developed turbulent flow in a circular tube subject

to a uniform heat flux. Badus’haq [14] conducted an

experimental study to determine steady-state local heat

transfer characteristics for air flowing turbulently inside an

electrically heated pipe.

Belhocine and Wan Omar [15], Belhocine [16] con-

ducted an analysis to predict the distribution of the

dimensionless temperature in a fully developed laminar

flow in a cylindrical pipe. Recently, Belhocine and Wan

Omar [17] were able to develop the analytical solution of

the problem of convective heat transfer within a pipe

whose solution obtained is in the form of the hypergeo-

metric series. Belhocine and Wan Omar [18] used a simi-

larity solution and Runge–Kutta method to analyze thermal

boundary layer model at the entrance region of a circular

tube.

In this paper, a two-dimensional fully developed mean

turbulent fluid flow and heat transfer in a circular duct are

numerically investigated using FORTRAN code which

applies the finite difference method to solve the thermal

problem for the two thermal boundary conditions, constant

surface temperature, constant heat rate (constant surface

heat flux), and steady, axisymmetric flow. Finally, the

numerical results of our model developed in the document

have been validated in good accuracy by comparing them

with some correlation results available in the specialized

literature.

Governing Equations

The governing equations are the continuity, momentum,

and energy equations:

o quið Þ
oxi

¼ 0 ð1Þ

123

136 J. Inst. Eng. India Ser. C (February 2020) 101(1):135–148



o

ot
quið Þ þ o

oxj
quiuj
� �

¼ � oP

oxi

þ o

oxj
l

oui

oxj
þ ouj

oxi
� 2

3
dij

ouj

oxi

� �� �
þ o

oxj
�qu0

iu
0
j

� 	 ð2Þ

o

oxi
½uiðqE þ PÞ�

¼ o

oxi
kþ cplt

Prt

� �
oT

oxj

� �
þ llt

oui

oxj
þ ouj

oxi
� 2

3
dij

ouj

oxi

� �

ð3Þ

where k is the thermal conductivity and E is the total

energy expressed by

E ¼ cpT � P=qþ u2=2

From the momentum equation, a transport equation for the

Reynolds stress tensor can be derived [19] as;

o qu0
iu

0
j

� 	

ot
þ Cij ¼ DT ;ij þ DI;ij þ Pij þ Uij þ �ij ð4Þ

where Cij, DT ;ij, DI;ij, Pij, Uij, and �ij are, respectively, the

terms of convection, turbulent diffusion, molecular

diffusion, shear stress production, stress–strain, viscosity

dissipation

Cij ¼
o
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For computational stability, it has been used other

expressions of the equations DT ;ij, UT ;ij and �T ;ij which are

defined as this;

DT ;ij ¼
o

oxk

lt
rk

ou
0
iu

0
j

oxk

 !

ð11Þ

Where rk ¼ 0:82 and lt is the turbulent viscosity,

/ij ¼ /ij;1 þ /ij;2 þ /ij;w ð12Þ

with /ij;w, /ij;1, and /ij;2 are, respectively, the surface

reflection term, slow term, and the rapid term, where the

last two are defined as follows:

/ij;1 ¼ �C1q
�

k
u

0
iu

0
j �

2

3
dijk

� �
ð13Þ

/ij;2 ¼ �C2 Pij �
2

3
Pdij

� �
ð14Þ

where C1 = 1.8 and C2 = 0.6.

With regard to viscosity dissipation, the large-scale

vortex is essentially engaged in the transport of momen-

tum. Nevertheless, it was considered that dissipation was

generated only in a small-scale isotropic vortex (Fig. 1).

So the equation for ei,j has been reduced to the following

expression

�ij ¼
2

3
q�dij ð15Þ

Simplifying Assumptions Used in the Turbulent
Flow Analysis

The general equations governing convective heat transfer,

i.e., the continuity, Navier–Stokes, and energy equations,

together form a very complex set of simultaneous partial

differential equations. Analytical solutions to this set of

equations have only been found in a few, relatively very

simple cases. Numerical solutions of these equations can be

obtained using relatively moderately sized computers

although the computer time involved with three-dimen-

sional flow solutions may be relatively large.

The following two types of flow are, from a practical

viewpoint, probably the most important in which such

simplifying assumptions can be adopted.

• In the case of flow inside a duct, it can be assumed that

the flow is fully developed. Basically, this means that it

can be assumed that certain properties of the flow do

not change with distance along the duct. Real duct

flows well away from the entrance or other fittings are

very nearly fully developed in many cases.

For fully developed duct flows in which it can be

assumed that the fluid properties are constant, the form of

Fig. 1 Flow in pipe
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the velocity and temperature profiles does not change with

distance along the duct, i.e., considering the variables as

defined in Fig. 2, if the velocity and temperature profiles

are expressed in the form then in fully developed flow, the

velocity and temperature profile functions f and g are

independent of the distance along the duct.

u

uc

� �
¼ f

r

D

� 	
;

T � Tc

Tx � Tc

� �
¼ g

r

D

� 	
ð16Þ

This will mean that the velocity at any distance y from the

center line of the duct will remain constant with distance

along the duct and that the temperature at this position will

vary in such a way relative to the center line and wall

temperatures that ðT � TcÞ= Tx � Tcð Þ remains constant. In

fully developed flow because u is not changing, it follows

that the velocity components in the radial and tangential

coordinate directions will be zero.

Numerical Procedure of the Thermal Problem

Thermally Developing Pipe Flow

We are interested here in a thermal problem with an initially

unheated elongated section for a flow inside a long pipe. For

speed to be in this problem, fully developed before the

beginning of the heating phase, this unheated section is

considered sufficiently long. The temperature field develops

when heating begins in this thermally developed region for a

fluid with constant properties [20], whose velocity field will

not be variable in this region. Figure 3 clearly shows the

schematization of the flow considered.

In our simulation, we will limit the thermal problem to

the case of constant fluid properties; the corresponding

equation for a turbulent flow in a tube is given as [21]:

�u
o�T

oz
þ �v

o�T

or
¼ 1

r

o

or
r �H þ að Þ o

�T

or

� �
ð17Þ

The radial velocity component (�t) is zero because here the

velocity profile is fully developed.

The energy equation describing the thermal problem we

are dealing with is given in the following form:

�u
o�T

oz
¼ 1

r

o

or
r �H þ að Þ o

�T

or

� �
ð18Þ

Boundary and Initial Conditions

The used form of the governing equations is quite parabolic

while neglecting the longitudinal heat flux and considering

only the radial flux. The mean velocity, �u, is independent of

z and varies according to r. We can write Eq. (18) like this

�u
o�T

oz
¼ 1

r

o

or
r

�

PrT
þ t
Pr

� �
o�T

or

� �
ð19Þ

The initial and boundary conditions on the solution to this

equation are:

When z ¼ 0; �T ¼ Ti

When r ¼ D=2; �T ¼ Tx

When r ¼ 0;
o�T

or
¼ 0

Derivation of Dimensionless Formulas

For simplification purposes, it is important to convert this

equation to a dimensionless form in order to solve the

problem. For this reason, we will use the following

variables:

R ¼ r

D
; U ¼ �u

�um
; E ¼ �

t
; Z ¼ z=D

ReD Pr
ð20Þ

where ReD is the Reynolds as a of the average velocity �um
through a tube of diameter D, is defined by

ReD ¼ �umD

t
ð21Þ

The wall temperature is considered uniform and equal to

Tx. We will introduce the dimensionless temperature in the

following; we can define it as follows:

Fig. 2 Velocity and temperature profiles in a pipe flow
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h ¼
�T � Ti

Tx � Ti
ð22Þ

where Ti is the initial fluid temperature before the heating

triggers. The substitution of dimensionless variables in

Eq. (19), gives us

U
oh
oZ

¼ 1

R

o

oR
R E

Pr

PrT
þ 1

� �
oh
oR

� �
ð23Þ

For our problem, this equation is subject to the

following initial and boundary conditions

Z ¼ 0 : h ¼ 0; R ¼ 0:5 : h ¼ 1; R ¼ 0 :
oh
oR

¼ 0 ð24Þ

The Thomas Algorithm

The tridiagonal matrix algorithm is used for the resolution

of a system with a tridiagonal matrix that was first devel-

oped by Llewellyn Thomas who bears his name (Thomas

algorithm) and is a way to solve implicitly three diagonal

system equations.

We seek to solve a tridiagonal matrix system of the

form:

MU ¼ D ð25Þ

where M is a matrix of dimensions N 9 N tridiagonal, that

is to say a matrix whose all elements are null except on the

main diagonal, the diagonal upper and the diagonal lower.

b1 c1
a2 b2 c2

a3 b3 c3

. .
.

0

. .
. . .

.

. .
. . .

. . .
.

. .
. . .

.

0

. .
.

. .
. . .

. . .
.

aN�1 bN�1 cN�1

aN bN

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

ð26Þ

and where the vectors U and D, of dimension N, are

written:

U ¼

u1
u2
u3

..

.

..

.

..

.

..

.

uN�1

uN

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

and D ¼

d1
d2
d3

..

.

..

.

..

.

..

.

dN�1

dN

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

ð27Þ

In this algorithm, we first calculate the following

coefficients:

c01 ¼
c1

b1
ð28Þ

c0i ¼
ci

bi � aic
0
i�1

for i ¼ 2; 3; . . .;N � 1 ð29Þ

And

d01 ¼
d1

b1
ð30Þ

d0i ¼
di � aid

0
i�1

bi � aic
0
i�1

for i ¼ 2; 3; . . .;N ð31Þ

The unknowns u1, u2, …, uN are then obtained by the

formulas:

uN ¼ d0N ð32Þ

ui ¼ d0i � c0iuiþ1 for i ¼ N � 1; N � 2; . . .; 2; 1 ð33Þ

In CFD solution techniques, the algorithm in question is

directly coded in the resolution process in contrast to

machine-optimized subroutines that are used on a specific

computer. A simple example of a FORTRAN program to

adapt this algorithm is well illustrated in Fig. 4.

Fig. 3 Thermally developing pipe flow
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The Numerical Method

Let us know the variations of the quantities U and E with

R as long as the speed is fully developed. The equation

obtained will now be processed numerically by the finite

difference method since it is better adapted to a medium

with a wall temperature that varies according to the lon-

gitudinal coordinate Z. This method is simple in its concept

but effective in its results; it is often used in heat transfer

problems.

Figure 5 represents the nodal points used in the

numerical simulation. We introduce here the finite differ-

ence method of approximations, and we use an explicit

backward order of order 1 in the direction (i) where the

variable U does not change to evaluate the spatial coordi-

nate (Z)

U
oh
oZ






i;j

¼ Uj

hi;j � hi�1;j

DZ

� �
ð34Þ

1

R

o

oR
R E

Pr

PrT
þ 1

� �
oh
oR

� �




i;j

¼ 1

Rj

2

DRjþ1 þ DRj

Rjþ1 Ejþ1 Pr = PrT þ1
� �

þ Rj Ej Pr = PrT þ1
� �

2

� �
hi;jþ1 � hi;j
DRjþ1

� ��

�
Rj Ej Pr = PrT þ1
� �

þ Rj�1 Ej�1 Pr = PrT þ1
� �

2

� �
hi;j � hi;j�1

DRj

� ��

ð35Þ

By replacing in Eq. (23), the derivatives by its finite

difference approximations, we obtain an equation of the

following form:

Ajhi;j þ Bjhi;jþ1 þ Cjhi;j�1 ¼ Dj ð36Þ

The coefficients Aj, Bj, Cj, and Dj resulting from the

calculations are obtained from the mining form

Aj ¼
Uj

DZ
þ 1

Rj

2

DRjþ1 þ DRj

�
Rjþ1 Ejþ1Pr=PrT þ 1

� �
þ Rj EjPr=PrT þ 1

� �

2

� ��
� 1

DRjþ1

� �

þ
Rj EjPr=PrT þ 1
� �

þ Rj�1 Ej�1Pr=PrT þ 1
� �

2

� �
1

DRj

� ��

ð37Þ

Bj ¼ � 1

Rj

2

DRjþ1 þ DRj

�
Rjþ1 Ejþ1Pr=PrT þ 1

� �
þ Rj EjPr=PrT þ 1

� �

2

� �
1

DRjþ1

� �� �

ð38Þ

Cj ¼ � 1

Rj

2

DRjþ1 þ DRj

�
Rj EjPr=PrT þ 1
� �

þ Rj�1 Ej�1Pr=PrT þ 1
� �

2

� �
1

DRj

� �� �

ð39Þ

Dj ¼
Ujhi�1;j

DZ
ð40Þ

Insertion of boundary conditions of the problem leads us

to hi;2 ¼ hi;1 and hi;N ¼ 1. By exploiting boundary

conditions while applying all ‘‘internal’’ points

(j = 2.3,…, N - 2, N - 1) in equation Eq. (36). We get

a system of N equations for N unknowns h summarized

from the following form

Fig. 4 Subroutine Thomas written in FORTRAN 95

j+1

j

j -1

ΔRj+1

ΔRj

Rj+1

Rj

Rj-1

ii-1

Fig. 5 Nodal points used in obtaining finite difference solution
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hi;1 � hi;2 ¼ 0

A2hi;2 þ B2hi;3 þ C2hi;1 ¼ D2

A3hi;3 þ B3hi;4 þ C3hi;2 ¼ D3

A4hi;4 þ B4hi;5 þ C4hi;3 ¼ D4

..

.

AN�1hi;N�1 þ BN�1hi;N þ CN�1hi;N�2 ¼ DN�1

hi;N ¼ 1

ð41Þ

Or else, in the following matrix form

1 �1 0 0 0 . . . 0 0 0

C2 A2 B2 0 0 . . . 0 0 0

0 C3 A3 B3 0 . . . 0 0 0

0 0 C4 A4 B4 . . . 0 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 0 0 . . . CN�1 AN�1 BN�1

0 0 0 0 0 . . . 0 0 0

2

6666666666664

3

7777777777775

�

hi;1
hi;2
hi;3
hi;4

..

.

hi;N�1

hi;N

2

6666666666664

3

7777777777775

¼

0

D2

D3

D4

..

.

DN�1

1

2

6666666666664

3

7777777777775

ð42Þ
Qhi;j ¼ R ð43Þ

where Q is a tridiagonal matrix. This can be effectively

solved by Thomas’s algorithm for tridiagonal matrix.

For any value of Z, we can estimate the local heat

transfer rate as follows:

qx ¼ k
o�T

or






r¼R

ð44Þ

from where

qxD

k Tx � Tið Þ ¼
oh
oR






R¼0:5

ð45Þ

which implies

NuiD ¼ oh
oR






R¼0:5

ð46Þ

where NuiD is the local number of Nusselt, based on the

difference between the inlet temperature and that of the

wall, then

NuiD ¼ qxD

k Tx � Tið Þ ð47Þ

However,

oh
oR






i;1

¼ hi;N � h1;N�1

DRN

ð48Þ

Replacing Eqs. (6) into (4), we obtain

NuiD ¼ hi;N � h1;N�1

DRN

ð49Þ

We use the Nusselt number based on the difference

between the local average temperatures and that of the wall

because the flow via the pipe is practically considered, so

we draw

NuD ¼ qxD

k Tx � �Tmð Þ ¼
qxD

k
Nu ð50Þ

Where Nu is the averaged local Nusselt number can be

expressed as: Nu ¼ 1
Tx� �Tm

By substituting the previous Eqs. (47) in (50), this

allows us to write

NuD ¼ NuiD
Tx � Ti

Tx � �Tm
¼ NuiD

hm
ð51Þ

With

hm ¼ Tx � �Tm
Tx � Ti

ð52Þ

We can define the bulk temperature through the tube which

is the temperature of the medium energy fluid that we can

calculate it like this

Tb ¼
RD=2
0

q2prdr�ucp �T
RD=2
0

q2prdr�ucp
ð53Þ

In this expression, the denominator indicates the product of

the mass flow and the specific heat integrated on the flow

zone, while the numerator indicates the total energy flow

through the tube. Now, we have the following expression

�Tm ¼
RD=2
0

�u�Trdr
RD=2
0

�urdr
ð54Þ

We can write so

hm ¼
Z 0:5

0

UhRdR=
Z 0:5

0

URdR ð55Þ

By using determined numeric value of h with R for any

value of Z, the values hm can be drawn. So, we can

determine the value of NuD at this value of Z. To use the

process of the solution in question, we must specify via the

flow the variations of U and E = (�=t) on which the
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distribution of E is considered quite described by the

following equations

yþ\5 : E ¼ 0

5� yþ � 30 : E ¼ yþ

5
� 1

yþ [ 30 : E ¼ 1:6R yþð Þ6=7�1

ð56Þ

with

yþ ¼ y

t

ffiffiffiffiffi
sx
q

r
¼ 0:5� Rð ÞReD

ffiffiffi
f

8

r

In which f is the friction factor

f ¼ 0:305

Re0:25D

ð57Þ

This is valid for hydraulically smooth pipe and the

turbulent flow up to the Reynolds number 105(Re\ 105)

�u

�uc
¼ D� 2r

D

� �1=7

ð58Þ

The distribution of the average speed is presumed to be

appreciable as follows. Where �uc is the meaning center line

speed.

Now knowing the value of �um, like this

um ¼ 8

D2

ZD=2

0

�urdr ð59Þ

which tends toward

�um
�uC

¼ 8

Z0:25

0

1� 2Rð Þ1=7RdR ¼ 49

60
ð60Þ

by comparing the two equations, we can draw the

following result

U ¼ 49

60
1� 2Rð Þ1=7 ð61Þ

This equation finally gives us the variation of the average

dimensionless velocityU as a function of the radius of tubeR.

The program was coded in the FORTRAN 95 language

using the finite difference method to solve a thermal

problem in fully developed turbulent flow inside circular

cylindrical tube with a uniform wall temperature

Results and Discussion

Uniform Wall Temperature

Figure 6 illustrates the variation in the case of a uniform

temperature wall of the function of the dimensionless

temperature derivative with respect to the variable R for

various Reynolds number values in the thermal develop-

ment region. We can notice in the fully developed zone that

the behavior of the values of this one is related to the

number of Reynolds whose correlation to this number

becomes very noticeable as one advances in the thermal

input region, the values of this function tend to increase

with increasing Nusselt.

The average Nusselt number NuD is shown in Fig. 7

according to Reynolds number Re for Prandtl number

Pr = 0.7 in order to determine whether or hydrodynami-

cally fully developed flow has been reached at the inlet of

the entrance section. The increase in the average number of

Nusselt is very remarkable for the increase in the number

of Reynolds which is maximum at the access of the tube

because the friction factor is maximal there too; then, it

decreases with constant and constant value.

Using the results obtained from the calculation code, the

evolution of the Nusselt number for various values of the

number of Peclet was appreciated. Figure 8 shows the

distribution of Nu in the developing thermal region for

various Péclet number. With approximate distances from

the tube entrance, it has been found that the Peclet number

has a much greater effect on the Nusselt values. In fact,

although hard to see in the presented scale, different Péclet

values also yield different Nu values for the isothermal

walls conditions

The maximum Nusselt number versus Reynolds number

was plotted in Fig. 9 for the constant wall temperature

case. The results were calculated and plotted for Peclet

numbers 0.7, 1, 6, 9, 10, and 13 to see how Peclet number

affects the Nusselt number distribution in the flow. The
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more the number of Peclet increases, the more the Nusselt

number increases with the increase in the Reynolds number

which characterizes the flow. At Pr = 0, 7, the difference is

perfectly very small, and at higher Prandtl numbers, the

difference is still large and significant.

The dimensionless temperature was plotted versus

dimensionless radial for the constant wall temperature case.

The results were calculated and plotted for Reynolds

numbers 50, 800, 3000, and 6000. As can be seen in

Fig. 10, when the Reynolds number, inertial forces out-

weigh the frictional forces related to the viscosity of the

fluid and the temperature of the heating fluid increases

gradually from the inlet to the temperature of the fluid wall.

When the Peclet number is 3000 and 6000, the fluid tem-

perature at radial coordinate is almost equal to the entrance

temperature.

The dimensionless axial velocity profile, as a function of

radial position for turbulent flow at Peclet number Pr =

0.7, is depicted in Fig. 11. The parabolic profile for lam-

inar flow is fully developed which it is clear that turbulent

profile has a much steeper slope near the wall. The axial

velocity is maximum at the centerline and gradually

decreases towards the wall, and as it nears the wall (di-

mensionless radius of 0.45) it reduces sharply to satisfy the

no-slip boundary condition for viscous flow. This effect
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results in a slight decrease in the shear stresses at the wall

and an overall decrease in the pressure-drop.

The dimensionless eddy viscosity distribution (E) at

different values of the Reynolds number (Re) is shown in

Fig. 12. It can be seen that the dimensionless eddy vis-

cosity profiles also have a more uniform and almost para-

bolic symmetric distribution whose concavity of this

parabola is variable according to the Reynolds number. We

see a significant change in maximum eddy viscosity toward

the central part of the pipe for at the Reynolds number

value of 6000 and up, up to 10000, where the turbulent

regime begins in the pipe (Re[ 4000). Indeed, turbulent

flow consists of eddies of various size ranges, and the size

ranges increase with increasing Reynolds number. The

kinetic energy cascades down from large to small eddies of

interactional forces between the eddies.

Wall Heat Flux Uniform

Figure 13 shows Nusselt number in thermal entrance

region for Pr = 0.7 plotted for different values of ReD in

the case of wall heat flux uniform in order to represent the

augmentation in the heat transfer. It can be seen that as Re

increases, the average Nusselt number behaviors for the

circular tube are increases. For lower values of Reynolds

number, the behavior decreases rapidly with the increase in

Z and tends to stabilize at a certain value which is termed

the fully rough region. The effect of the turbulence aspect

is quite remarkable is significant for large Reynolds num-

ber values.

Nusselt number NuD as a function of the Reynolds and

Prandtl numbers is obtained from the solution of the energy

conservation equation for fully developed turbulent flow in

tubes with constant wall heat flux. It was evaluated for

Reynolds Re = 6000 and Prandtl number Pr = 0.7, and the

results are listed in Table 1.

The dimensionless temperature profiles are plotted on

Fig. 14 for a single value of Prandtl number and high

values of the Reynolds number. Note that the effect of

increasing Reynolds number is to give a more ‘‘square’’

temperature profile, while a low Reynolds number yields a

more rounded profile that is similar to that for laminar flow.

Still higher and lower values of Reynolds number continue

these trends. Note that as the Reynolds approaches very
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low values, the dimensionless temperature approaches a

constant value that is approaching the threshold of 0.80.

The dimensionless eddy viscosity distribution E as a

function of dimensionless axial position plotted for one

particular value of Peclet number in Fig. 15 at different Re

numbers. As can be seen in this figure, the surface tem-

perature increases from a certain value at the pipe center

with the increase in the Reynolds number Re. Note that the

eddy diffusivity is maximum at the tube centerline. Indeed,

the relative viscosity increases from the pipe wall toward

the pipe center because the fluid tends to behave like a

solid rather than a liquid when approaching the core region

of the pipe, due to the lower shear rate in this region. That

Table 1 Summarized results of FORTRAN 95 code in wall heat flux

uniform for Re = 6000 and Pr = 0.7

Z Twall NuDi NuDa

0.0000042 0.003 334.9473 336.8423

0.0000086 0.0044 227.3414 229.1351

0.0000132 0.0055 182.6194 184.4026

0.0000181 0.0064 156.3688 158.1592

0.0000232 0.0072 138.4781 140.2811

0.0000286 0.008 125.2165 127.0338

0.0000342 0.0087 114.8419 116.6743

0.0000401 0.0094 106.4161 108.2639

0.0000463 0.0101 99.3814 101.245

0.0000528 0.0107 93.3841 95.2636

0.0000597 0.0113 88.1857 90.0813

0.0000669 0.012 83.6188 85.5309

0.0000744 0.0126 79.5622 81.4912

0.0000823 0.0132 75.9255 77.8718

0.0000906 0.0138 72.6394 74.6036

0.0000994 0.0144 69.6501 71.6326

0.0001085 0.0149 66.915 68.9166

0.0001182 0.0155 64.3988 66.42

0.0001283 0.0161 62.0737 64.1152

0.0001389 0.0167 59.9168 61.9793

0.0001500 0.0173 57.9081 59.9923

J R U T E

1 - 0.0000003 1.224 0.788 - 1

2 0.024 1.216 0.788 2.471

3 0.04686 1.207 0.7884 5.496

4 0.06863 1.199 0.7889 8.121

5 0.08936 1.191 0.7893 10.39

6 0.1091 1.182 0.7898 12.33

7 0.1279 1.174 0.7903 13.98

8 0.1458 1.166 0.7907 15.37

9 0.1629 1.157 0.7912 16.52

10 0.1791 1.149 0.7917 17.47

11 0.1946 1.141 0.7921 18.24

12 0.2093 1.133 0.7926 18.83

13 0.2234 1.125 0.793 19.28

14 0.2367 1.117 0.7935 19.6

15 0.2495 1.109 0.7939 19.81

16 0.2616 1.102 0.7943 19.91

17 0.2731 1.094 0.7948 19.93

18 0.2841 1.086 0.7952 19.86

19 0.2946 1.078 0.7956 19.73

20 0.3046 1.071 0.796 19.53

21 0.3141 1.063 0.7964 19.29
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Fig. 14 Temperature behavior (h) versus dimensionless radius

(R) for various values of Reynolds number
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is why the dimensionless Eddy viscosity, is related to the

dimensionless shear rate and the Reynolds number.

Comparison of Constant Wall Temperature

and Heat Flux Cases

For a calculation of the heat transfer in a fully developed

turbulent flow inside a circular pipe, we will compare the

current numerical results for the Reynolds number

(Re = 104) for the average Nusselt number obtained in the

uniform wall temperature case with those in the uniform

wall heat flux. The comparison between the two case

numerical results for the Nusselt number versus dimen-

sionless axial coordinate is displayed in Fig. 16. It can be

seen that the numerical data of the Nusselt number in the

case of uniform wall temperature lie above the data cap-

tured in that of a wall in uniform heat flux. The behavior of

pace is the same and Nu decreases monotonously and

exponentially whose distribution becomes significant with

the increase in the axial coordinate Z. The same curve

showing the same behavior in Fig. 17 is obtained for the

comparison of Nusselt number profile in uniform wall

temperature with the uniform wall heat flux for Pr = 0.7.

In Fig. 18, the effect of boundary conditions (constant

wall temperature (CWT) and constant wall heat flux

(CWHF)) on the dimensionless temperature in a pipe is

shown for Re = 104. Constant heat flux and constant tem-

perature surfaces do not give the same results (in terms of

h) when the flow becomes strongly unsteady and turbulent.

Constant heat flux surfaces produce colder zones at high Re

thus yielding a reduced Nu. Note that only at very low

Prandtl number is there a significant difference between the

constant-heat-rate and constant-surface temperature results.

Comparison of the Present Numerical Model

and the Previous Correlation Data

In order to approve the numerical results of the simulation

of our thermal problem treated, we found after research in

the literature the work recently performed by Taler [13]

using the finite difference method whose Nusselt number

was evaluated for various Reynolds numbers and Prandtl.

In addition, this Nusselt number was obtained for fully

developed turbulent flow in tubes with constant wall heat

flux after solving the energy conservation equation.

The comparison of the results of the Nusselt number

(Nu) as a function of Reynolds number (Re) for the case of

0,0 2,0x10-5 4,0x10-5 6,0x10-5 8,0x10-5 1,0x10-4 1,2x10-4 1,4x10-4

50

100

150

200

250

300

350

N
us

se
lt 

nu
m

be
r 

(N
u D

)

Dimensionless axial position (Z)

UWT (Re = 10000)
UWH (Re = 10000)

Fig. 16 Comparison of Nusselt number profile in uniform wall

temperature with the uniform wall heat flux for Re = 10000
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Prandtl number (Pr = 0.7) of the present study and that of

the Taler correlation [13] for air flowing inside the circular

heating pipe is well illustrated in Fig. 19. It can be

observed that the deviation from the numerical solution is

within 2% and the Nusselt number profiles at Pr = 0.7

were in good agreement with those carried out in the work

of Taler [13]. The treated thermal model has been well

verified and validated, and the comparison results confirm

the reliability of the numerical apparatus.

Conclusions

The impact of our contribution was on the prediction of the

heat transfer rate of the wall of a pipe toward a fluid in

turbulent flow circulating in this one. The majority of the

attention will be given to two-dimensional and axisym-

metric flow through pipes. The methodology of the analysis

was based here on the thermal equation of the moment

using the turbulence models and finite difference methods,

for any thermal boundary conditions, so long as the

velocity profile was assumed to be fully developed at the

point where heat transfer starts. For this reason, a numer-

ical simulation using FORTRAN 95 of fluid flows in fully

developed turbulent through a circular tube for the two

thermal boundary conditions, uniform wall temperature,

and constant heat rate, has been carried out in the present

study. It was found that the surface temperature is higher

for high Reynolds number Re than for low Re number due

to the free convection domination on the combined heat

transfer process. Mean axial velocity and temperature

profiles were shown to increase and extend farther in the

outer layer with increasing Reynolds number. This

consequently makes the local Nu numbers to be higher for

high Re number than for low Re number due to the forced

convection domination on the heat transfer process. The

current predictions in the thermal study, performed

numerically, show the effluence and sensitivity of some of

the parameters involved in the calculations, and the results

of the available literature agree quite well. In the fully

developed turbulent flow, the number of Nu Nusselt as well

as the dimensionless temperature also increases with

increasing Reynolds number. Nusselt numbers obtained in

the numerical prediction model are in excellent agreement

with the correlations results which found in the specialized

literature. At the end and for the Navier–Stokes equations

for fully developed axisymmetric turbulent flow, it is also

necessary to compare the numerical results obtained during

this simulation such as le Nusselt number, the temperature,

and velocity profile with an experimental data.

Also, as final comments one should mention that the

same solution procedure can be used for any dynamically

developed velocity profile and turbulent models to other

configurations such as other channel geometries and rect-

angular section, triangular and so on, different wall heating

conditions, and vicious and other flow heating effect.
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