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Abstract Based on Hamilton’s principle, a nonlinear differ-

ential equation considering the effect of dead loads is formu-

lated for box beams. By using Galerkin method, the effect of

dead load on the natural frequencies of box beams with various

restraint conditions being simply supported, fixed at both ends,

cantilevered and fixed at one end and simply supported at the

other end is studied. The effects of major physical parameters,

including the magnitude of dead load, sectional inertia moment

and inertia radius, span length, and restraint conditions are

discussed, and the natural frequencies are presented for these

box beams, with the nonlinear effect of dead load taken into

account. The results show that the deterrent effect of dead loads

has significant effect on the increase of the natural frequencies

of box beams. It is further observed that this behavior is more

apparent at lower-order natural frequencies; the varying

deterrent effect of dead loads relates to the stiffness of structures

and is more significant for more flexible structures.

Keywords Effect of dead load � Box beam �
Natural frequency � Hamilton’s principle � Galerkin method

Introduction

In general, engineering structures and components are

mostly subjected to a combination of constant initial loads

and variable additional loads [1]. The combination of these

loads can be considered as live loads and is found to have

significant effect on the sustainability and durability of the

structures. When the structure bears these live loads, its

deformation starts from the reference state of constant

initial loads that mainly contain the initial stress which

causes the subsequent deformation. The stress generated by

constant initial load will produce deterrent effect, which

will change the internal force and deformation of the

structure under live loads. The deterrent effect is not only

caused by the initial middle surface tension, but also

induced by the initial bending. Brunelle [2] demonstrates

the effect caused on structures due to the influence of initial

middle surface tension. However, studies regarding the

effect due to initial bending are found scarce. The stiff-

ening effect caused by the initial bending stress of dead

load is called dead load effect according to Takabatake [3].

Takabatake [3] considered the effects of dead loads on the

static characteristics of beam for the first time and derived the

static force differential equation of uniform beam under dead

loads. He also studied the response under the dead loads of

simply supported beam and clamped–clamped beam in

addition. He reported the effect of dead loads on the dynamic

characteristics of beams and plates [4, 5]. Zhou and Zhu [6–9]

analyzed the effect of dead loads on the natural frequencies of

beams and plates by means of finite element method. Zhang

et al. [10–15] have studied the influence of dead loads effect

on static and dynamic characteristics of arch beams. At this

end, most of the studies and their findings are primarily based

on solid beam. However, these studies did not involve the

impact on the thin-walled box structures.

In this paper, the effect of dead loads on the thin-walled

boxes structure is analyzed. A nonlinear differential

equation considering the effect of dead loads is formulated

for box beams, based on Hamilton’s principle. By using

Galerkin method, the effect of dead load on the natural
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frequencies of box beams with various restraint conditions

being simply supported, fixed at both ends, cantilevered

and fixed at one end and simply supported at the other end.

The effects of key physical parameters mainly, magnitude

of dead load, sectional inertia moment and inertia radius,

span length, and restraint conditions are subsequently dis-

cussed as a function of natural frequencies by taking into

account the nonlinear effect of dead load.

Establishment of Differential Equation

Basic Assumption

The cross section and coordinate system which are used for

deriving basic are shown in Figs. 1 and 2. Figure 2 represents

the formula and force–deformation conditions of the beam

when v̂ represents the deflection of beam under dead loads

(p̂); �v represents the deflection of beam under live loads (�p).

The deflection state of beam under dead loads is used as the

reference state, and �v is derived from this reference state.

At the assumption of the deformation of beam obeying

the hypothesis of Bernoulli–Euler beam equation,the linear

strain–displacement relationship can be written as [16],

ex ¼ �yv00 ð1Þ

where top slab

exu ¼ huv
00 ð2Þ

Bottom slab

exb ¼ �hbv
00 ð3Þ

Web slab

exw ¼ �yv00 ð4Þ

The nonlinear strain–displacement relationship can be

written as

ex ¼ �yv00 þ 1

2
v0ð Þ2 ð5Þ

where top slab

exu ¼ huv
00 þ 1

2
v0ð Þ2 ð6Þ

Bottom slab

exb ¼ �hbv
00 þ 1

2
v0ð Þ2 ð7Þ

Web slab

exw ¼ �yv00 þ 1

2
v0ð Þ2 ð8Þ

where ex is the strain of beam; v is the deflection of beam.

Total Energy Expression

The strain energy under live loads can be written as

U ¼ Û þ �U ð9Þ

where Û is the strain energy under dead loads (p̂); �U is the

strain energy under live loads (�p),

�U ¼ 1

2

ZZZ
V

�rx�exdV ð10Þ

Û ¼
ZZZ

V

r̂x�exdV ð11Þ

where the positive stress r̂x; �rxð Þ is the bending normal stress

produced by dead loads (p̂) and live loads (�p), respectively. It

should be noted that the direct stress r̂xð Þ is a constant stress

caused by dead loads, but the direct strain �exð Þ is a strain

caused by live loads. The linear strain–displacement

relationship provided by Eq. (1) is used for the calculation

of �U. The nonlinear strain–displacement relationship

provided by Eq. (5) is used for the calculation of Û. It

should be noted that the dead load’s effect of this part is the

deterrent effect caused by both the middle surface tension of

beam and the bending state stress of dead loads r̂xð Þ. It

is assumed that the stress–strain relation is linear.

�rx ¼ E�ex ð12Þ
r̂x ¼ Eêx ð13Þ

All the strain energy caused by live loads (�p) can be

expressed as follows:
Fig. 1 Cross section
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Fig. 2 Coordinate system and loads distribution
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The strain energy of top slab

�Uu ¼
1

2

ZZZ
V

�rxu�exudV ¼ 1

2

ZZZ
V

E �huv00ð Þ2
dV

¼ 1

2

Z L

0

ZZ
A

Eh2
uv

002dAdx ¼ 1

2

Z L

0

EIsuv
002dx ð14Þ

The strain energy of bottom slab

�Ub ¼
1

2

Z L

0

EIbu�v
002dx ð15Þ

The strain energy of web slab

�Uw ¼ 1

2

Z L

0

EIw�v
002dx ð16Þ

So, the strain energy caused by live loads (�p) can be

written as

�U ¼ �Uu þ �Ub þ �Uw ¼ 1

2

Z L

0

E Isu þ Ibu þ Iwð Þ�v002dx

¼ 1

2

Z L

0

EI�v002dx ð17Þ

All kinds of strain energy caused by dead loads (p̂) can

be expressed as follows:

The strain energy of top slab

Ûu ¼
ZZZ

V

r̂x�exdV

¼
ZZZ

V

E huv̂
00 þ 1

2
v̂02

� �
hu�v

00 þ 1

2
�v02

� �
dV

¼
Z L

0

ZZ
A

E h2
uv̂

00�v00 þ 1

2
huv̂

00�v02 þ huv̂
02�v00 þ 1

4
v̂02�v02

� �
dzdydx

¼
Z L

0

E Isuv̂
00�v00 � 1

2
Ssuv̂

00�v02 � 1

2
Sprimesu v̂02�v00 þ Asu

4
v̂02�v02

� �
dx

ð18Þ

The strain energy of bottom slab

Ûb ¼
Z L

0

E Isbv̂
00�v00 � 1

2
Ssbv̂

00�v02 � 1

2
Ssbv̂

02�v00 þ Asb

4
v̂02�v02

� �
dx

ð19Þ

The strain energy of web slab

Ûw ¼
ZZZ

V

E �yv̂00 þ 1

2
v̂02

� �
�y�v00 þ 1

2
�v02

� �
dV

¼
ZZZ

V

E y2v̂00�v00 � 1

2
yv̂00�v02 � 1

2
yv̂02�v00 þ 1

4
v̂02�v02

� �
dV

¼
Z l

0

ZZ
A

Ey2 v̂00�v00ð Þ � Ey
1

2
v̂00�v02 þ 1

2
v̂02�v00

� �
þ 1

4
v̂02�v02

� �
dzdydx

¼
Z L

0

E Iwv̂
00�v00 � 1

2
Sw v̂00�v02 þ v̂02�v00

� �
þ Aw

4
v̂02�v02

� �
dx

ð20Þ

So, the strain energy caused by live loads (p̂) can be

given as

Û ¼ Ûu þ Ûb þ Ûw

¼
Z L

0

E Isu þ Isb þ Iwð Þv̂00�v00 � 1

2
Ssu þ Ssb þ Swð Þv̂00�v02

�

� 1

2
Ssu þ Ssb þ Swð Þv̂02�v00þ 1

4
Asu þ Asb þ Awð Þv̂02�v02

�
dx

¼
Z L

0

EIv̂00�v00 þ EAw

4
v̂02�v02

� �
dx

ð21Þ

The total strain energy of the box beam becomes

U ¼ �U þ Û

¼
Z l

0

1

2
EI �v00ð Þ2þEA

4
v̂prime
� �2

�v0ð Þ2þEIv̂00�v00
� �

dx ð22Þ

The potential energy of external loads is

V ¼ �
Z l

0

�pþ p̂ð Þ�vdx ð23Þ

With the effect of rotational inertia neglected, the

kinetic energy of beam can be expressed as follows:

T ¼ �
Z l

0

qA
2

_�wð Þ2
dx ð24Þ

Controlling Differential Equation

According to Hamilton’s principle, as an object move from

a location at the time (t1) to another location at the time

(t2), to all the distance the object may experience, the

distance follows Newton’s law at every moment is the

distance makes the value of Lagrangian function average

on time become the extreme value [16, 17] ,

dI ¼ d
Z t2

t1

T � U � Vð Þdt ¼ 0 ð25Þ

Substituting Eqs. (22), (23), (24) into Eq. (25) gives

dI ¼
Z t2

t1

Z L

0

qA€�vþ EI�v0000 � EA

2
v̂0ð Þ2

�v0
h i0

þEIv̂0000 � �pþ p̂ð Þ
� 	

dvdxdt

þ
Z t2

t1

EI�v00 þ EIv̂00ð Þdv0jL0dt

þ
Z t2

t1

�EI�v000 � EIv̂000 þ EA

2
v̂0ð Þ2

�v0
� �

d�v






L

0

dt ¼ 0

ð26Þ

where, as the beam is subjected to dead loads, one can get

the following equation,

EIv̂0000 � p̂ ¼ 0 ð27Þ

The boundary conditions are that,

v̂ ¼ 0 ; or v̂0 ¼ 0; x ¼ 0; L;

v̂00 ¼ 0 ; or v̂000 ¼ 0; x ¼ 0; L:
ð28Þ
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In Eq. (26), considering the effect of dead loads on

bending deformation, the control differential equation of

the beam can be written as

qA€�vþ EI�v0000 � EA

2
v̂0ð Þ2

�v
h i0

¼ �p ð29Þ

The boundary conditions are that

�v ¼ 0; or �v0 ¼ 0; x ¼ 0; L ;

�v00 ¼ 0; or EI�v000 � EA

2
v̂0ð Þ2

�v0 ¼ 0; x ¼ 0; L :

(
ð30Þ

The Solution of Differential Equation

Considering the effect of dead loads, controlling Eq. (29)

can be modified as

qA€�vþ EI�v0000 � EA

2
v̂0ð Þ2

�v
h i0

¼ �p ð31Þ

The boundary conditions are

�v ¼ 0; or �v0 ¼ 0; x ¼ 0; L;

�v00 ¼ 0; or EI�v000 � EA

2
v̂0ð Þ2

�v0 ¼ 0 ; x ¼ 0; L:

(
ð32Þ

The displacement (�v) can be expressed as

�v x; tð Þ ¼ �W xð ÞU tð Þ ð33Þ

Substituting Eq. (33) into Eq. (31) gives

�W0000 � 1

2r2
2v̂0v̂00 �W0 þ v̂ð Þ2 �W00
h i

¼ k4 �W ð34Þ

€U tð Þ þ x2U tð Þ ¼ 0 ð35Þ

Among them,

k2 ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qA=EI

p
ð36Þ

Define the parameter �v as

�W xð Þ ¼ �Wnfn xð Þ; n ¼ 1; 2; 3; . . .1ð Þ ð37Þ

Among them, the definition of fn is defined as follows:

For simply supported box beam,

fn ¼ sin
npx
L

ð38Þ

For box beam fixed at both ends,

fn ¼ sin
px
L

sin
npx
L

ð39Þ

For cantilevered box beam,

fn ¼ 1 � cos
2n� 1ð Þpx

2L
ð40Þ

For box beam fixed at one end and simply supported at

the other end,

fn ¼ 1 � cos
2n� 1ð Þpx

L

� �
sin

px
L

ð41Þ

By using Galerkin method, the controlling differential

equation for the effect of bending deformation on the

natural frequencies of beam can be expressed asZ L

0

Qd �Wdx ¼ 0 ð42Þ

d �Wn :
X
m¼1

�Wm Amn � k4Bmn

� �
¼ 0 ð43Þ

As the effect of initial bending deformation is

considered, the natural frequencies of beam should be

xi ¼ k2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=qA

p
; n ¼ 1; 2; 3; . . .1ð Þ ð44Þ

Without considering the effect of initial bending

deformation, the natural frequencies of beam are

x0n ¼ k2
0n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=qA

p
; n ¼ 1; 2; 3; . . .1ð Þ ð45Þ

Among them, the parameter k0n is defined as follows:

For simply supported box beam,

k2
0n ¼ np=Lð Þ2 ð46Þ

For box beam fixed at both ends,

cos k0nLð Þ cosh k0nLð Þ ¼ 1 ð47Þ

For cantilevered box beam,

cos k0nLð Þ cosh k0nLð Þ ¼ �1 ð48Þ

For box beam fixed at one end and simply supported at

the other end,

tan k0nLð Þ ¼ tanh k0nLð Þ ð49Þ

Example and Analysis

The following parameters are adopted for the beam:

E = 210 GPa; I0 = 2.5 9 10-4 m4; L0 = 8 m,

A0 = 0.01 m2 (the reference value of gyration radius is that:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
I0=A0

p
¼ 0:158 m). The dead load intensity is

assumed to be: p̂0 ¼ 6:8 kN=m. The variables (p̂, l, I, r) can

be expressed as follows: p̂ ¼ ap̂p̂0, l ¼ all0, I = aII0, r = ar-
r0. The numerical results change by the above parameters.

The effect of initial bending deformation on the natural

frequencies of simple box beam is analyzed. So, in the fol-

lowing expression, xi represents the circular frequencies of the

ith vibration mode effected by initial bending deformation.xi0

represents the circular frequencies of the ith vibration mode

without the effect of initial bending deformation. p̂0 represents a

reference dead load per unit length of the beams. p̂ represents

the practical value of initial load per unit length of the beams.

Dimensionless form of coordinate, linear coordinate and log-

arithmic coordinate are adopted, respectively, for the lateral

axis (�p0=p̂), while linear coordinate is used for the vertical axis

D ¼ xi � xi0ð Þ=xi0 � 100%ð Þ.
The relationship between the natural frequencies of the

box beam and the change of initial load is shown in Fig. 3.
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It’s evident that natural frequencies of simple box beams

have improved with increase loads. Further, the improve-

ment is more obvious for the first natural frequency. Here

the increase of natural frequencies should be regarded as a

real increase of the natural frequencies produced by initial

load stress. It is different from the natural frequencies those

vary with the normal change of beam quality (m) at unit

length [3].

Figures 4, 5 and 6 show the relationship between D
(affected by the change of sectional inertia moment aI, span

length aL and gyration radius ar, respectively) and �p0=p̂

(affected by different constraint conditions). Among them,

the gyration radius changes under the condition that the

area changes and the sectional inertia moment keep con-

stant. Figure 7 shows comparison of effects of initial loads

when the above parameters (aI, aL and ar) of simply sup-

ported beam changes. It is demonstrated that the smaller

the sectional inertia moment or the gyration radius (the

area changes and the sectional inertia moment keeps con-

stant) is or the larger the span length is, the larger effect of

Fig. 3 Relationship between D and �p0=p̂ with various constraint

conditions

Fig. 4 Relationship between D and �p0=p̂ for various aI and constraint

conditions

Fig. 5 Relationship between D and �p0=p̂ for various aL and constraint

conditions

Fig. 6 Relationship between D and �p0=p̂ for various ar and constraint

conditions
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dead loads on the natural frequencies of beam will be.

Among them, the change of span length makes the largest

effect.

Conclusion

This paper analyzes the effect of dead loads on the thin-

walled box structures. A nonlinear differential equation

considering the effect of dead loads is taken into account

for formulating box beam model, based on Hamilton’s

principle. By using Galerkin method, the effect of dead

load on the natural frequencies of various box beams, with

various restraint conditions being simply supported, fixed

at both ends, cantilevered and fixed at one end and simply

supported at the other end. The effects of key physical

parameters, including the magnitude of dead load, sectional

inertia moment and inertia radius, span length, and restraint

conditions are discussed, and the natural frequencies are

presented for these box beams, with the nonlinear effect of

dead load is taken into account.

The following conclusions can be drawn:

1. The bending deformation generated by dead loads will

produce deterrent effect which causes an increase of

the natural frequencies of box beam. This trend will

get more obvious when the natural frequencies belong

to a lower-order range or larger weight.

2. The stiffness of box beam has an impact on the

deterrent effect which caused by the initial bending

deformation. It is concluded that more flexible struc-

tures which have a smaller sectional inertia moment, a

larger span length or a lower gyration radius, the effect

becomes more significant. Among them, the change of

span length makes the largest effect.
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