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Abstract Weld quality is a critical issue in fabrication

industries where products are custom-designed. Multi-ob-

jective optimization results number of solutions in the

pareto-optimal front. Mathematical regression model based

optimization methods are often found to be inadequate for

highly non-linear arc welding processes. Thus, various

global evolutionary approaches like artificial neural net-

work, genetic algorithm (GA) have been developed. The

present work attempts with elitist non-dominated sorting

GA (NSGA-II) for optimization of pulsed gas metal arc

welding process using back propagation neural network

(BPNN) based weld quality feature models. The primary

objective to maintain butt joint weld quality is the maxi-

mization of tensile strength with minimum plate distortion.

BPNN has been used to compute the fitness of each solu-

tion after adequate training, whereas NSGA-II algorithm

generates the optimum solutions for two conflicting

objectives. Welding experiments have been conducted on

low carbon steel using response surface methodology. The

pareto-optimal front with three ranked solutions after 20th

generations was considered as the best without further

improvement. The joint strength as well as transverse

shrinkage was found to be drastically improved over the

design of experimental results as per validated pareto-op-

timal solutions obtained.

Keywords Optimization � P-GMAW � NSGA-II �
Joint strength � Distortion � Pareto-optimal

Introduction

Pulsed gas metal arc welding (P-GMAW) is widely used

in metal plate joining, as it delivers uniform metal

transfer with reduced heat input [1]. The weld quality

can be significantly improved by controlling the pulse

parameters to achieve a stable arc [2]. The arc stability

is found to be excellent for one metal droplet per each

current pulse condition (ODPP) with the droplet diam-

eter adjacent to the electrode wire diameter [3], which

may be attained by choosing the suitable amplitude and

duration of peak current higher than transition current to

ensure droplet detachment [4]. Various mathematical

models have been proposed to monitor the metal transfer

behavior focused on the mean or the variance of the

weld quality features [5]. The dual response approach

considers both mean and variance to improve the

regression model [6], which was further used for opti-

mization of process variables.

However, GMAW processes are highly non-linear with

different uncontrollable factors, which recommends the

necessity of an adaptive intelligent system to describe the

process characteristics for further monitoring. Therefore,

different evolutionary algorithms such as soft computing

tools have also been used with numerical techniques for the

modelingand optimization of GMAW parameters more

accurately [7, 8].
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Multi-objective optimization is considered as a set of

single objective problems to handle more number of

objectives. The higher joint tensile strength andminimum

butt weld plate distortion both arecrucial weld quality

features. Various conventional optimization techniques like

RSM, Taguchi method are used in manufacturing opti-

mization problems [9, 10] limited to regular experimental

spaceoften found to be inadequate in highly non-lineararc

welding processes with lot of uncertainties. This limitation

may be overcome with the introduction of genetic algo-

rithm (GA) [11]. It can generate global optimum point

rather than local optimum solutions [12]. However, there is

a risk of insufficient sweeping of the search space with

improper parameter settings in GA [13]. The controlled

random search algorithm similar to GA used to overcome

these difficulties [14]. The adaptive gradient descent neural

network also found to be useful in GMAW optimization

[15]. The GA technique usedin trained neural network,

called neuro-GA, to improve the optimization capability

[16].

In recent years, advanced multi-objective non-elitist

optimization GA tools developed like weight-based GA,

non-dominated sorting GA (NSGA). The weighting

method is limited as it highly sensitive to the weight vec-

tors considered for which prior information about the

problem is required. NSGA prefers non-dominated solu-

tions and preserves diversity among the generated solutions

of a particular non-dominated front using a sharing

approach. The concept of elitism is used to enhance the

probability of creating better offspring in NSGA-II by Deb

et al. [17]. Since NSGA-II technique works with a popu-

lation of solutions, pareto-optimal solutions may be cap-

tured simultaneously [18]. The NSGA-II algorithm had

been applied to various fields such as optimization of

electro chemical machining process [19], kinematic mod-

eling and performance optimization of robot manipulator

[20], and neuro-NSGA-II used in wire electric discharge

machining optimization [21].

Though there are various works on arc welding process

optimization using various numerical, analytical, regres-

sion methods as well as different soft computing tools like

ANN, GA andits hybrid approach, there is hardly any work

on multi-objective optimization using NSGA-II, especially

in case of pulsed GMAW process. Therefore, the present

work addresses hybridneuro based NSGA-II in pulsed

GMAW process optimization to achieve desired weld

quality. Neuro-NSGA-II, combination of BPNN with

NSGA-II, has been used to achieve multi-solutions (Pareto-

optimal front) in P-GMAW. BPNN has been used to

compute the fitness of each solution after adequate training,

whereas NSGA-II algorithm generates the optimum solu-

tions for two conflicting objectives i.e. transverse shrinkage

and ultimate tensile strength of the butt welded joint.

Experimental Procedure

In this work, a pair of low carbon steel (C = 0.208%)

specimens, each having dimensions of

150 9 120 9 6 mm, were used as the base plate for butt

welding experiments. The butt welding specimens were

prepared with V shaped groove having the groove angle,

the root face and the root gap of 60�, 1.5 and 1 mm,

respectively. A constant voltage P-GMAW machine

(FRONIOUS make) was used. The experiments were car-

ried out using copper coated mild steel filler electrode wire

(ESAB, S-6 wire, 1.2 mm diameter) in pure argon (99.9%)

shielding gas. The schematic diagram of the experimental

set-up is shown in Fig. 1.

Development of Design of Experiments

Half fractional central composite RSM (alpha = 2.378)

with nine center point experiments were used for design of

welding experiments. The three pulse parameters such as

peak voltage, pulse frequency and pulse on-time (at con-

stant mean voltage conditions) significantly effect on weld

quality as per earlier experiments at different welding torch

angles [22, 23]. Thus, present work focused on significant

pulse voltage parameters at different torch angle to achieve

desired weld joint quality, i.e. modeling and optimization

of the pulsed GMAW process. Therefore, these three pulse

parameters along with torch angle, wire feed rate and

welding speed (i.e. total six parameters) considered as

control parameters for the design of experiments. The

negative value of torch angle indicated backhand welding,

whereas positive value showed forehand welding. The

torch perpendicular condition was represented by 00 torch

angle. The complete matrix containing a total of fifty-three

number of experiments generated using MINITAB

software.

To make a butt weld joint, two plates were tack welded

before welding run at the two ends (points T1 and T2), as

shown in Fig. 2. Vernier caliper was used to calculate

transverse shrinkage after welding. The transverse shrink-

age can be expressed as the ratio of change in length due to

welding to the initial length across the weld plate.

It was measured at three linear positions (L11, L22 and

L33), and their average has been calculated as per Eq. 1,

where, DL11, DL12 and DL13 represent the linear change

along the respective lines after welding.

qt ¼
1

3

DL11
L11

þ DL22
L22

þ DL33
L33

� �
ð1Þ

The butt weld joint samples have been prepared for the

tensile test according to ASTM (E8) standard. The tensile

testscarried outusing universal tensile testing machine
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(INSTRON, 8862) with attached software (Instron Wave

Matrix) to generate stress–strain diagram. The ultimate

tensile strength of the base metal was found to be

630–680 MPa with an average of 652.4 MPa as per ten

random samples chosen.The input parameters are based on

coded matrix generated using half fractional central

composite RSM are shown in Table 1.

Neuro Elitist Non-dominated Sorting Genetic
Alogorithm (Neuro-NSGA-II)

The diversity preserving mechanism and sorting of gener-

ated solutions can be maintained by NSGA-II. However,

the objective functions must be contradictory in nature.

The prime objective is to generate a set of Pareto-optimal

solutions. The diversity among the solutions on a specific

Pareto front is maintained using crowding distance opera-

tor. The elite solutions of the parent population are carried

to the subsequent generation after competing with the

offspring population members. The fitness of the objective

functions was computed by the BPNN, which was used to

generate Pareto-optimal front by NSGA-II. The computa-

tional procedure of the neuro-NSGA-II algorithm is out-

lined in Fig. 3.

The initial binary parent population (Pi) of size N has

been generated randomly. It is converted to real value

using linear mapping. The offspring population (Qi) of size

N has also been generated by binary tournament selection,

crossover and mutation operations on parent population

(Pi). The tournament selection is done among each two

different parent solutions (chromosomes) based on their

fitness values. Thus, better parent solutions are selected,

which are used for further crossover and mutation.

Fig. 1 Schematic

representation of the

experimental set-up at 0� torch
angle

Fig. 2 Schematic

representation for measurement

of transverse shrinkage (butt

joint)
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Table 1 Process parameters with corresponding weld quality characteristics

Expt. no F (m/min) S (mm/s) at (�) Vp (V) fp (Hz) tp (ms) qt (%) rt (MPa)

1 7.3 5.8 - 15 30.4 144 4.6 0.156 353.1

2 8.7 5.8 - 15 35.6 144 4.6 0.180 513.7

3 8.7 5.8 - 15 30.4 144 3.4 0.124 340.2

4 8.7 5.8 - 15 35.6 105 3.4 0.144 280.8

5 7.3 5.8 - 15 35.6 144 3.4 0.138 483.2

6 7.3 5.8 - 15 35.6 105 4.6 0.170 507.6

7 8.7 5.8 - 15 30.4 105 4.6 0.096 336.3

8 7.3 5.8 - 15 30.4 105 3.4 0.143 383.7

9 8.7 8.8 - 15 30.4 144 4.6 0.112 346.7

10 8.7 8.8 - 15 35.6 144 3.4 0.132 363.9

11 7.3 8.8 - 15 35.6 105 3.4 0.089 368.3

12 8.7 8.8 - 15 30.4 105 3.4 0.101 130.7

13 7.3 8.8 - 15 30.4 105 4.6 0.122 301.8

14 8.7 8.8 - 15 35.6 105 4.6 0.130 491.7

15 7.3 8.8 - 15 30.4 144 3.4 0.108 223.6

16 7.3 8.8 - 15 35.6 144 4.6 0.111 437.4

17 7.3 5.8 15 35.6 105 3.4 0.135 373.7

18 8.7 5.8 15 35.6 105 4.6 0.158 416.2

19 7.3 5.8 15 30.4 144 3.4 0.131 446.3

20 7.3 5.8 15 30.4 105 4.6 0.137 315.1

21 8.7 5.8 15 35.6 144 3.4 0.190 506.7

22 7.3 5.8 15 35.6 144 4.6 0.193 384.9

23 8.7 5.8 15 30.4 105 3.4 0.098 137.8

24 8.7 5.8 15 30.4 144 4.6 0.140 347.7

25 8.7 8.8 15 30.4 144 3.4 0.106 401.7

26 7.3 8.8 15 35.6 144 3.4 0.145 399.1

27 7.3 8.8 15 30.4 105 3.4 0.110 352.5

28 7.3 8.8 15 30.4 144 4.6 0.123 288.0

29 7.3 8.8 15 35.6 105 4.6 0.184 380.0

30 8.7 8.8 15 35.6 144 4.6 0.141 520.0

31 8.7 8.8 15 35.6 105 3.4 0.125 354.4

32 8.7 8.8 15 30.4 105 4.6 0.098 244.7

33 8.0 7.7 - 35 33.0 124 4.0 0.121 410.3

34 8.0 7.7 35 33.0 124 4.0 0.158 400.3

35 8.0 7.7 0 33.0 124 4.0 0.119 404.0

36 8.0 9.9 0 33.0 124 4.0 0.112 368.9

37 8.0 7.7 0 33.0 124 4.0 0.137 421.4

38 8.0 4.6 0 33.0 124 4.0 0.079 225.0

39 8.0 7.7 0 33.0 124 4.0 0.139 399.9

40 8.0 7.7 0 33.0 124 4.0 0.116 411.3

41 8.0 7.7 0 33.0 124 4.0 0.130 403.2

42 8.0 7.7 0 33.0 172 4.0 0.160 452.9

43 8.0 7.7 0 27.0 124 4.0 0.057 47.59

44 8.0 7.7 0 39.0 124 4.0 0.138 373.5

45 8.0 7.7 0 33.0 80 4.0 0.089 130.4

46 8.0 7.7 0 33.0 124 2.6 0.106 187.0

47 8.0 7.7 0 33.0 124 5.4 0.138 499.0

48 8.0 7.7 0 33.0 124 4.0 0.131 397.8

49 6.3 7.7 0 33.0 124 4.0 0.125 272.1
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Crossover or recombination operator uses two different

parent string that exchange binary gene (or genes) between

them to create two offspring solutions. However, the

mutation is randomly used to invert one or more genes in

the chromosome.

The parent population (Pi) and offspring population (Qi)

are then combined as Ri, which allows a global non-

domination check over all the solutions of size 2 N. The

real value of input parameters corresponding to these

solutions has been normalized from 0.1 to 0.9 to determine

fitness value using previously trained BPNN model. The

training and testing of the BPNN model is also done using

normalized value of the experimental dataset. Thus, the

fitness of the objective functions has been calculated.

The combined population of size 2 N is then sorted

based on their non-domination ranks (r) and crowding

distance (d). The rank of a solution indicates its non-

domination level over other solutions, whereas crowding

distance represents the degree of spreading among the

solutions. The rank of the best solution is comprised of

minimum rank with maximum crowding distance.

The newpopulation (Piþ1) of sizeNhas been generated by

the non-dominated sorting based on the rank of solutions and

crowding distance of each solution belongs to a particular

rank. Thus, it is initiated with the best non-dominated ranked

solutions to the second non-dominated front and so on untilN

number of solutions is selected.When the number of selected

solutions exceeds N, then crowding comparison operator is

used to choose better solutions only from the higher non-

dominated front, so that total number of selected solutions is

equal to N in this generation. This process sequence is

repeated until maximum generation number is reached.

Thus, the Pareto optimal front comprised of best solutions is

generated, which shows more number of optimal solutions

for two conflicting objectives.

Optimization of P-GMAW Using Neuro-NSGA-II

In the present work, it was found that the joint tensile

strength improved with an increase of pulse voltage due to

adequate fusion which is responsible for strong bonding

between weld and base plates. However, the transverse

shrinkage was found to be higher with an increase of pulse

voltage. The maximum joint strength was found 520 MPa,

i.e. joint efficiency of 79.7% (experiment #30) with higher

transverse shrinkage of 0.141%, whereas minimum trans-

verse shrinkage was 0.057% (experiment #43) with poor

joint strength of 47.59 MPa (joint efficiency of 7.3%).

Thus, there were two conflicting objectives as the maxi-

mization of joint strength with minimum distortion to

achieve better weld quality.

Table 1 continued

Expt. no F (m/min) S (mm/s) at (�) Vp (V) fp (Hz) tp (ms) qt (%) rt (MPa)

50 9.7 7.7 0 33.0 124 4.0 0.114 337.2

51 8.0 7.7 0 33.0 124 4.0 0.120 419.1

52 8.0 7.7 0 33.0 124 4.0 0.121 409.3

53 8.0 7.7 0 33.0 124 4.0 0.118 416.3

Fig. 3 Computational procedure of neuro-NSGA-II
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The architecture of a fully interconnected multi-lay-

ered neural network consisting of one hidden layer is

used as there was no further improvement in mean error

with more than one hidden layer. Firstly, the network

architecture and its parameters are initialized. The net-

work structure is represented by the number of neurons

in input layer (i), hidden layer (j), and output layer (k).

Number of input and output nodes is same as input and

output parameters considered in the network. However,

the neurons in the hidden layer may be any integer

value. The interconnection weights between two subse-

quent layers are randomly initialized within - 0.1 to

? 0.1. The biases were considered 0 for the nodes of the

input layer and 1 for the nodes of hidden layer as well as

output layer. The value of learning rate (g) and

momentum coefficient (a) were varied from 0.1 to 0.9

with an increment of 0.1.

The total dataset patterns were grouped into training

and testing sets for the training and further testing the

network, respectively. One epoch indicates a complete

presentation of the entire normalized training set con-

sidered for training to accelerate the learning process

[24]. In the forward pass, the synaptic weights are

remained unchanged throughout the network and the

output signals of the network are computed on a neuron-

by-neuron basis. The activation function uð�Þ is consid-

ered as log-sigmodal in this case. The error signal at the

output node t in the output layer at the nth iteration (i.e.

for nth training pattern) is determined. In the backward

pass, computation starts at the output layer by passing

the error signals leftward through the network. The

synaptic weights of the network are modified according

to the delta rule using this recursive computation. The

delta rule to determine weight correction factor is further

modified by including a momentum coefficient (a) to

avoid the risk of instability in the network associated

with learning rate (g) value. The sequential mode of

training was used and thus, mean square error (MSE) to

train the network was set to a very small value, which

has been used as error goal. This stopping limit was set

according to the convergence behavior of the MSE of

testing patterns in the network.

The performance of the BPNN model depends on the

network parameters like number of neurons in hidden

layer (h), no of nodes in the hidden layer (j), learning

rate of the synaptic weights (g) and momentum coeffi-

cient (a). There was no significant improvement of MSE

in testing with the consideration of more number of

hidden layers in this case. Therefore, single hidden layer

was considered, whereas j, g and a were varied from 1 to

30, 0.1 to 0.9 and 0.1 to 0.9, respectively. Several trials

were made to finally obtain the optimal architecture,

which can provide the minimum MSE in testing. The

networks were compared on the basis of their prediction

accuracy in testing by running the code several times.

Once the best network was developed, they were tested

by the seven randomly chosen experimental data out of

53 experiments (experiment no. 2, 5, 12, 19, 31, 39 and

49) to check the prediction capability of the network.

The optimum architecture was found by varying the

number of neurons in the hidden layer along with the

variation of g and a. This evaluation was carried out by

the determination of MSE in testing (MSE_TEST) based

on the absolute value of the weld quality features.

However, the best BPNN model having 6-7-2 architec-

ture with network parameter g ¼ 0:6 and a ¼ 0:4 was

used for obtaining the fitness value of the solutions

generated by NSGA-II. This optimum architecture pro-

vided the minimum MSE in training (MSE_TRAIN) and

testing (MSE_TEST) as 0.00737 and 0.00938, respec-

tively. The effect of each six process parameter on weld

quality parameters (i.e. mean joint tensile strength and

mean transverse distortion) have also been studied

assuming fixed center point value of other five parame-

ters using the best BPNN network parameter stated

above. It has been found that both outputs increased at

higher each pulse voltage parameters; whereas wire feed

rate and welding speed have an opposite effect. It is due

to higher heat input for the first case and lower heat

content of metal droplet transferred to the weld for the

next. To identify the critical parameters and their degree

of importance on the model outputs, a sensitivity anal-

ysis has also been performed using PaD Method. The

contribution of three pulse parameters (Vp, fp and tp) on

outputs have found to be significant as 53.2, 21.4 and

12.2%, respectively, whereas other input parameters (F,

S and at) were not so much significant (1, 9.1 and 3.1%,

respectively).

The optimal parameter settings for maximum joint

tensile strength with minimum distortion were deter-

mined by NSGA-II technique. This technique was

applied to achieve the Pareto-optimal solutions. The

second objective was modified to convert it into a

maximization problem (Eq. 2). Thus, the objective

functions were considered as follows:

Objective1 ¼ Joint strength

Objective2 ¼ 1

Transverse shrinkage
ð2Þ

In order to search the optimal value of decision variables, it

was represented as binary strings. The bit length of each

process parameter was considered as 10. Thus, the string

length for each chromosome is 60. However, optimization

capability of the NSGA-II depends on various other control
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factors such as, cross over rate, mutation rate and number

of generations. The crossover rate (Cr) was 0.9 with two

point crossover, whereas the mutation rate (Mr) was con-

sidered as 0.1 with bitwise mutation. Firstly, a total of 100

numbers of solutions were generated randomly within the

experimental parameter range. The 100 scattered solutions

were found to be converged after 4th iterations in the

optimization process, which had only three ranked solu-

tions as shown in Fig. 4. The Pareto optimal front after

20th generations was considered as the best as there was no

further improvement in terms of solution ranking, i.e. all

the solutions were in the same rank. The final Pareto

optimal front after 20 generations is shown in Fig. 5 and

the corresponding 100 solutions are shown in Table 2. The

maximum value of joint strength was found to be 555 MPa

(solution #27) with higher transverse shrinkage, whereas

the minimum transverse shrinkage was 0.02% (solution #1,

#61 and #95.) with lower joint strength. Thus, the maxi-

mum joint strength as well as transverse shrinkage

improved over the design of experimental results. The

maximum ultimate butt joint strength have found to be

improved from 520 MPa (experiment #30) to 555 MPa

(solution #27) i.e. joint efficiency of 79.7 to 85.1% (in-

crease of 5.4%) with same transverse shrinkage. On the

other hand, transverse shrinkage was found to be signifi-

cantly reduced from 0.131 (experiment #48) to 0.096%

(solution #35 and #41) (i.e. a reduction of 26.7%) with

almost same joint strength, which was more significant at

higher joint strength/efficiency. The joint tensile strength

had found to be enhanced at negative torch angle (back-

hand welding) due to higher heat concentration caused by

weld arc preheating as per simulation results for 100

solutions as well as parametric study. However, the trans-

verse shrinkage increased with negative torch angle due to

more heating, whereas it was found to be less at higher

wire feed rate and welding speed due to less heat input to

the weld as per simulation results. However, there should
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Fig. 5 Pareto-optimal front

Table 2 Pareto optimal solutions with corresponding weld quality features

Serial no. Process parameters Weld quality features

F (m/min) S (mm/s) at (�) Vp (V) fp (Hz) tp (ms) rt (MPa) qt (%)

1 6.4 9.1 - 26 32.8 81 2.6 320.2 0.020

2 7.6 8.5 - 32 35.3 129 4.5 500.5 0.102

3 6.9 8.7 - 31 34.4 108 3.6 357.2 0.094

4 7.2 8.7 - 33 34.5 116 3.8 371.4 0.095

5 6.3 9.1 - 21 33.3 92 3.0 341.0 0.092

6 7.5 8.6 - 34 34.9 134 4.4 476.2 0.100

7 7.4 8.6 - 33 35.1 129 4.1 442.5 0.098

8 9.2 9.2 1 35.6 158 4.6 549.5 0.142

9 7.3 8.6 - 32 35.1 127 4.1 427.5 0.098

10 8.0 8.5 - 32 35.3 146 4.8 540.5 0.113
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Fig. 4 Solutions after 4th generations
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Table 2 continued

Serial no. Process parameters Weld quality features

F (m/min) S (mm/s) at (�) Vp (V) fp (Hz) tp (ms) rt (MPa) qt (%)

11 6.3 9.1 - 21 33.3 92 2.9 339.8 0.092

12 7.6 8.5 - 34 35.2 128 4.6 498.0 0.101

13 6.3 9.2 - 19 32.9 85 2.7 327.8 0.091

14 7.9 8.5 - 29 35.0 142 4.5 529.3 0.107

15 7.5 8.5 - 32 35.1 133 4.3 473.2 0.100

16 6.4 9.0 - 19 33.4 95 3.0 344.2 0.092

17 7.3 8.6 - 31 34.8 123 3.9 404.5 0.097

18 7.5 8.6 - 32 35.1 130 4.1 454.0 0.099

19 6.4 9.1 - 26 32.8 81 2.6 320.2 0.090

20 7.7 8.6 - 27 34.9 141 4.1 488.5 0.101

21 7.4 8.7 - 31 34.9 122 4.0 408.1 0.097

22 6.3 9.0 - 20 33.4 92 3.0 342.4 0.092

23 6.3 8.8 - 24 33.6 82 2.9 330.0 0.091

24 7.9 8.5 - 29 35.0 142 4.5 529.3 0.107

25 7.3 8.6 - 32 35.2 127 4.1 432.8 0.098

26 6.4 9.1 - 26 32.8 81 2.6 320.2 0.090

27 9.7 9.1 3 36.2 172 4.9 555.0 0.154

28 7.7 8.5 - 33 35.2 136 4.5 513.1 0.103

29 7.8 8.6 - 31 35.0 143 4.4 519.3 0.104

30 7.5 8.6 - 33 35.0 129 4.1 442.5 0.098

31 8.1 8.4 - 28 35.3 157 4.7 544.8 0.119

32 7.2 8.7 - 33 34.6 117 3.8 374.2 0.095

33 6.3 9.1 - 27 32.7 84 2.7 324.2 0.091

34 7.6 8.5 - 32 35.3 129 4.5 500.5 0.102

35 7.2 8.7 - 33 34.6 121 3.9 392.1 0.096

36 7.0 8.8 - 32 34.2 115 3.7 366.2 0.094

37 9.6 9.1 3 36.0 170 4.9 554.4 0.152

38 6.7 8.8 - 30 34.1 101 3.4 347.0 0.092

39 7.3 8.6 - 31 34.8 123 3.9 404.5 0.097

40 7.5 8.6 - 32 35.2 130 4.1 456.9 0.099

41 7.2 8.7 - 33 34.6 121 3.9 392.1 0.096

42 7.8 8.5 - 31 35.1 144 4.4 526.7 0.105

43 7.8 8.6 - 31 34.9 143 4.4 514.3 0.104

44 8.0 8.5 - 28 35.1 143 4.4 532.2 0.107

45 7.5 8.6 - 32 35.3 129 4.1 461.7 0.099

46 6.3 9.1 - 18 33.3 98 3.1 350.6 0.093

47 7.8 8.6 - 30 34.9 142 4.4 516.5 0.104

48 6.3 8.8 - 29 33.2 92 3.0 335.8 0.092

49 7.2 8.7 - 33 34.7 121 3.9 391.1 0.096

50 7.5 8.6 - 32 35.1 130 4.1 450.1 0.098

51 9.6 9.1 2 36.0 171 4.9 554.6 0.153

52 7.4 8.6 - 33 35.1 129 4.1 442.5 0.098

53 7.5 8.6 - 34 34.9 134 4.4 476.1 0.100

54 7.4 8.6 - 31 34.9 124 4.0 414.6 0.097

55 7.4 8.6 - 33 34.9 118 4.2 413.0 0.097

56 7.2 8.7 - 32 34.7 117 3.8 377.4 0.095

57 7.7 8.6 - 27 35.0 142 4.1 493.0 0.101
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Table 2 continued

Serial no. Process parameters Weld quality features

F (m/min) S (mm/s) at (�) Vp (V) fp (Hz) tp (ms) rt (MPa) qt (%)

58 7.8 8.5 - 30 35.1 143 4.4 522.9 0.105

59 6.9 8.7 - 31 34.4 108 3.6 357.2 0.094

60 7.0 8.8 - 32 34.6 110 3.6 358.3 0.094

61 6.4 9.1 - 26 32.8 81 2.6 320.2 0.020

62 6.3 9.1 - 27 32.9 84 2.8 325.5 0.091

63 7.7 8.6 - 27 34.9 142 4.1 486.6 0.101

64 7.5 8.5 - 32 35.1 133 4.3 473.2 0.100

65 6.3 9.0 - 20 33.4 92 3.0 342.4 0.092

66 7.6 8.6 - 32 35.2 131 4.1 465.4 0.099

67 6.3 9.0 - 18 33.4 96 3.1 351.6 0.093

68 6.3 8.8 - 23 33.7 82 3.0 332.6 0.091

69 7.9 8.6 - 31 35.0 144 4.4 524.2 0.105

70 7.3 8.6 - 32 35.1 127 4.1 427.5 0.098

71 7.5 8.7 - 31 35.0 123 4.0 419.1 0.097

72 9.3 9.2 1 35.7 159 4.6 550.4 0.143

73 9.5 9.2 4 36.2 165 4.7 553.6 0.147

74 7.9 8.5 - 28 35.1 147 4.4 531.1 0.107

75 9.2 9.2 1.2 35.6 158 4.6 549.5 0.142

76 6.3 9.1 - 27 32.9 84 2.8 325.5 0.091

77 7.6 8.5 - 34 35.2 130 4.6 505.9 0.102

78 7.3 8.6 - 32 35.3 128 4.1 443.3 0.098

79 8.2 8.4 - 28 35.5 159 4.7 546.8 0.123

80 6.4 9.1 - 26 32.8 81 2.6 320.2 0.090

81 7.2 8.7 - 33 34.8 118 3.8 380.8 0.095

82 6.4 9.1 - 26 32.8 81 2.6 320.2 0.090

83 6.4 9.1 - 26 32.8 81 2.6 320.2 0.090

84 7.6 8.5 - 32 35.3 129 4.5 500.5 0.102

85 6.7 8.8 - 30 34.2 102 3.4 348.2 0.093

86 7.6 8.5 - 32 35.3 131 4.2 469.8 0.099

87 7.6 8.5 - 32 35.3 130 4.5 503.3 0.102

88 7.3 8.7 - 32 34.8 124 3.9 404.4 0.097

89 7.6 8.5 - 32 35.3 130 4.5 503.4 0.102

90 9.6 9.1 2 36.0 171 4.9 554.4 0.152

91 7.2 8.7 - 33 34.5 116 3.8 371.4 0.095

92 7.7 8.5 - 32 35.4 130 4.5 509.5 0.103

93 8.1 8.5 - 32 35.5 148 4.8 543.5 0.115

94 6.4 9.0 - 20 33.5 93 3.0 344.1 0.092

95 6.4 9.1 - 26 32.8 81 2.6 320.2 0.020

96 8.0 8.5 - 32 35.4 147 4.8 542.4 0.114

97 8.0 8.5 - 28 35.1 145 4.5 535.1 0.108

98 6.4 9.2 - 19 33.0 87 2.8 328.9 0.091

99 8.0 8.5 - 28 35.1 145 4.5 535.1 0.108

100 7.3 8.7 - 32 34.7 119 3.8 382.2 0.096
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be adequate heat input to the weld (affected by mean

voltage as a function of pulsed voltage parameters) to

achieve the two conflicting objectives as per simulation

results. Two optimal solutions (solution #55 and #67) were

found to be closed to two different experimental (experi-

ment #31 and #11, respectively) values. Thus, it was val-

idated without further experiments. Therefore, the neuro

based NSGA-II is a powerful tool to achieve more number

of optimal solutions to achieve multi-objectives in

P-GMAW.

Conclusion

Butt weld quality can be improved with higher tensile

strength and less transverse shrinkage by adjusting process

parameters in P-GMAW. However, one particular weld

quality feature sometimes more important. Thus, multi-

objective optimization is often required which can be

efficiently solved by neuro based NSGA-II technique. This

tool can generate more number of solutions for different

service requirements without much computation time. The

maximum ultimate joint strength increased from 520 to

555 MPa (i.e. more than 5%) at same transverse shrinkage,

whereas there was a significant reduction of transverse

shrinkage of 26.7% at higher joint efficiency (more than

60%), using this hybrid approach. Thus, joint strength as

well as transverse shrinkage were found significantly

improved evidenced by simulation as well as experimental

results.
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