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Abstract The present work aims at demonstrating the

different avenue for indirect monitoring of friction stir

welding process which is hardly attempted. Information

contained in the current signal of the main spindle motor is

extracted in terms of four statistical features. These fea-

tures along with tool rotational speed, welding speed and

shoulder diameter are combined with support vector

machine for the prediction of ultimate tensile strength of

the joints. The parameters of the support vector machine

are optimized using grid search method. The prediction

performance of the model is tested for inputs which contain

process parameters with and without signal features. The

performance of the developed support vector regression

models are compared with well accepted multi-layer feed

forward neural network trained with back propagation

algorithm and radial basis function neural network devel-

oped for the prediction of ultimate tensile strength of the

welded joints. The analysis leads to the observations that

inclusion of signal features to these models improve the

prediction accuracy by an appreciable amount. Among the

developed models, support vector machine outperform in

modeling ultimate tensile strength of the welds compared

to neural network models.

Keywords Monitoring � Support vector machine �
Neural network � Strength prediction � Current signal

Introduction

Friction stir welding process (FSW) found its implemen-

tation in many industrial applications [1, 2]; surely neces-

sity arises in developing different techniques for

monitoring the outcome of the process in terms of quality

of the welded joints. But only few researchers had

attempted monitoring of FSW process [3]. A mathematical

model was proposed by Mehta, et al [4] for real time

measurement of traverse force and torque in terms of input

current and power from the spindle and feed motors in

order to monitor the FSW process. Acoustic emission

signals were analyzed to study the effect of pin profiles on

FSW process by Subramanian, et al [5] and boiled down to

a conclusion that square pin profile adds more towards the

strength of the joints.

Modeling of weld quality has become significant

nowadays to offer better control over the process. Different

approaches had been evolved for predicting the weld

quality. Support vector machine (SVM) learning technique

for classification as well as prediction in different welding

processes has been attempted by researchers. Prediction of

residual stresses in gas tungsten arc welding of dissimilar

metals was attempted by Na, et al [6] using SVR models.

They found that the SVR models are highly accurate in

predicting the experimental results. Classification of

defective and defect free welds was attempted by Wang,

et al [7] from the X-ray image features of line welds. It was

presented that SVM accurately classify the defective fea-

tures and the defect free features. Application of SVM in

material design was demonstrated in the work by Lu, et al

[8]. Electric resistance of material, thickness control of

semiconductor film were attempted to predict using SVM

models and concluded that the developed models can be

effective in material designing. Apart from the SVM
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approach, researchers mostly used artificial neural network

(ANN) models for prediction of weld qualities in FSW and

other processes [9–11].

From the aforementioned literature survey, it is realized

that prediction of weld quality in FSW process was tar-

geted by few researchers, and most of them considered

only process parameters in their prediction mechanisms.

For the complex process like FSW, where precise physics

based formulation is lacking and the outcome of the pro-

cess is governed by too many influencing factors,

depending solely on selective process parameters for the

development of more accurate monitoring system for

strength prediction will not suffice. Inclusion of current

signal features to the monitoring systems will surely

enhance the accuracy. To demonstrate this, in the current

research work, prediction of weld quality in terms of UTS

values is proposed using main spindle motor current signal

features. Time domain statistical features namely, root

mean square (RMS), skewness, variance and kurtosis are

computed from the signals and presented to SVR model

developed for the prediction of UTS of the welds. The

prediction performances of the SVR models are compared

with the ANN models.

Experimental Procedures

In the present work, two aluminum alloy (AA1100) plates

with dimension of 160 9 110 9 6 mm are used as the

workpiece material to perform the FSW operation in butt

joint configuration. The composition and mechanical prop-

erties of basematerial is shown inTable 1.After thewelding,

thewelded samples are cut into specific dimensions provided

in ASTM E8 manual for tensile testing. The tensile test is

performed using a universal testing machine. A converted

milling machine developed indigenously for friction stir

welding process, is used in the research work. The welding

setup has a three phase ac induction motor (maximum cur-

rent rating of 19 A, 440 V supply voltage and 50 Hz)

responsible for tool rotational speed. Current signals from

main spindle motor are acquired using a Hall Effect current

transducer. All the signals are acquired using a high speed

data acquisition system at a sampling rate of 10 kHz.

In FSW process, tool rotational speed and welding speed

are the two most influencing process parameters responsi-

ble for rate of heat generation and mixing of the material

[1]. Apart from these two parameters, shoulder diameter

also plays an important role in FSW process [4]. Therefore,

these three parameters are considered to study the FSW

process behaviour. All these process parameters are chosen

at four levels and a full factorial design method is used to

obtain the design matrix. The levels of each parameter are

listed in Table 2. A total of 43, that is, 64 experimental runs

are obtained from the full factorial design. The design

matrix is shown in Table 3 with responses. Experiments

are performed randomly to reduce bias or experimental

error. Straight cylindrical tool pin profile is used in all the

experiments with fixed pin length of 5.7 mm, pin diameter

of 6 mm and plunge depth of 0.06 mm.

Analysis of Current Signal

In this study, four statistical features namely RMS, skew-

ness, kurtosis and variance of current signal are computed

and listed in Table 3 to analyze the signal in time domain.

The magnified view of signals acquired during Exp. No. 36

and Exp. No 45 are shown in Fig. 1. It is to note that, these

two experiments correspond to minimum and maximum

UTS, respectively, and performed against same tool rota-

tional speed. But from the figure, the difference in the

current signal magnitude for these two cases can be clearly

seen and is supported by the change in different statistical

domain features tabulated in Table 3. This entails the fact

that the process parameters may go inconsistent in the

presence of other unknown influencing factors, the cumu-

lative effects of which will bring some change in the pro-

cess and thus in the weld quality. Therefore, monitoring

based on signal feature will provide a rich way for the

evaluation of the process performance.

The variation of UTS with the statistics domain features

are explored in this study to check for existence of corre-

lation between computed features and UTS. From the

investigation it is observed that all the statistical features

follow an increasing trend with the increase in the UTS. It

manifests that there is intelligible correlation between these

Table 1 Composition and mechanical properties of AA1100

Mechanical properties Chemical composition, weight %

Al: 99.3

UTS, MPa = 119.8 Si: 0.2

Yield strength, MPa = 106 Zn: 0.2

Percentage elongation: 17.1 Fe: 0.2

Cu: 0.1

Table 2 Levels of process parameters

Process parameters Level

1

Level

2

Level

3

Level

4

Tool rotational speed (TRS), rev/

min

600 815 1100 1500

Welding speed (WS), mm/min 36 63 98 132

Shoulder diameter (SD), mm 16 20 24 28
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Table 3 Design matrix with responses

Exp. no. Process parameters Statistical features of the signal UTS, MPa

TRS, rev/min WS, mm/min SD, mm RMS 9 10-2 Variance 9 10-3 Skewness 9 10-3 Kurtosis

1 600 36 16 7.92 5.03 1.82 1.51 94.05

2 600 36 20 7.73 4.47 2.01 1.54 85.87

3 600 36 24 8.13 5.22 5.25 1.56 78.56

4 600 36 28 7.66 4.39 2.59 1.64 65.69

5 600 63 16 7.79 4.83 6.14 1.52 88.42

6 600 63 20 6.70 4.49 3.98 1.56 84.64

7 600 63 24 8.44 5.76 5.16 1.56 88.12

8 600 63 28 7.91 4.75 1.58 1.93 71.88

9 600 98 16 7.52 4.43 1.72 1.53 82.45

10 600 98 20 8.05 4.82 1.77 1.55 85.24

11 600 98 24 8.15 5.27 3.72 1.56 73.60

12 600 98 28 8.46 5.71 1.02 1.82 67.55

13 600 132 16 7.72 4.71 3.54 1.54 95.89

14 600 132 20 7.96 4.95 9.30 1.57 81.89

15 600 132 24 8.35 5.59 3.71 1.56 81.95

16 600 132 28 9.22 7.17 1.45 1.71 84.09

17 815 36 16 7.86 4.95 1.79 1.52 92.00

18 815 36 20 7.88 4.69 0.01 1.53 77.34

19 815 36 24 8.23 5.43 4.40 1.54 85.48

20 815 36 28 8.54 5.65 1.23 1.57 80.33

21 815 63 16 8.15 5.41 6.05 1.53 94.63

22 815 63 20 7.76 4.44 1.21 1.53 78.22

23 815 63 24 8.25 5.43 1.04 1.55 83.13

24 815 63 28 8.35 5.36 0.06 1.74 78.48

25 815 98 16 7.96 5.09 1.11 1.54 73.87

26 815 98 20 8.00 4.85 6.72 1.54 77.90

27 815 98 24 8.55 5.96 1.02 1.58 87.86

28 815 98 28 8.03 4.85 1.71 1.66 65.74

29 815 132 16 8.06 5.25 1.78 1.54 88.05

30 815 132 20 8.21 5.17 7.56 1.54 75.15

31 815 132 24 8.78 6.41 3.52 1.55 92.62

32 815 132 28 8.51 5.67 8.22 1.79 77.83

33 1100 36 16 7.96 5.04 1.18 1.53 74.54

34 1100 36 20 7.39 5.46 2.03 1.54 83.45

35 1100 36 24 8.97 6.76 7.50 1.54 76.30

36 1100 36 28 8.90 6.29 1.16 1.59 51.15

37 1100 63 16 7.96 5.02 1.31 1.58 91.86

38 1100 63 20 8.48 5.48 1.94 1.56 82.69

39 1100 63 24 8.89 6.60 2.86 1.54 89.91

40 1100 63 28 9.32 7.08 4.67 1.58 76.12

41 1100 98 16 7.81 4.80 9.32 1.55 81.41

42 1100 98 20 8.61 5.60 0.05 1.55 77.86

43 1100 98 24 8.85 6.54 3.52 1.56 75.35

44 1100 98 28 8.98 6.56 2.29 1.67 79.28

45 1100 132 16 8.30 5.65 2.68 1.58 95.95

46 1100 132 20 8.37 5.39 7.36 1.57 77.55

47 1100 132 24 8.78 6.41 3.52 1.55 63.91

48 1100 132 28 8.87 6.41 1.36 1.79 77.86

49 1500 36 16 8.75 6.39 1.74 1.53 88.42

50 1500 36 20 8.49 5.48 5.37 1.54 64.95

51 1500 36 24 9.20 7.16 1.35 1.63 92.22

52 1500 36 28 8.95 6.55 6.54 1.58 81.08

53 1500 63 16 8.93 6.68 1.01 1.53 92.59

54 1500 63 20 9.18 6.73 2.40 1.54 81.65
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signal features and the strength of the welded joints. So,

these signal features along with the process parameters are

used in the input space of the SVR model as well as ANN

models for predicting UTS of the joints.

Modelling of UTS using SVM

SVMs are very specific class of algorithm characterized by

usage of kernels, absence of local minima, sparseness of the

solution and capacity controlled by acting on margin or on

support vectors, etc. As the same way with classification

approach there is motivation to seek and optimize the gen-

eralization bounds for support vector regression (SVR). The

detail of the SVR is out of the scope of this article and can be

found in relative technical article [12]. SVM generalization

performance (estimation accuracy) depends on setting of

meta parameters C, e and kernel parameter (c). Different
algorithms are available for hyperparameter optimization

and grid search algorithm is one of those [13, 14]. For SVMs,

C and c are the two hyperparameter that need to be optimized

and initialized in pairs. Grid search trains a SVM with each

pair (C, c) in the Cartesian product of these two sets and

evaluate their performance on held-out validation set.

Finally the grid search outputs the settings that achieved

highest score in the validation procedure.

To find the optimum network parameters, the value of C

is varied in the range of 1 to 100 in steps of 1. Whereas, c
and e values are varied in the range of 0.01 to 0.1 in steps

of 0.01. From the grid search method, optimum set of C

and c are found to be 90 and 0.06, respectively, when the

input space of the model contains signal features along

with the process parameters. On the otherhand, optimum

set of C and c values for the model when the input space

contains only the process parameters are 60 and 0.07,

respectively. Optimum values of e are found to be 0.03 and

0.06 for the models, respectively. The models are trained

using 57 data sets and remaining 7 data sets are used for

testing the developed models. Prediction performance of

the developed models are shown in Fig. 2. Output predic-

tions of the developed models for the testing cases are

listed in Table 4. From the table it is observed that absolute

average percentage error of 2.15 and 6.03 are obtained

from the models. Moreover, it is demonstrated that inclu-

sion of signal features in the model input space, increases

the prediction accuracy by 64% which indicates that signal

features in the input space of the model can be quite

effective to accurately predict the quality of the weld. The

prediction performance of the SVR model is compared

with perfomance obtained from ANN models to find the

better candidate for accurate prediction of weld quality.

Modelling of UTS using ANN

In this work, a standard multi-layer feed forward neural

network trained using back propagation algorithm; known

as back propagation neural network (BPNN) and a radial

basis function neural network (RBFNN) are developed to

model the UTS of the welded samples. Computer programs

for ANN models are developed using the C programming

language. As neural networks are prone to overfitting the

data, validation datasets are used to monitor the behaviour

of the network so that it does not move towards overfitting

[15, 16]. In general, it is found that around 15% of datasets

are used for validation, 10% are used for testing the

developed neural network model [17]. Remaining datasets

Table 3 continued

Exp. no. Process parameters Statistical features of the signal UTS, MPa

TRS, rev/min WS, mm/min SD, mm RMS 9 10-2 Variance 9 10-3 Skewness 9 10-3 Kurtosis

55 1500 63 24 9.39 7.53 3.85 1.54 88.92

56 1500 63 28 8.67 6.09 1.82 1.62 68.57

57 1500 98 16 8.93 6.68 1.95 1.54 71.38

58 1500 98 20 8.71 5.97 1.12 1.57 77.17

59 1500 98 24 9.19 7.18 7.23 1.56 87.12

60 1500 98 28 9.49 7.60 2.41 1.65 81.81

61 1500 132 16 8.99 6.81 3.36 1.54 80.29

62 1500 132 20 8.52 5.70 1.91 1.63 83.93

63 1500 132 24 9.19 7.16 1.33 1.56 59.12

64 1500 132 28 8.96 6.46 1.32 1.61 83.64

Fig. 1 Magnified view of main spindle motor current signal
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are used for training the network. Among the full factorial

datasets, 47 and 10 patterns are selected randomly for

training and validating the models, respectively. Data set

used for testing the SVR model is used for testing the

developed neural networks.

The prediction performance of BPNN model depends on

the architecture of the network, learning rate (g) and

momentum coefficient (a). The number of neurons in the

hidden layer is varied from 5 to 39 in steps of 1. Learning rate

is varied in between 0.1 to 1 in the steps of 0.04 and

momentum coefficient is varied in between 0.01 to 1 in the

steps of 0.04. Initial weight values are chosen randomly

between±0.9 and the bias values at the input layer is taken as

0 and that for hidden and output layer as 1.0 respectively. All

the inputs and output variables are normalized between 0.1

and 0.9 which ensures that the back propagation algorithm

does not drive some of the connections weights to infinity

and thus slow down the training [18, 19]. The activation

functions for both the hidden and output layers neurons are

log-sigmoid. The objective of the training is to minimize the

mean square error (MSE) by updating the weights through

gradient descent method [18].

The best network architecture from the optimization

framework is found to be 7-21-1 withg = 0.7 and a = 0.41

with signal features and the process parameters in the input

space. The comparison between the actual UTS values and

BPNN predicted UTS values are shown in Fig. 3. In the

figure it is reflected that out of 64 number of patterns, only six

predictions deviate from the ±5% error line and among

which, only two are from the testing data set. The absolute

average percentage error for the testing cases is 4.89.

Radial basis function neural networks are different than

BPNN in the way that it has some special activation

functions in the hidden layers called as the radial basis

functions. Detail description of training algorithm is out of

the scope of this article; interested readers may refer to the

relevant technical article [20]. Number of hidden layer

neurons is varied from 5 to 29 in steps of 1 to find out the

optimal network structure. Learning rate for updating

weights is varied in the interval of 0.1 to 1 and that for

center updation and Gaussian functions spread updation

were varied in the interval of 0.01 to 1 in steps of

0.04, respectively.

The best RBFNN is found to be 7-7-1 with 0.46, 0.05

and 0.05 as learning rate for weight, center and spread

updating, respectively, with signal features along with the

process parameters in the input space. In Fig. 4, compar-

ison between the actual UTS and RBFNN predicted UTS is

Fig. 2 Performance of support

vector regression model a with

signal features b without signal

features

Table 4 Performance of support vector regression models

Exp.

no.

Actual

UTS, MPa

Predicted UTS, MPa

Without signal

features

Error, % With signal

features

Error,

%

33 74.54 87.87 -17.88 75.77 -1.65

58 77.17 79.83 -3.44 75.64 1.98

1 94.05 92.82 1.31 94.38 -0.35

17 92 89.95 2.23 89.25 2.98

37 91.86 91.79 0.08 91.16 0.71

51 92.22 85.82 6.93 92.15 0.08

9 82.45 90.99 -10.36 88.50 -7.33

Average absolute percentage error 6.03 2.15

Fig. 3 Prediction performance of BPNN model

Fig. 4 Prediction performance of RBFNN model
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shown. Compared to BPNN prediction, the prediction of

RBFNN is inferior and out of 64 datasets, 23 predictions

are out of ±5% error line. The absolute average percentage

error for the testing cases is 7.33.

The prediction performance of SVR models with BPNN

and RBFNN models developed in this research work is

compared and comparative analysis is presented in Fig. 5.

From the figure it is observed that, SVR model perfor-

mance for prediction of UTS is better than ANN models.

An improvement of 55% is experienced in SVR model

prediction accuracy when compared with BPNN model

predictions. When compared with RBFNN predictions,

there is an improvement of 70% in prediction of SVR

model. This implies that SVR models, coupled with current

signal features can lead to more accurate predictions of

UTS of friction stir welded joints and can be implemented

in real time in-process monitoring of FSW process.

Conclusions

Main spindle motor current signal against each experiment is

acquired and time domain features of the signal are computed.

SVR and ANN models are developed for the prediction of

UTS of the welded joints using the process parameters along

with the extracted signal features. Prediction performances of

the developed models are compared to find the best candidate

for the accurate prediction of UTS of the joints. Following

conclusions are drawn from this research work.

• Current signal of main spindle motor is a potential

candidate for real time monitoring of FSW process.

• The performance of the SVR model is compared with

the output from two ANN models. Among the devel-

oped models, SVR model yields better prediction

accuracy as compared to developed neural network

models. An increase of 55% in accuracy is observed for

SVR prediction UTS compared to BPNN model

prediction UTS for the case when input space of both

the models contain the signal features along with the

process parameters. Whereas, an increase of 70% in

prediction accuracy is observed for SVR model when

compared with the performance of RBFNN model.

The presented work can be modified towards the

development of online monitoring techniques for FSW

process to achieve accurate prediction of the joint strength

without destroying the welded components. This will offer

precise control over the process to get the desired output in

terms of weld quality.
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