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Abstract This paper reports the hydrodynamically and

thermally fully developed, laminar, incompressible, forced

convective heat transfer characteristics of gaseous flows

through a parallel plate microchannel with different con-

stant heat flux boundary conditions. The first order velocity

slip and viscous dissipation effects are considered in the

analysis. Here, three different thermal boundary conditions

such as: both plates kept at different constant heat fluxes,

both plates kept at equal constant heat fluxes and one plate

kept at constant heat flux and other one insulated are

considered for the analysis. The deviation in Nusselt

number between the model that considers both first order

velocity slip and temperature jump and the one that con-

siders only velocity slip is reported. Also, the effect of

various heat flux ratios on the Nusselt number is reported in

this analysis. In addition, the deviation in Nusselt number

between first and second order slip model is discussed in

this study.

Keywords Brinkman number � Heat flux ratio �
Knudsen number � Velocity slip � Viscous dissipation

List of Symbols

a1 Parameter defined in Eq. (10)

a2 Parameter defined in Eq. (24)

a3 Parameter defined in Eq. (34)

Brq1 Modified Brinkman number, defined in Eq. (9)

Br Brinkman number defined in Eq. (23)

cp Specific heat at constant pressure (J/kg K)

h Convective heat transfer coefficient (W/m2 K)

k Thermal conductivity (W/m K)

Kn Knudsen number (k/W)

L Width of the plate (m)

Nu Nusselt number

q1 Upper wall heat flux (W/m2)

q2 Lower wall heat flux (W/m2)

T Temperature (K)

To Wall temperature when both walls are kept at

constant heat flux (K)

T1 Upper wall temperature (K)

T2 Lower wall temperature (K)

DT General temperature difference (K)

u Velocity (m/s)

um Mean velocity (m/s)

us Slip velocity ¼ � 2�F
F

kou
oy

�
�
�
y¼w

� �

(m/s)

U Dimensionless velocity

w Half channel height (m)

W Channel height, (=2w) (m)

x Co-ordinate in the axial direction (m)

y Co-ordinate in the vertical direction (m)

Y Dimensionless vertical co-ordinate

Greek Symbols

a Thermal diffusivity (m2/s)

h Dimensionless temperature

hm Mean dimensionless temperature

k Molecular mean free path (m)

l Dynamic viscosity (kg/m s)

q Density (kg/m3)

Subscripts

c Center

m Mean
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Introduction

The study of fluid flow and heat transfer characteristics in

microdevices is of great interest because of its applications

in various industrial and scientific applications including

microfluidic devices, energy conversion devices, cooling of

electronic equipments, micro-electro-mechanical systems

(MEMS) and bio-medical engineering. At microscale, the

interaction between the fluid and solid wall is different than

at macro-scale. In such a case, the rarefaction effect

becomes important because the molecular mean free path

may be of the same order as the channel diameter. In

gaseous flows the effect of rarefaction is commonly

quantified by the Knudsen number (Kn) and it is defined as

the ratio of mean free path (k) of the working fluid to the

characteristic dimension (Dh) of the system. Beskok and

Karniadakis [1] reported four different flow regimes based

on the value of Knudsen number. This includes continuum

flow Kn\0:001ð Þ, slip flow 0:001\Kn\0:1ð Þ, transition
flow 0:1\Kn\10ð Þ, and free molecular flow Kn[ 10ð Þ:
The Knudsen number for the slip flow regime usually lies

between 0.001 and 0.1. In this regime, velocity slip and

temperature jump effects are present near the wall. Here,

the fluid flow does not obey the classical continuum

approach, and found to affect the heat transfer character-

istics significantly. This has generated the interest to ana-

lyze fluid flow and heat transfer behavior at microscale

through theoretical simulation [1–3] and experimental

investigation [4–9]. In order to analyze the fluid flow and

heat transfer characteristics in the slip regime the Navier–

Stokes and energy equations are coupled with the velocity

slip and temperature jump effects. The authors usually

considered either a constant heat flux boundary condition

or an isothermal condition to analyze the heat transfer

characteristics of gaseous flows in various geometries such

as: parallel plate microchannels and micropipe. In addition

to the effect of rarefaction [10–14], various issues such as:

viscous dissipation [15–20], axial conduction [21, 22],

thermal creep [23, 24], compressibility [25–28], shear work

[29–31], roughness [32, 33], fluid property variation

[34, 35], and thermal boundary conditions affect the heat

transfer characteristics of gaseous flows in microdevices.

However, it is observed that viscous dissipation acts as an

internal heat source in the fluid and significantly affects the

temperature field and subsequently the Nusselt Number.

When fluid flows, the viscosity of the fluid absorbs

energy from the motion of the fluid leading to an increase in

the fluid temperature and it is termed as viscous dissipation.

The ratio of heat generation, because of viscous dissipation,

and heat exchange between fluid and the wall is quantified

by a parameter known as Brinkman number [1–3]. In the

case of macroscale flows, the effect of viscous dissipation is

significant either for higher viscous flows or flows with

higher velocity. While, in the case of microdevices, the

effect of viscous dissipation is significant even for the low

velocity flow because of smaller dimensions. Initially,

Brinkman [4] reported the effect of viscous dissipation on

heat transfer for a single phase Newtonian fluid through a

circular tube. The combined effect of viscous dissipation

and rarefaction on the heat transfer characteristics of gas-

eous flows through various microgeometries have been

reported by employing analytical and numerical techniques.

The effect of viscous heating is found to increase linearly

with the increase in Brinkman number and decreases non-

linearly with the increase in Knudsen number [5–20]. The

effect of axial conduction is usually defined by Peclet

number and it is found to affect the convective heat transfer.

Various studies have been reported that include the effect of

viscous dissipation, axial conduction and rarefaction in the

analysis [21]. However, the effect of axial conduction is

significant in the entrance region and can be neglected while

analyzing the heat transfer characteristics in the fully

developed condition [22].

The term thermal creep indicates the flow rarefied gas

due to tangential temperature gradients along the channel

walls, where the fluid starts creeping in the direction from

cold towards hot wall. The thermal creep is included in the

model to analyze the fluid flow and heat transfer charac-

teristics for the isoflux boundary conditions. Cetin [23]

reported closed form solutions for gaseous flow through

microgeometries in thermally and hydrodynamically fully

developed region by employing an isoflux boundary con-

dition with the effect of thermal creep. Hettiarachchi et al.

[24] reported that thermal creep can be neglected at the

wall for moderate temperature gradients in the slip-flow

regime. It is argued that thermal creep contribution mainly

appears in the entrance region for the developing flow

where higher tangential temperature gradients occur and

vanishes in the fully developed region.

It is observed that for lower value of Knudsen number,

one can assume the flow as incompressible even for higher

value of Reynolds number. On the contrary, in the case of

higher Knudsen number, the compressibility effects can be

neglected only when the Reynolds number is lower. Various

studies have been reported that include compressibility in

their model [25, 26]. It is argued that shear work at the solid

boundary plays an important role for the analysis of heat

transfer characteristics at microscale [27, 28]. The effect of

shear work on boundary is mainly due to the slip velocity,

while it is considered to be zero at macroscale. The shear

work is found to play a significant role at solid boundaries in

small-scale gaseous flows especially when the slip effect is

present [29–31]. Studies have been reported that consider

the role of surface roughness on heat transfer performance
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[32, 33]. It is observed that roughness affects the pressure

drop significantly, while it weakly affects the Nusselt

number. The thermal performance was found to depend on

the geometrical details of the roughness elements. Attempts

have been made to include the effect of variation of the

thermophysical properties on the heat transfer characteris-

tics in the microchannels. It was reported that the degree of

discrepancy depends on various parameters such as: Knud-

sen number, aspect ratio and the temperature difference

between the channel inlet and the wall. It is observed that the

variation in local Nusselt number because of temperature

variable properties is significant in the developing region.

While, the fully developed Nusselt number does not vary

significantly with the change in the thermophysical proper-

ties in the analysis [34, 35]. Efforts have been made to study

the effect of second order boundary conditions and asym-

metric heat flux boundary conditions on the heat transfer

characteristics of various geometries such as: parallel plate

microchannels andmicropipe [36–38]. It is observed that the

asymmetric heat flux condition significantly alters the tem-

perature profile and singularities in Nusselt number are

obtained for various values of Knudsen number [18–20].

It is evident from the literature that numerous studies

have been reported to analyze the heat transfer character-

istics of gaseous flows through microdevices. It is reported

that velocity slip and temperature jump affect the heat

transfer performance in opposite ways [15]. Also, the

studies report the deviation in heat transfer performance by

considering the first and second order slip models [36–38].

The effect of asymmetric heat flux ratio on the heat transfer

ratio and the heat transfer performance has also been

reported [9, 18–20]. However, very few studies have been

proposed that report the sole effect of velocity on the heat

transfer performance among various slip models involving

different heat flux boundary conditions. Here, an effort has

been made to analyze the sole effect of velocity slip on the

heat transfer performance. Also, heat transfer performance

for various models including different heat flux boundary

condition and different slip models are reported. Present

predictions are verified for the cases that neglect the vis-

cous heating and microscale effect.

Theoretical Analysis

Figure 1a–c depicts the schematic of gaseous flow between

parallel plates with various heat flux boundary conditions at

the surface. The flow is assumed to be laminar, incom-

pressible, steady, fully developed both hydrodynamically

and thermally. The thermal conductivity and diffusivity of

the fluid are considered to be independent of temperature.

Axial conduction is neglected both in the fluid and through

the wall. It is observed that thermal creep affects the slip

velocity only in the entrance region and vanishes in the fully

developed region; therefore, the effect of thermal creep is

neglected in the present analysis [23, 24]. Here, efforts have

been made to couple the usual continuum approach with the

velocity slip and no-temperature jump effects at the surface

including viscous dissipation. Utilizing the above assump-

tions, the momentum equation can be written as:

d

dy

du

dy

� �

¼ 1

l
dp

dx
ð1Þ

Subject to the boundary conditions given by:

du

dy

�
�
�
�
y¼0;

¼ 0 ð2aÞ

us � uw ¼ � 2� F

F

� �

k
ou

oy

�
�
�
�
y¼w

ð2bÞ

where, us and uw are considered to be the velocity of fluid at

the wall, velocity of the solid wall, respectively. The

Fig. 1 a–c Schematic diagram of the parallel plates (a) different heat
flux (b) equal heat flux (c) upper plate with constant heat flux and

lower plate insulated
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velocity of the solid wall (uw) is considered to be zero with

respect to fixed reference frame. Here, k and F denote the

mean free path and the tangential momentum accommoda-

tion coefficient, respectively. The value of F can be taken as

unity for air because its impact can be included in Kn [1–3].

The following dimensionless variables are defined:

X ¼ x

W
; Y ¼ y

W
; Kn ¼ k

W
ð3Þ

The fully developed velocity profile for the slip flow can

be derived from the momentum equation using the first

order velocity slip condition. By using Eqs. (1–3) the

velocity distribution as a function of transverse coordinate

can be written as [1–3]:

u

um
¼ 3

2

1þ 4Kn� y2=w2

1þ 6Kn

� �

: ð4Þ

Model I: Both the Plates at Different Constant Heat

Flux Condition q1 6¼ q2ð Þ

Figure 1a illustrates the schematic of the flow through

parallel plates subjected to different constant heat flux

condition. Here, q1 and q2 represents the different constant

heat flux at top and bottom plates, respectively. Utilizing

the assumptions made under the section ‘Theoretical

Analysis’, the energy equation for the present configuration

can be written as:

qucp
oT

ox
¼ k

o2T

oy2
þ l

ou

oy

� �2

ð5Þ

Subject to the boundary conditions given by:

ið Þ q1 ¼ k
oT

oy
; T ¼ T1 at y ¼ w ð6aÞ

iið Þ q2 ¼ �k
oT

oy
at y ¼ �w ð6bÞ

It is observed that the fluid temperature at any location of

the duct varies in the transverse direction in case of an

internal flow with heat transfer. In such a case, the mean or

bulk temperature (Tm) of the fluid is usually used to evaluate

the heat transfer coefficient (Nusselt number). One can

evaluate the mean or the bulk temperature Tm of fluid at a

given axial location of the duct. This is estimated on the basis

of thermal energy transported by the fluid stream that passes

through the given cross section and expressed as [1–3]:

Tm ¼
R
quTdA
R
qudA

ð7Þ

For the present configuration, with isoflux walls the fully

developed condition can be written as [1–3]:

oT

ox
¼ dT1

dx
¼ dTm

dx
ð8Þ

The non-dimensionalized variables are defined as

follows [16, 17]:

a ¼ k

qcp
; Brq1 ¼

lu2c
q1W

; h ¼ T � T1

q1W=kð Þ ; hm ¼ Tm � T1

q1W=kð Þ
ð9Þ

Utilizing Eqs. (4, 7–9), the governing equation in

dimensionless form (Eq. 5) can be written as:

o2h
oY2

¼
a1 1þ4Kn�4Y2ð Þ
1þ 6Knð Þ � 144Brq1Y

2

1þ 6Knð Þ2

where, a1 ¼
3

2

uc

a
kW

q1

dT1

dx

ð10Þ

Subject to the following boundary conditions:

ið Þ oh
oY

¼ 1; h ¼ 0 at Y ¼ 1

2
ð11aÞ

iið Þ oh
oY

¼ � q2

q1
at Y ¼ � 1

2
ð11bÞ

The temperature distribution of the fluid in the

transverse direction can be obtained by using Eqs. (10–

11) and expressed as the function of Knudsen number (Kn),

heat flux ratio (q2/q1) and modified Brinkman number

(Brq1).

h Yð Þ ¼ �a4Y
4

2 1þ 6Knð Þ þ
3a4a5Y

2

4
þ a6Y

2
� a7 þ

a8q2

q1

þ Brq1

1þ 6Knð Þ2
� 6Y4

1þ 6Knð Þ � 12Y4 þ 9a5Y
2 � 9

8
a5

� �

where, a4 ¼ 1þ q2

q1

� �

;a5 ¼
1þ 4Kn

1þ 6Kn

� �

;a6 ¼ 1� q2

q1

� �

;

a7 ¼
1

32

13þ 72Kn

1þ 6Kn

� �

;a8 ¼
3

32

1þ 8Kn

1þ 6Kn

� �

:

ð12Þ

It may be noted that for Kn = 0, present prediction

(Eq. 12) reduces to Eq. (13) and it is identical to that

obtained by various researchers [9, 16, 36–38].

h Yð Þ ¼ �a4Y
4

2
þ 3a4Y

2

4
þ a6Y

2
� 13

32
þ 3

32

q2

q1

þ Brq1 �18Y4 þ 9Y2 � 9

8

� �

ð13Þ

Using Eqs. (4), (7) and (12), the bulk mean temperature

hmð Þ is obtained as:

556 J. Inst. Eng. India Ser. C (October 2017) 98(5):553–566

123



hm ¼ � 3a4a9

1120
þ 3a4a10

80
þ a

8
q
2

q
1

� a
7

� �

þ 3Brq1

1þ 6Knð Þ3

�36a5 1þ 14Knð Þ
1120

þ 3a5 1þ 10Knð Þ
20

� 3 1þ 4Knð Þ
8

� �

where, a9 ¼
1þ 14Kn

1þ 6Kn

� �

; a10 ¼
1þ 4Kn

1þ 6Knð Þ2

 !

1þ 10Knð Þ

ð14Þ

For Kn = 0, the bulk mean temperature obtained by the

present analysis (Eq. 15) is identical to that derived by

other researchers [9, 16, 36–38].

hm ¼ 9

70

q2

q1
� 13

35
� 27

35
Brq1

� �

ð15Þ

The Nusselt number is defined as [9, 16, 36–38]:

Nu ¼ hW

k
or

q1

T1 � Tm

W

k
) � 1

hm

dh
dY

�
�
�
�
Y¼1=2

ð16Þ

Utilizing Eq. (14) and Eq. (16), the Nusselt can be

written as:

Nu¼� �3a4a9

1120
þ 3a4a10

80
þ a8q2

q1
� a7

� �

þ 3Brq1

1þ 6Knð Þ3

"

�36a5 1þ 14Knð Þ
1120

þ 3a5 1þ 10Knð Þ
20

� 3 1þ 4Knð Þ
8

� ���1

ð17Þ

Equation (17) reduces to Eq. (18) for Kn = 0 and is

identical to that derived by the authors [9, 16, 36–38].

Nu ¼ 70

26� 9 q2
q1
þ 54Brq1

" #

ð18Þ

Based on the analysis, a closed form expression has

been obtained that correlates the Nusselt number,

Brinkman number, and the heat flux ratio (Eq. 18). It is

interesting to obtain the solution for the case that

considers equal heat fluxes for both the upper and lower

plates. In such a case, for q1 = q2, Eq. (18) reduces to

Eq. (19).

Nu ¼ 70

17þ 54Brq1

� �

ð19Þ

In addition, for the constant heat flux condition of the

upper plate and adiabatic condition at the lower plate, the

present solution reduces to:

Nu ¼ 35

13þ 27Brq1

� �

ð20Þ

For the case q1 = q2 and Brq1 = 0, present prediction

(Nu = 70/17) is exactly same as obtained by earlier

researchers [9, 16, 36–38].

Model II: Both the Plates at Equal Constant Heat

Flux q1 ¼ q2ð Þ

Figure 1b depicts the schematic of the flow through parallel

plates subjected to the equal constant heat flux (q2 = q1) both

at the top and bottom plates. By symmetry, it is assumed that

the initial surface temperature of the upper and lower plates is

To. The energy equation (Eq. 5) valid for the present con-

figuration is subjected to the boundary conditions as below:

ið Þ oT
oy

¼ 0; T ¼ Tc at y ¼ 0 ð21aÞ

iið Þ T ¼ To at y ¼ w ð21bÞ

For the present configuration, with isoflux walls and

thermally fully developed condition, the temperature

gradient can be written as [16]:

oT

ox
¼ dTo

dx
ð22Þ

The non-dimensionalized variables are defined as below

[16, 17]:

h ¼ To � T

To � Tc
; hm ¼ To � Tm

To � Tc
; Br ¼ lu2c

k To � Tcð Þ ð23Þ

Utilizing Eqs. (4, 7, 23) the governing equation (Eq. 5)

can be written as:

d2h
dY2

¼ a2 4Y2 � 1� 4Knð Þ
1þ 6Knð Þ þ 144BrY2

1þ 6Knð Þ2
ð24Þ

where, a2 ¼ 3
2
uc
a

W2

To�Tc

dTo
dx
.

Subject to the following dimensionless boundary

conditions:

ðiÞ oh
oY

¼ 0; h ¼ 1 at Y ¼ 0 ð25aÞ

iið Þ h ¼ 0 at Y ¼ 1=2 ð25bÞ

The solution of Eq. (24) under the above thermal

boundary conditions is given by:

h Yð Þ¼ 48

5þ24Knð Þ 1þ 3Br

4 1þ6Knð Þ2

 !

Y4

3
�Y2 1þ4Knð Þ

2

� �

þ 12BrY4

1þ6Knð Þ2
þ1 ð26Þ

Using Eqs. (4), (7) and (26), bulk mean temperature

hmð Þ is obtained as:

hm ¼ 3

35
1þ 3Br

4 1þ 6Knð Þ2

 !"

1þ 14Knð Þ � 14 1þ 4Knð Þ 1þ 10Knð Þ
1þ 6Knð Þ 5þ 24Knð Þ

� �

þ 9

140

Br 1þ 14Knð Þ
1þ 6Knð Þ3

þ 1

#

ð27Þ
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For Kn = 0, bulk mean temperature (Eq. 27) obtained

by the present analysis is identical to that derived by other

researchers [9, 16, 36–38].

hm ¼ 136

175
� 18

175
Br ð28Þ

The Nusselt number is defined as [16, 17, 36–38]:

Nu ¼ � 1

hm

dh
dY

�
�
�
�
Y¼1=2

ð29Þ

Utilizing Eq. (27) and Eq. (29), the Nusselt can be

written as:

Nu ¼ 3

35 5þ 24Knð Þ 1þ 3Br

4 1þ 6Knð Þ2

 !"

1þ 14Knð Þ � 14 1þ 4Knð Þ 1þ 10Knð Þ
1þ 6Knð Þ

� �

þ 9Br 1þ 14Knð Þ
140 1þ 6Knð Þ3

þ 1

#�1

� 48

5þ 24Knð Þ

�

1þ 3Br

4 1þ 6Knð Þ2

 !

1þ 6Kn

3

� �

� 6Br

1þ 6Knð Þ2

#

ð30Þ

It is interesting to obtain the solution for the case that

neglects the microscale effect (Kn = 0); the present

solution reduces to:

Nu ¼ 35 8� 9Brð Þ
68� 9Brð Þ ð31Þ

In addition, for the case of Br = 0, Kn = 0, present

solution (Nu = 4.12) reduces the Nusselt number, which is

exactly sameas reportedbyvarious researchers [9, 16, 36–38].

Model III: The Upper Plate at Constant Heat Flux

(q1) and Lower Plate Insulated (q2 5 0)

Figure 1c depicts the schematic of the flow through parallel

plate subjected to constant heat flux and adiabatic condition

at upper and lower plate, respectively. The surface tem-

perature of the upper and lower plate is considered to be T1
and T2, respectively. The energy equation valid for the

present configuration (Eq. 5) is subjected to the following

boundary conditions:

ið Þ k oT
oy

¼ 0; T ¼ T2 at y ¼ �w ð32aÞ

iið Þ T ¼ T1 at y ¼ w ð32bÞ

The dimensionless variables are defined as below

[16, 17]:

h ¼ T1 � T

T1 � T2
; Br ¼ lu2c

k T1 � T2ð Þ ; hm ¼ Tm � T1

T2 � T1
ð33Þ

Utilizing Eqs. (4, 7, 8, 32, 33), the governing equation

(Eq. 5) in dimensionless form can be written as:

d2h
dY2

¼ a3 4Y2 � 1� 4Knð Þ
1þ 6Knð Þ þ 144BrY2

1þ 6Knð Þ2
ð34Þ

where, a3 ¼ 3
2
uc
a

W2

T1�T2

dT1
dx
.

Subject to the following dimensionless boundary

conditions:

ið Þ oh
oY

¼ 0; h ¼ 1 at Y¼� 1=2 ð35aÞ

iið Þ h ¼ 0 at Y¼ 1=2 ð35bÞ

The solution of Eq. (34) under above thermal boundary

conditions is given by:

h Yð Þ ¼ 3

1þ 6Knð Þ 1þ 6Br

1þ 6Knð Þ2

 !

Y4

3
� Y2 1þ 4Knð Þ

2

� �

þ 12BrY2

1þ 6Knð Þ2
� Y þ 5þ 24Kn

16 1þ 6Knð Þ 1þ 6Br

1þ 6Knð Þ2

 !

� 3Br

4 1þ 6Knð Þ2
þ1

2
ð36Þ

Using Eqs. (4), (7) and (36), bulk mean temperature

hmð Þ is obtained as:

hm ¼ 3

560
1þ 6Br

1þ 6Knð Þ2

 !"

1þ 14Knð Þ � 14 1þ 4Knð Þ 1þ 10Knð Þ
1þ 6Knð Þ2

( )

þ 9

140

Br 1þ 14Knð Þ
1þ 6Knð Þ3

þ 13þ 72Kn

16 1þ 6Knð Þ þ
9

8

Br 1þ 4Knð Þ
1þ 6Knð Þ3

#

ð37Þ

For the case of Kn = 0, bulk mean temperature obtained

by the present analysis (Eq. 37) is identical to that derived

by other researchers [9, 17, 36–38].

hm ¼ 26

35
þ 27

35
Br ð38Þ

The Nusselt number is defined as [16, 17, 36–38]:

Nu ¼ � 1

hm

dh
dY

�
�
�
�
Y¼1=2

ð39Þ

Utilizing Eq. (37) and Eq. (39), the Nusselt can be

written as:
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Nu¼ 2
3

560
1þ 6Br

1þ 6Knð Þ2

 !"

1þ 14Knð Þ � 14 1þ 4Knð Þ 1þ 10Knð Þ
1þ 6Knð Þ2

( )

þ 9

140

Br 1þ 14Knð Þ
1þ 6Knð Þ3

þ 13þ 72Kn

16 1þ 6Knð Þ þ
9

8

Br 1þ 4Knð Þ
1þ 6Knð Þ3

#�1

ð40Þ

It may be noted that for the case of Kn = 0, present

prediction (Eq. 40) reduces to:

Nu ¼ 70

26þ 27Br

� �

ð41Þ

On the contrary, for the case of Br = 0, Kn = 0, the

present solution predicts Nu = 2.69, which is exactly same

as reported by various researchers [9, 17, 36–38].

Results and Discussion

An analytical study has been presented to investigate the

fluid flow and heat transfer characteristics of a gaseous

flow between parallel plates in the slip flow region with the

effects of viscous dissipation, rarefaction and heat flux

ratio. Three different cases of constant heat flux boundary

conditions such as: both plates kept at different constant

heat fluxes, both plates kept at equal constant heat fluxes,

and one plate kept at equal heat flux and other one insu-

lated, are considered. Two different definitions of Brink-

man number pertaining to thermal boundary conditions are

used. Air is considered as the working fluid and the value

of specific heat ratio is considered to be 1.4. The results are

presented for Knudsen number within the range of 0.001–

0.1 and the heat flux ratio varied within the range of 1–5.

The positive value of Brinkman number indicates the heat

transfer from hot wall to the fluid; while the negative value

of Brinkman number signifies the heat transfer from fluid

to the channel wall. For the gaseous flows through

microchannels, the order of magnitude of various param-

eters can be expressed as:O lð Þ� 10�5Ns/m2;O Uð Þ� 1�
10�3;O Dhð Þ � 10�5 � 10�4m, O qð Þ� 1� 103W/m2:

Considering these values, one can evaluate the order of

magnitude for Brinkman number as: O Brj jð Þ� 101 � 10�3

[23]. In this analysis, the compressibility effect and the

fluid acceleration are neglected and therefore, the analysis

is applicable for lower Brinkman number values (Br\ 1).

It may be noted that for the given range of the Knudsen

number (0.001\Kn\ 0.1), one can evaluate the hydrau-

lic diameter of the microdevice and found it to be in the

range of 0.2–10 lm. In all the cases, closed form expres-

sions are obtained for the dimensionless temperature dis-

tribution and Nusselt number. Present prediction is

validated for the cases that neglect both viscous heating

and microscale effects (Kn = 0). For these cases, the

Nusselt number is found to be exactly same as reported by

earlier researchers [9, 16, 36–38]. The results obtained

from the present analysis are elaborated below.

Both Plates at Different Constant Heat Fluxes

(q1 and q2)

In this section, analysis of gaseous flow between two par-

allel plates is presented, where the upper and lower plates

are subjected to asymmetric heat fluxes q1 and q2,

Fig. 2 a, b Effect of viscous dissipation on temperature profile for q2/q1 = 1
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respectively. Figure 2a, b demonstrates the effect of vis-

cous dissipation and rarefaction effect on the dimensionless

temperature distribution for a given value of heat flux ratio

(q2/q1 = 1). The solid line indicates the effect of no vis-

cous dissipation (Brq1 = 0) on the temperature profile;

while the dotted lines show the effect of both positive and

negative values of Brinkman number Brq1 6¼ 0
	 


on the

temperature distribution. The viscous dissipation is found

to increase the bulk temperature leading to a decrease in

the temperature difference between the fluid and wall for

the positive Brinkman number. For negative Brinkman

number, the heat transfer occurs from fluid to wall resulting

in the decrease in the bulk temperature of fluid. In such a

case, the difference between the wall temperature and bulk

fluid temperature increases with the increase in Brinkman

number. Similar observation have been made for higher

heat flux ratio (q2/q1 = 5) and is shown in Fig. 3a, b.

Figure 4a–c presents the effect of viscous dissipation on

the heat transfer performance for various values of Knud-

sen number (Kn = 0, 0.02, 0.04, 0.10) and heat flux ratios

(q2/q1 = 0, 1, 26/9, 5). Figure 4a shows the variation in

Nusselt number with modified Brinkman number for

Kn = 0. The Nusselt number is found to decrease with the

increase in modified Brinkman number. The variation of

Nu with Brinkman number is not continuous and singu-

larities are observed at different values of modified

Brinkman number. For the case of Kn = 0, the point of

singularity for q2/q1 = 26/9 and q2/q1 = 5 is obtained at

Brq1 = 0 and Brq1 = 0.35186, respectively. Similar

observations have been made for various values of Kn and

is shown in Fig. 4b, c. For Kn = 0.02, the point of sin-

gularity for q2/q1 = 26/9 and q2/q1 = 5 are obtained at

Brq1 = 0.056 and Brq1 = 0.657, respectively (Fig. 4b).

While, at Kn = 0.04, the point of singularity is obtained at

Brq1 = 0.164 and Brq1 = 1.22 for q2/q1 = 26/9 and

q2/q1 = 5, respectively (Fig. 4c). It is observed that the

location of singularity point is altered with the inclusion of

the velocity slip in the model.

It may be noted that at singularity point, the heat gen-

erated due to viscous dissipation balances with the heat

supplied by the wall to fluid. With the increase in Kn, the

difference between the bulk temperature and wall tem-

perature decreases leading to an increase in the bulk tem-

perature of the fluid. In such a case, a higher value of

Brinkman number is needed to balance the rise in tem-

perature of the fluid. Therefore the singularity point shifts

towards the higher Brinkman number with the increase in

Kn. Further, it is noticed that from the point of singularity,

with the increase in Brq1 (Brq1[ 0), Nu decreases with

Brinkman number and attains an asymptotic value

(Brq1 ? ?, Nu ? 0). This is due to the decrease in the

driving potential of the heat transfer.

Both Plates at Equal Constant Heat Fluxes (q1 5 q2)

In this section, analysis of gaseous flow between two par-

allel plates subjected to equal constant heat flux (Fig. 1b) is

presented. Figure 5a, b depicts the effect of Brinkman

number on the temperature distribution. The effect of

Brinkman number is less pronounced in the absence of

rarefaction (Fig. 5a); while it significantly affects the

temperature profile in the presence of rarefaction (Fig. 5b).

Figure 6 demonstrates the variation of Nusselt number

(Nu) with Brinkman number for various values of the

Knudsen number (Kn = 0, 0.02, 0.04, 0.06, 0.08, 0.10). As

observed earlier, in this case, the variation of Nu with

Fig. 3 a, b Effect of viscous dissipation on temperature profile for q2/q1 = 5
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Brinkman number is not continuous and singularities are

obtained at different Brinkman number for each Kn. For

the case of Kn = 0, the point of singularity is found to be at

Br = 7.56. The location of singularity point for various

values of Knudsen number Kn = 0.02, 0.04, 0.06, 0.08,

0.10 are found at Br = 10.75, 14.69, 19.79, 25.83 and

33.11, respectively. It is noticed that the singularity point

shifts from Br = 7.56 to Br = 33.11 with the increase in

Knudsen number from Kn = 0 to Kn = 0.10.

The upper plate at constant heat flux (q1) and lower

plate insulated (q2 5 0)

This section analyses the gaseous flow between parallel

plates for the case of lower plate insulated and upper plate

maintained at constant heat flux (Fig. 1c). The effect of

viscous dissipation and rarefaction on the dimensionless

temperature distribution is depicted in Fig. 7a, b. It may

be noted that with the decrease in the viscous energy the

heat conduction in the fluid decreases. Therefore, the bulk

temperature of the fluid decreases during the flow. The

variation of Nusselt number (Nu) with Brinkman number

for various Knudsen number (Kn = 0, 0.02, 0.04, 0.06,

0.08, 0.10) is shown in Fig. 8. The Nusselt number is

found to decrease with the increase in the Brinkman

number. Here, singularities in Nusselt number are

observed at different Brinkman number for various values

of Knudsen number. The point of singularities at different

Brinkman number Br = 20.96, 20.42, 20.68, 20.52,

20.34, and 20.29 are obtained for various Knudsen

number Kn = 0, 0.02, 0.04, 0.06, 0.08 and 0.10,

respectively.

Fig. 4 a–c Variation of Nusselt number with the modified Brinkman number at various Kn for the equal heat flux boundary condition
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Comparison and Validation

The variation of Nusselt number with Knudsen number for

various values of Brinkman number obtained from the

present prediction is compared with the results obtained by

Aydin and Avci [11] and, Tunc and Bayazitoglu [15]

summarized in Tables 1, 2, and 3. For all the cases

(Br = 0.01, 0, 20.01), the model that consider only

velocity slip in the analysis exhibits higher value of the

Nusselt number compared to continuum values. While, the

model that consider both velocity slip and temperature jump

exhibits lower value of Nusselt number compared to con-

tinuum values (Tables 2, 3). This may be due to the fact that

the velocity slip and temperature jump are found to affect

the fluid flow and heat transfer characteristics in antago-

nistic way at microscale and the present model consider

only velocity slip and neglect the temperature jump for the

analysis. Earlier, Barron et al. [14] extended the Graetz

problem to include the velocity slip in the analysis. The

authors did not consider the temperature jump effects at the

wall. Their prediction exhibited an increase in Nusselt

number with the Knudsen number. For q2/q1 = 1,

Kn = 0.10, the maximum deviation in Nusselt number

between the model that considers both first order velocity

slip and temperature jump and the one that considers only

velocity slip is found to be 42.848, 42.730 and 58.850 % at

Brq1 = 0, Brq1 = 0.01 and Brq1 = 20.01, respectively.

Earlier, Kushwaha and Sahu [36–38] reported the effect

of second order velocity slip, viscous dissipation, and

asymmetric heat flux ratio on Nusselt number for the gas-

eous flow through parallel plates. The present study con-

siders the effect of first order velocity slip, viscous

dissipation, and asymmetric heat flux ratio on Nusselt

number for the gaseous flow through parallel plates for the

analysis. The comparison between the present prediction

and the results obtained by earlier analysis [38] is shown in

Tables 4, 5, 6. For the case of Brq1 = 0, Kn = 0.10, the

maximum deviation in Nusselt number between present

prediction and the model [38] is found to be 3.432, 0.759 and

0.215 % for q2/q1 = 2, q2/q1 = 1 and q2/q1 = 0, respec-

tively (Table 4). While, for the case of Brq1 = 0.01,

Kn = 0.10, the maximum deviation in the Nusselt number is

found to be 5.014, 1.335 and 0.541 % for q2/q1 = 2,

q2/q1 = 1 and q2/q1 = 0, respectively (Table 5). With

Brq1 = 20.01, Kn = 0.10, the maximum deviation in

Nusselt number is found to be 1.510, 0.107 and 0.143 % for

q2/q1 = 2, q2/q1 = 1 and q2/q1 = 0, respectively (Table 6).

Fig. 5 a, b Effect of viscous dissipation on temperature profile

Fig. 6 Variation of Nusselt number with Brinkman number for upper

plate at constant heat flux and lower plate insulated
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In their earlier studies [36, 37], the authors reported the

deviation in Nusselt number between the first order model

and second order model by considering both velocity slip

and temperature jump. For the case of q2/q1 = 1,

Kn = 0.10 and Br = 0.01, the maximum deviation in

Nusselt number between first order model and second order

model that consider both velocity slip and temperature

jump in the analysis is found to be 12.49 %. However, for

q2/q1 = 1 and Kn = 0.10 and Brq1 = 0.01, the maximum

deviation in the Nusselt number is found to be 1.335 % in

this study. The deviation in the Nusselt number between

the first order model and second order model reduces sig-

nificantly by considering only the velocity slip in the

analysis. The Nusselt number obtained by different models

(q2/q1 = 2, q2/q1 = 1, q2/q1 = 0) is summarized in

Tables 4, 5, 6. It is observed that model I (q2/q1 = 2)

exhibits higher value of Nusselt number compared to

model II (q2/q1 = 1) and Model III (q2/q1 = 0) irrespective

of Knudsen number and Brinkman number.

Table 1 Comparison of the Nusselt number at Pr = 0.7, Brq1 = 0, q2/q1 = 1

Kn Nu with velocity slip and temperature jump Nu with velocity slip and no-temperature jump Percentage variation

Aydin [11] Tunc [15] Present With Aydin [11] With Tunc [15]

0.00 4.118 4.118 4.118 0 0

0.02 3.750 3.750 4.266 12.096 12.096

0.04 3.421 3.421 4.387 22.020 22.020

0.06 3.131 3.131 4.489 30.252 30.252

0.08 2.878 2.878 4.576 37.107 37.107

0.10 2.657 2.657 4.649 42.848 42.848

Fig. 7 a, b Effect of viscous dissipation on temperature profile

Fig. 8 Variation of the Nusselt number with Brinkman number and

Kn with upper plate at constant heat flux and lower plate insulated
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Table 4 Comparison of the Nusselt number at Brq1 = 0

Kn Model I (q2/q1 = 2) Model II (q2/q1 = 1) Model III (q2/q1 = 0)

NuI (present

prediction)

NuII
[38]

(NuI–NuII)/

NuI) * 100

NuI
(present prediction)

NuII
[38]

(NuI–NuII)/

NuI) * 100

NuI
(present prediction)

NuII
[38]

(NuI–NuII)/

NuI) * 100

0.00 8.75 8.75 0 4.118 4.118 0 2.692 2.692 0

0.02 9.836 9.816 0.204 4.266 4.263 0.070 2.723 2.723 0

0.04 10.882 10.800 0.759 4.387 4.378 0.206 2.748 2.746 0.073

0.06 11.886 11.709 1.512 4.489 4.472 0.380 2.767 2.764 0.109

0.08 12.849 12.546 2.415 4.576 4.549 0.594 2.783 2.779 0.144

0.10 13.774 13.317 3.432 4.649 4.614 0.759 2.797 2.791 0.215

Table 5 Comparison of the Nusselt number at Brq1 = 0.01

Kn Model I (q2/q1 = 2) Model II (q2/q1 = 1) Model III (q2/q1 = 0)

NuI
(Present prediction)

NuII
[38]

(NuI–NuII)/

NuI) * 100

NuI
(Present prediction)

NuII
[38]

(NuI–NuII)/

NuI) * 100

NuI
(Present Prediction)

NuII
[38]

(NuI–NuII)/

NuI) * 100

0.00 8.226 8.257 0.375 3.998 4.005 0.175 2.641 2.6437 0.102

0.02 9.403 9.353 0.535 4.182 4.173 0.216 2.689 2.686 0.112

0.04 10.526 10.364 1.563 4.328 4.305 0.534 2.724 2.717 0.258

0.06 11.597 11.296 2.665 4.448 4.410 0.862 2.751 2.740 0.401

0.08 12.618 12.154 3.818 4.546 4.497 1.090 2.772 2.759 0.471

0.10 13.592 12.943 5.014 4.629 4.568 1.335 2.789 2.774 0.541

Table 2 Comparison of the Nusselt number at Pr = 0.7, Brq1 = 0.01, q2/q1 = 1

Kn Nu with velocity slip and temperature jump Nu with velocity slip and no-temperature jump Percentage variation

Aydin [11] Tunc [15] Present With Aydin [11] With Tunc [15]

0.00 4.078 4.086 3.998 2.001 2.201

0.02 3.725 3.729 4.182 10.928 10.832

0.04 3.405 3.405 4.328 21.326 21.326

0.06 3.120 3.119 4.447 29.840 29.863

0.08 2.869 2.869 4.546 36.890 36.890

0.10 2.652 2.651 4.629 42.709 42.730

Table 3 Comparison of the Nusselt number at Pr = 0.7, Brq1 = -0.01, q2/q1 = 1

Kn Nu with velocity slip and temperature jump Nu with velocity slip and no-temperature jump Percentage variation

Aydin [11] Tunc [15] Present With Aydin [11] With Tunc [15]

0.00 4.442 4.748 4.229 4.795 10.930

0.02 4.146 4.289 4.341 4.703 1.212

0.04 3.784 3.879 4.439 17.310 14.437

0.06 3.454 3.934 4.525 31.008 13.061

0.08 3.149 3.207 4.599 46.046 43.405

0.10 2.952 2.938 4.667 58.096 58.850
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Conclusions

Here, an analytical study is presented to evaluate the fluid

flow and heat transfer characteristics in the slip flow regime

of gaseous fluid through parallel plates. Here, velocity slip,

viscous dissipation and no-temperature jump effects are

taken into consideration. Three different thermal boundary

conditions, such as: different constant heat flux condition at

the walls, equal constant heat flux boundary condition at

the walls, and one wall as adiabatic and other wall with

constant heat flux input, are considered. In all the cases

closed form expressions are obtained for the temperature

distribution and Nusselt number as the function of various

modeling parameters. Present predictions are verified for

the cases that neglect the effect of viscous heating and

microscale effect. Following conclusions are drawn from

the analysis.

• For q2/q1 = 1 and Kn = 0.10, the maximum deviation

in Nusselt number between the model that considers

both first order velocity slip and temperature jump and

the one that considers only velocity slip is found to be

42.848, 42.730 and 58.850 % at Brq1 = 0, Brq1 = 0.01

and Brq1 = -0.01, respectively.

• The maximum deviation in Nusselt number between

first order model without temperature jump and second

order model without temperature jump is found to be

5.014 % for the case of Brq1 = 0.01 and Kn = 0.10

and q2/q1 = 2.

• For the case of q2/q1 = 1, Kn = 0.10 and Brq1 = 0.01,

the maximum deviation in Nusselt number between

first order model and second order model with both

velocity slip and temperature jump is found to be

12.49 %. While, the model that considers only velocity

slip exhibits the maximum deviation in Nusselt number

as 1.335 %.

• The variation of Nusselt number with Brinkman number

is not continuous and singularities are observed at

different Brinkman number for each Knudsen number.

• With the increase in heat flux ratio and Knudsen

number, the onset of singularity point shifts towards

higher values of the Brinkman number.
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