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Introduction

In order to link electrical devices and allow electricity to go 
from generation terminals to consumers, the power network 
is necessary. However, the network is vulnerable to electri-
cal faults caused by adverse weather conditions, resulting in 
damage to power conductors and disruptions in power flow. 
To address this, a protective relaying scheme with a synchro-
nizing mechanism is needed to isolate faulty equipment from 
the functioning network [1]. The existing protection scheme, 
known as distance protection, calculates impedance at relay 
points but has drawbacks such as tripping during normal 
conditions, temporary faults, power swings, and overloads 
[2]. Frequent false tripping can lead to system blackouts, 
necessitating alternative methods for safeguarding electrical 
components. A prospective scheme should provide fast fault 
detection and isolation of faulty equipment through a relay 
mechanism, aided by digital communication and global syn-
chronization [3, 4]. Currently, power network security pri-
marily focuses on electrical problems, but mechanical dam-
age can also occur. To ensure comprehensive protection, the 
monitoring of connected devices should cover both electrical 
and mechanical aspects. IoT devices can be utilized along-
side electrical measurements to monitor the power distribu-
tion system for issues such as voltage fluctuations, power 
loss, and power imbalance. The installation of shunt/series 
compensating devices can help mitigate these complications. 
The protection scheme should address faults in the main and 
microgrid, considering different current flow directions and 
magnitudes [5]. Modern compensating devices, employing 
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power electronics switching devices, require special protec-
tion schemes. A static Var Compensator (SVC) made up of 
TCR,TSC,FC and a mix of photovoltaic and wind energy 
sources is the test system that has been proposed [6, 7].
However, the presence of FACTS devices, particularly in 
SVC connected systems, introduces challenges related to 
under-reach phenomena [8]. Wavelet detailed coefficients 
are used for fault detection and discrimination, while artifi-
cial neural networks (ANNs) are employed to locate faults in 
the power network based on current measurements [9, 10]. 
Power systems are complex and immense, requiring efficient 
decision-making methods for operation and control tasks. 
With the integration of renewable energy sources and evolv-
ing demand patterns, power grid operations have undergone 
significant transformations. To address the resulting compli-
cations and unknown models, supervised and unsupervised 
machine learning algorithms [11] have been rapidly adopted 
for predicting the stability of different types and sizes of 
power systems during sudden changes using a specialized 
machine learning technique called twin convolution support 
vector machine (TCSVM) [12]. This method involves col-
lecting and processing power system data, creating a model 
that combines aspects of image analysis and classification, 
training and validating the model, and potentially applying 
it to real-world power systems to predict stability outcomes. 
The ultimate goal is to develop a versatile and accurate tool 
for power system engineers to assess transient stability [13, 
14].

The conventional algorithms used previously took a con-
siderable amount of time, approximately 2 cycles, to identify 
and differentiate faults. Additionally, there was a deficiency 
in physically monitoring system performance. The proposed 
research emphasizes IoT monitoring of solar energy, wind 
energy, and reactive power compensated devices within 
a wide-area power network, achieving a security level of 
less than half a cycle time using Multi-Resolution Analy-
sis (MRA) with wavelet coefficients derived from the Bior-
1.5 mother wavelet. This study seeks to improve the digi-
tal relays’ interaction with the power network, facilitating 
quicker isolation of faulty equipment compared to traditional 
methods.

Mathematical modeling and System Analysis

The wind farms and PV-Solar sources are natural and sus-
tainable energy resources that generate electricity through 
the transformation of solar and wind energy. In the test 
power network, a Static Var Compensator (SVC) is incor-
porated for reactive power compensation, along with Photo-
Voltaic (PV) and wind energy sources. The mathematical 
modeling of these devices is described as follows:

Photovoltaic(PV)Solar Source

The investigation on how high-voltage power transmission 
lines affect photovoltaic energy output might have the effects 
of high-voltage power transmission lines on photovoltaic 
(PV) power generating systems’ output and efficiency. As 
solar energy becomes a prominent renewable source, under-
standing the interaction between PV panels and nearby 
transmission lines is crucial for efficient energy integration. 
We analyze the effects of electromagnetic interference, shad-
owing, noise, and vibrations caused by transmission lines on 
PV systems. The extent to which these factors impact PV 
panel performance and overall energy production. Addition-
ally, we explore potential mitigation strategies to minimize 
these adverse effects and enhance the reliability of solar 
energy integration. The findings of this study contribute to 
informed urban planning, solar farm design, and sustain-
able energy policy decisions. The insights gained hold sig-
nificance for both optimizing renewable energy systems and 
ensuring the seamless integration of solar power into exist-
ing grids [15, 16].

The mathematical modeling of a solar photovoltaic (PV) 
system involves describing the electrical behavior of the PV 
module and its relationship with solar irradiance and tem-
perature conditions. Overall, the mathematical model of a 
solar photovoltaic system combines the electrical behavior 
of the PV module, the influence of solar irradiance, and the 
temperature dependence to predict the power output under 
different operating conditions. These models are essential for 
system design, performance evaluation, and optimization of 
solar PV systems.

A mathematical model of a solar photovoltaic (PV) sys-
tem describes the relationship between various parameters 
and components involved in the generation of electricity 
from sunlight. The model typically takes into account factors 
such as solar irradiance, temperature, efficiency of the PV 
cells, and other system-specific parameters. Here’s a simpli-
fied example of a mathematical model for a solar PV system:

Solar Irradiance (G): the amount of solar energy received 
per unit area, usually measured in watts per square meter(W/
m2).

Temperature (T): the operating temperature of the PV 
cells. Higher temperatures can reduce the efficiency of the 
cells.

PV Cell Efficiency (η): the efficiency of converting sun-
light into electricity, expressed as the ratio of electrical 
power output to solar energy input.

PV Array Area (A): the total area covered by the PV 
modules.

Electrical Power Output (Pout): the actual electrical 
power produced by the PV system.

When it comes to the mathematical modeling of a solar 
photovoltaic (PV) system, it includes the representation of the 
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PV module’s electrical behavior and how it relates to tempera-
ture and solar ir- radiance. A solar photovoltaic system’s math-
ematical model combines the PV module’s electrical proper-
ties, the effect of sun irradiation, and temperature dependency 
to predict power output under various operating scenarios 
involved in producing energy from sunshine. Commonly, this 
model takes into account variables like temperature, solar irra-
diation, PV cell efficiency, and other system-specific charac-
teristics. An illustration of such a mathematical model for a 
photovoltaic system may be found here:

The mathematical model can be represented as:

where Pout is the electrical power output of the PV system. 
G is the solar irradiance. A is the PV array area. η is the PV 
cell efficiency. f (T) is a function that considers the tempera-
ture effect on efficiency. The function f (T) could be a simple 
linear or nonlinear relationship that considers the tempera-
ture coefficient of the PV cells. Generally, as temperature 
increases, efficiency decreases. A few essential formulas for 
modeling solar photovoltaic (PV) systems. Remember that 
these are simplified versions of the equations; real-world 
models might have more intricate variables and parameters. 
Here is a summary of a few key equations: Equation for 
the characteristic of current–voltage (I–V): The behavior 
of a PV cell or module under various operating conditions 
is described by the I–V characteristic equation. Frequently 
employed is the Shockley diode equation:

where I, Iph, Isat is the  cell/module current, photo 
current(current generated by light),reverse saturation cur-
rent. V is the voltage across the cell/module terminals. Rser 
is the series resistance. a is the diode ideality factor. Vth is 
the thermal voltage (kT/q, where k is Boltzmann’s constant, 
T is temperature, and q is the elementary charge).

P–V Characteristic Equation: the power–voltage (P–V) 
characteristic of a PV cell/module provides insights into its 
power generation capabilities:

where P is the power output of the cell/module.
Single-Diode Model: this is an extended version of the I–V 

characteristic equation that includes parameters like shunt 
resistance (Rsh) and considers the non-ideal behavior of the 
PV cell/module:

Pout = GXAX�Xf (T)

(1)I = Iph − Isat

(
exp

(
V + I ⋅ Rser

a ⋅ Vth

)
− 1

)

(2)P = I ⋅ V

(3)I = Iph − Isat

(
exp

(
V + I ⋅ Rser

a ⋅ Vth

)
− 1

)
−

V + I ⋅ Rser

Rsh

Temperature Effects: the PV cell/module efficiency and 
performance are influenced by temperature. The tempera-
ture adjusted I–V equation considers this effect:

This equation describes the current–voltage (I–V) rela-
tionship of a photovoltaic cell/module, accounting for 
temperature effects. It includes terms for photocurrent 
(Iph), reverse saturation current (Isat), voltage (V), series 
resistance (Rser), temperature-dependent series resistance 
(Rtemp), diode ideality factor (a), thermal voltage (Vth), 
temperature difference (∆T), and shunt resistance (Rsh). 
Where ∆T is the temperature difference from the reference 
temperature.

System-Level Equations: to model a complete solar 
PV system, you’d integrate the cell/module models into 
a system- level model that includes factors like shading, 
inverter efficiency, and electrical losses. The system’s 
overall power output can be estimated as the total of each 
cell’s or module’s individual power outputs:

These equations provide a foundation for modeling 
solar PV systems. Keep in mind that real-world modeling 
can involve additional complexities and factors, and spe-
cialized software tools are often used for accurate system 
simulations (Figs. 1, 2, 3).

The following is a description of the photovoltaic (PV) 
array’s mathematical equivalent circuit: the solar irra-
diance (Ir), (Isc) and (ki) short-circuit current and con-
stant, and operating temperature (T) in Kelvin are used 

(4)I = I1 + I2

(5)I1 = Iph − Isat

(
exp

(
V + I ⋅

(
Rser + Rtemp.ΔT

)
a ⋅ Vth

)
− 1

)

(6)I2 = −

(
V + I ⋅

(
Rser + Rtemp.ΔT

)
Rsh

)

(7)Pout,system =

n∑
i=1

Pout,cell

Fig. 1  CircuitequaltoaPVcell
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to calculate the photo current (Iph) of the PV cell. This 
formula is used to calculate it.

The module saturation current (I0) is computed using the 
Richardson-Dushman equation. It depends on the reverse 
saturation current of the cell (Irs), the Boltzmann constant 
(k), the ideality factor (n), the temperature (T), and the band 
gap energy (Eg0). The formula for I0is given by

where Tr is the reference temperature (298.15 K) and Eg0is 
the band gap energy (1.1 eV).

The thermal voltage (Vt) is determined during the Boltz-
mann constant (k) and the absolute temperature (T) in 
Kelvin:

The shunt current (Ish) represents the current flowing 
through the shunt resistance (Rsh).It is computed based on 

(8)Iph =

[
ki(T − 298) + Isc

]
× Ir

1000

(9)I0 = Irs

[
T

Ir

]3
exp

[
q × Eg0

nk

(
1

T
−

1

Tr

)]

(10)Vt =
k × T

q

the voltage across the shunt resistance (V) and the number of 
modules in parallel (Np) and series (Ns), as well as the series 
resistance (Rs). The formula for Ish is given by:

Solar energy modules may instantly transform radiant 
solar energy into low voltage, which is then increased to the 
required voltage level using DC–DC converters and switch-
mode regulators. For a variety of grid connections and appli-
cations, this regulated DC output voltage is suitable.

Wind Energy Conversion System modeling

The wind energy source captures the kinetic energy from 
moving air to produce electrical power. Its mathematical rep-
resentation incorporates various characteristics of the wind 
turbine, encompassing the power coefficient, wind veloc-
ity, and turbine parameters. This model takes into account 
factors like wind direction, fluctuations in wind speed, and 
the efficiency of the turbine to compute the resulting power 
output.

Wind energy is transformed into electrical energy dur-
ing the process, producing a low alternating current (AC) 
voltage output. A mix of buck and boost converters is used 
to raise this AC voltage output to an appropriate transmis-
sion level [17]. The Doubly-Fed Induction Generator (DFIG) 
wind turbine, which is the centerpiece of the proposed sys-
tem, is made up of necessary parts. These DFIG turbines, 
which are commonly used, generate electricity by using cou-
pled turbines and generators to capture the kinetic energy of 
the wind [18]. The generator has windings on its rotor and 
stator that can send electricity to the utility grid.

The generator boasts distinctive features, including a grid-
connected stator and a bidirectional power converter integrated 
into the rotor, as depicted in Fig. 4. These components consist 
of two IGBT bridge voltage-source converters linked to a DC 
connection. This configuration enables the system to dynami-
cally adjust its frequency. The following equations elucidate 

(11)Ish =
V ×

Np

Ns

+ 1 × Rs

Rsh

Fig. 2  The PVequivalentcircuit-Array

Fig. 3  Solar PV model representation
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how modulation of the turbine rotor’s blade angle governs the 
strength and rotational speed of powerful winds.

The development of the mathematical model for the Dou-
bly-Fed Induction Generator (DFIG) relies on the applica-
tion of fundamental principles from the domains of electrical 
and mechanical systems. These principles are leveraged to 
elucidate the dynamic behavior of the DFIG. Specifically, 
the derivation of the DFIG model equations is rooted in the 
principles of electromagnetism and rotational mechanics.

As seen in Fig. 4, the generator has unique characteristics 
such as a bidirectional power converter built into the rotor 
and a stator connected to the grid. Two IGBT bridge volt-
age-source converters connected to a DC connector make 
up these parts. With this setup, the system can dynamically 
change its frequency. The strength and rotational speed of 
strong winds are controlled by varying the blade angle of the 
turbine rotor, as shown by the following formulae.

Representing the parts and interactions of a wind turbine 
system is necessary when developing a mathematical model 
for a Wind Energy Conversion System (WECS). An over-
view of the essential elements and formulas used frequently 
in wind energy system modeling is provided below.

where v is the wind speed. ρ is the air density. A is the 
swept area of the rotor. Cp(v) is the power coefficient at a 
given wind speed. Prated is the rated power of the turbine. 
vcut-in isthecut-inwindspeed.vratedistheratedwindspeed.v
cut-outisthecut-outwindspeed.

Generator Model: the electrical power output from the 
wind turbine generator depends on the mechanical power 
captured from the wind and the generator’s efficiency. It can 
be represented as:

where �gen is the generator efficiency.

(12)Pturbine(𝜗) =

⎧
⎪⎪⎨⎪⎪⎩

0, 𝜗 < 𝜗cut−in
0, 𝜗 > 𝜗cut−out

1

2
𝜌.Δ.Cp(𝜗).𝜗

3
,𝜗cut−in≥𝜗≥𝜗rated

Prated,𝜗rated ≥ 𝜗 ≥ 𝜗cut−out

⎫⎪⎪⎬⎪⎪⎭

(13)Pgen = �gen ⋅ Pturbine

Transmission and Distribution Losses: the power delivered 
to the grid is further reduced by losses in the transmission and 
distribution system:

Differential equations are used to describe the mechanical 
and electrical dynamics involved in wind turbine reaction to 
changing wind conditions. Pitch, yaw, and torque control are 
examples of control strategies that maximize performance. 
Statistical distributions for wind speed at hub height are used 
in wind resource models. Turbulence and air density are 
examples of environmental factors that affect turbine perfor-
mance. Real-world wind energy conversion system models 
grow complex and are frequently simulated using programs 
such as FAST. Key formulas and parts are needed to model 
a doubly fed induction generator (DFIG) in wind systems.

The stator equations for a DFIG are similar to those of a 
standard induction generator. The stator currents ias, ibs, ics 
are related to the stator voltages vas, vbs, vcs and stator resist-
ance Rs ∶

where
L_s is the stator self-inductance.
sis the slip frequency.
p is the number of pole pairs.
�m is the magnetizing current coefficient.
 iarandibr are the real and imaginary parts of the rotor 

current.
r is the rotor resistance.
The rotor equations describe the rotor currents iar, ibr and 

rotor voltages var, vbr in terms of slip frequency, rotor resist-
ance, and rotor inductance Lr:

(14)Pgrid = Pgen − Ploss

(15)vas = Rsias + Ls
dias

dt
+ pλmsriar

(16)vbs = Rsibs + Ls
dibs

dt
+ pλmsribr

(17)var = Rriar + Lr
diar

dt
− pλmsrias

Fig. 4  Model for producing energy from windmill
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Torque Equation:
The electromagnetic torque Tem generated by the DFIG is 

related to the rotor currents and voltages:

Mechanical Equations:
The mechanical equations describe the rotational dynam-

ics of the DFIG’s shaft. The mechanical torque Tm applied to 
the shaft and the electromagnetic torque are related by the 
moment of inertia J and the angular acceleration ω̇:

DFIGs often incorporate control strategies to regulate 
various parameters. These strategies may include pitch con-
trol, active and reactive power control, and rotor-side con-
verter control.

When connected to the grid, the DFIG’s behavior is influ-
enced by the grid voltage and frequency. Equations related 
to the grid-side converter are used to control the interaction 
between the DFIG and the grid.

These equations provide a foundation for modeling a 
Doubly Fed Induction Generator. To perform simulations 
and analyzes, software tools like MATLAB/Simulink, and 
specialized DFIG simulation packages can be used to cre-
ate and study dynamic models of DFIG-based wind energy 
systems.

Static Var Compensator (SVC)

In order to maintain a constant voltage level on a bus, a 
Static VAR Compensator (SVC) is a device that effectively 

(18)vbr = Rribr + Lr
dibr

dt
− pλmsribs

(19)Tem =
3

2
pλm

(
iaribs − ibrias

)

(20)J
dω

dt
= Tm − Tem

controls capacitive or inductive currents in an electrical 
power system. The inductance can be continuously changed 
from zero to its maximum value. These components define 
the operational range of the SVC and enable it to create or 
absorb the required reactive power as necessary.

The simplified diagram of the SVC and its control model 
is depicted in Fig. 5.

The core configuration of the TCR encompasses a fixed 
reactor with an inductance denoted as ’L’, along with two 
bidirectional thyristor valves connected in series. These 
valves serve for conduction and blocking modes and are 
regulated using a firing angle indicated byα.

The instantaneous phase voltage ’v(t)’ in the Static Var 
Compensator (SVC) equivalent circuit, as shown in Fig. 6a, 
can be represented by the following equation:

In this equation, vdc represents the DC voltage compo-
nent, vac stands for the AC voltage component, ω is the angu-
lar frequency, t- denotes time, and ϕ represents the phase 
angle. For the calculation of current in the equivalent circuit 
of the SVC as presented in Fig. 6b, The instantaneous cur-
rent is calculated as:

The relationship � = ϕ − 2� suggests that the conduction 
angle σ can be determined by subtracting twice the firing 
angle 2� from the phase angle ϕ . This equation is useful 
for calculating the portion of each AC cycle during which 
the thyristor conducts, based on when it is triggered to start 
conducting (the firing angle).

The control voltage at the SVC bus is denoted as the input, 
ΔVsvc . The susceptance value is determined by the firing angle 

(21)v(t) =

√
v2
dc
+ v2

ac
⋅ sin(ωt − ϕ)

(22)IL(ωt) =

√
2V

XL

(sin(ωt) − sin(α))

Fig. 5  Diagram of the SVC and control system
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and is regulated through a proportional-integral (PI) control 
loop with reference voltage Vref for the SVC, as illustrated in 
Fig. 6b.

The linearized state-space representation is as follows:

Here, T1, T2, andTsvc denote lead, lag, and time delay con-
stants, respectively, while ksvc represents the gain constant.

The linearized reactive power induced by the SVC at bus 
’n’ in the network is calculated using:

Given that Qn = −BsvcV
2
n
 , the equation is modified as:

ΔV̇0 = −
1

T2
ΔV0 +

ksvc

ωs

(
1

T2

)
Δω +

ksvc

ωs

(
T1

T2

)
Δω

Δα̇ = −k1ΔV0 + k1ΔVsvc − k1ΔVRef

(23)Δ ̇Bsvc = −
1

Tsvc
Δα −

1

Tsvc
ΔBsvc

(24)ΔQn =
dQn

dθn
Δθn +

dQn

dVn

ΔVn +
dQn

dα
Δ�

(25)Qn = −BsvcV
2
n
×
[
0 −2VnBsvc 2V2

n

(
1 − cos

2α

XL

) ]

(26)
�
ΔPn

ΔPn

�
=

�
0 0 0

0 −2VnBsvc 2V2
n

�
1 − cos

2α

XL

�
�⎡⎢⎢⎣

Δ�n
ΔVn

Δ�

⎤⎥⎥⎦

Analysis of Faults with Symmetrical Components

A methodical approach to fault-based network analysis of 
power systems, with a particular emphasis on fault types 
including Single-Line-to-Ground (SLG), Line-to-Line-
Ground (DLG), and Three-Phase-Ground (3Phase) faults. 
The system must be changed from the phase frame (a–b–c) 
to the sequence frame (1–2–0) and the sequence network 
must be connected according to the type of fault. Here is a 
more thorough explanation of each step:

As an illustration, for a single-line-to-ground fault, the 
current in phase-a (Ia) can be calculated as follows:

The fault current in phase-b (Ib) of the line-to-line-ground 
fault is computed as follows:

And in the three-phase-ground fault, the fault currents in 
all three phases are calculated as:

(27)Ia =
3Va

Z0 + Z1 + Z2 + 3Zf

(28)Ib = −
j
√
3Va

Z1 + Z2 + Zf

(29)Ia =
Va

Z1 + Zf

(30)Ib = a2Ia

(31)Ic = aIa

Fig. 6  Operation and analysis of SVC
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The suggested fault analysis approach enables the evalu-
ation of various problem kinds and aids in comprehend-
ing how the power system behaves when it has defects. To 
ensure the stability and dependability of the electrical grid, 
effective protection strategies can be adopted by precisely 
evaluating the fault conditions [19].

Machine Learning for Enhancing Power System 
Network Protection

The proposed smart transmission system for power net-
works incorporates machine learning and IoT technologies 
to enhance power system efficiency, staff safety, and fault 
detection capabilities. The system utilizes physical sensors, 
cameras, and measuring devices to collect real-time data 
from the power system. This data includes measurements 
such as voltage, current, and fault-inception angle. IoT 
technologies are employed to ensure efficient data collec-
tion and monitoring. The following sequence of task to be 
considered:

Data Collection and Processing

Collecting reliable and high-quality data is indeed crucial for 
training machine learning models effectively. The accuracy 
and performance of the model heavily depend on the quality 
of the data it receives. Here’s a breakdown of the data col-
lection process described in your statement:

The initial data is collected from the data center. This 
could include historical data, real-time measurements, or 
other relevant information from the power network. IoT 
devices, such as sensors and GPS satellites, are employed 
to gather data from various sources within the power net-
work. These devices provide measurements, location infor-
mation, and other relevant data. The collected data is sent to 
an expert data center, where it undergoes further processing 
and analysis. Simulation models and input data are used to 

initialize the wide area network data. This may involve set-
ting up simulated scenarios or injecting specific data pat-
terns into the network for testing and analysis. Machine 
code is employed to process and analyze the network data, 
extracting relevant features and patterns. The data collection 
and processing illustrated from Fig. 7.

Input Data Compilation and Visualization

Data from various sensors and monitoring devices installed 
throughout the transmission system are collected. This 
data may include voltage, current, frequency, phase angle, 
and other relevant parameters. The collected data is pre-
processed to clean and normalize it. Data pre-processing 
techniques are used to handle missing values, remove noise, 
and prepare the data for further analysis. Relevant features 
are extracted from the data to represent specific patterns and 
characteristics of normal and fault conditions. Figure 8 illus-
trates the power system network in both healthy and faulty 
conditions, which can be seen in the example below.

Feature Extraction

A crucial phase in machine learning is feature extraction, 
which involves converting unprocessed data into a format 
that can be used to train models. To improve the model’s 
predictive ability, pertinent data is condensed using methods 
like feature selection and dimensionality reduction. Improv-
ing model performance and generalization on untested data 
requires this procedure. The feature is extracted from train-
ing data which is from machine learning algorithm as shown 
in Fig. 9.

Model Selection and Training

Various machine learning algorithms, such as support 
vector machines (SVM), decision trees, random forests, 
or deep neural networks, can be employed. The selected 

Fig. 7  Data collection and processing
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model is trained using the training data, and it learns to 
recognize patterns associated with different fault con-
ditions. The trained machine learning model analyzes 
real-time data from the transmission system and detects 
abnormal patterns that indicate the presence of faults. The 
model can classify the type of fault based on the patterns 
it has learned during training.

This helps in understanding the nature of the fault and 
aids in deciding the appropriate response. In some cases, 
additional sensors are used at different locations in the 

transmission system to enable the model to localize the fault 
accurately.

E. prediction of Result

The protection method can incorporate the machine learning 
model to continually and in real-time monitor the transmis-
sion system. The protection strategy can initiate automated 
procedures to isolate a malfunction and resume normal oper-
ation when one is discovered. The prediction of proposed 

Fig. 8  Visualization of network 
under healthy and fault condi-
tion

Fig. 9  Data collection and feature extraction through code implementation
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results are disseminated in Fig. 10 Additionally, the research 
encompasses an evaluation of network faults through 
positive, negative, and zero sequence components, which 
undergo mathematical analysis. The overarching goal of the 
research is to cultivate an intelligent transmission system 
that harnesses machine learning and IoT (Internet of Things) 
technologies to bolster power system protection, fault detec-
tion, and fault discrimination capabilities. The fusion of 
wavelet analysis [20], Support Vector Machine (SVM), and 
Artificial Neural Networks (ANN) enables effective and pre-
cise fault diagnosis and prediction, ultimately enhancing the 
reliability and performance of the power network [21–23].

Implementation Process: Case Study

The proposed scheme’s combination of discrete wavelet 
transform and artificial neural networks holds great prom-
ise for enhancing fault detection and classification in trans-
mission line protection. The use of wavelet analysis allows 
for a detailed examination of current samples, enabling 
the identification of specific fault patterns. By comparing 
wavelet detailed coefficients with other indices, faults can 
be efficiently detected and categorized. The fault detection 
algorithm, Polyfit analysis method tuning the test data to 
implement machine learning approach effectively. Overall, 
the proposed scheme’s integration of wavelet analysis and 
artificial neural networks offers a promising approach to 
advance transmission system protection is presented in this 
research. By effectively detecting and locating faults, the 
scheme can significantly contribute to enhancing the overall 
reliability and resilience of power transmission networks. 

Addressing the challenges and fine-tuning the algorithms 
will be crucial to achieve optimal performance and ensure 
successful implementation in real world power systems.

In the realm of electrical protection techniques, super-
vised learning algorithms play a pivotal role, particularly 
through the utilization of Artificial Neural Networks (ANN) 
and Support Vector Machines (SVM), to conduct fault 
analysis and classification. To enhance the efficiency of 
fault detection and discrimination, the Integrated Moving 
Window Average Technique is harnessed. In the pursuit of 
uncovering concealed data patterns, unsupervised learning 
methods come into play. Meanwhile, the formulation of load 
balancing forecasts and fault detection within electrical sys-
tem protection are two areas.

Where semi-supervised learning approaches are put to 
use. Wavelet analysis, specifically Bior1.5 mother wavelets, 
is utilized for analyzing steady-state and transient signals 
in fault discrimination and detection. Wavelet coefficients 
extracted from current waveform are used to train the ANN 
after calibrating Polyfit() function implementation, encod-
ing the distance from the source to the fault based on wave-
let indices. Multi-resolution analysis (MRA) of short-term 
current waveform is performed for micro-grid protection, 
facilitating fault detection. The sequence of machine learn-
ing process is discussed through Fig. 11.

Test System

These specifications provide an overview of the power sys-
tem configuration, including the sources, transformers, line 
sections, and line parameters as shown in Fig. 12. It forms 
the basis for further analysis and modeling of the power 
system.

Based on the provided specifications, here are the details 
of the power system configuration:

Utility Grid: Terminal T1 and T2 with Power Rating: 500.
MVA/25 kV Connected through Transformer: 100 MVA, 

25 kV/230 kV.
PV Source: Terminal T3 and T4 with Power Rating: 100 

MVA/ 25 kV Connected through Transformer: 100 MVA, 
25 kV/230 kV.

Wind Farm: Terminal T5: Wind Farm with Power Rat-
ing: 100 MVA/25 kV Connected through Transformer: 100 
MVA, 25 kV/230 kV.

SVC: Connected in the middle of Zone-4 with Rating: 
300 MVAR.

Area-I Specifications: Zone-1,Zone-2 and Zone-3 having 
distances of 25 km,10 km and 110 km.

Area-II Specifications: Zone-4,Zone-5 and Zone-6 having 
distances of 25 km,10 km and 110 km.

Line Parameters:
Resistance per Unit Length R = 0.1153 Ω∕km ; Zero-

Sequence Resistance R0 = 0.4131Ω∕kmFig. 10  Prediction of results
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Inductance per Unit Length L = 1.053 mH/km ; Zero-
Sequence Inductance L0 = 3.324mH/km

Capacitance per Unit Length C = 11.33nF/km; Zero-
Sequence Capacitance C0 = 33.99 nF/km

These values represent the key parameters used in mod-
eling and analyzing power transmission lines in a power 
system.

Result Analysis

The proposed research work focuses on fault categorization, 
fault detection at particular fault inception angles (FIA), dis-
tances, and the effects of the Static Var Compensator (SVC). 
There are different types faults that are taken into consid-
eration, such as single-phase to ground (1ϕG), two phase 
to ground (2ϕG), and three-phase to ground (3ϕG) faults.

The primary study cases encompass fault classifica-
tion, varying faults at specific fault inception angles and 

distances. Detailed coefficients for each zone are calibrated 
to locate faults within that zone. Elevated index values, 
compared to the rest, indicate SLG, DLG, or TLG faults. 
The research further encompasses fault analysis at varying 
distances, with and without the presence of a compensated 
solar-PV connected system.

Phase analysis and fault identification are crucial aspects 
of power system management. Faults are accurately pin-
pointed by comparing 3-phase current index values with a 
threshold. When index values of faulty phases exceed the 
threshold while others remain below, the fault is located 
within those phases. Figure 13 illustrates fault identification 
using phase analysis based on current signals.

When doing Fault Analysis calibration, the impact of 
SVC (Static Var Compensator) compensation is taken into 
account when calculating the index at various distances dur-
ing fault occurrences. In addition, the suggested method-
ology shows a decrease in quantum time when compared 
to conventional techniques. Figures 13, 14, 15 compare 

Fig. 11  Machine learning approach Implementation



 J. Inst. Eng. India Ser. B

1 3

Fig. 12  Proposed wide-area power monitoring system

Fig. 13  current based fault 
identification

Fig. 14  Index based fault 
identification
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different faults, distances, and fault initiation angles to dem-
onstrate the effect of SVC.

The research focuses on fault classification, pinpointing 
fault inception angles and distances, and evaluating the role 
of SVC. The results underscore the efficacy of employing 
wavelet-based methodologies, particularly the sum-of-
detailed coefficients technique, for accelerated fault identifi-
cation. The investigation highlights the influence of SVC on 
fault severity, showcasing the proposed algorithm’s ability 
to outperform considering current signal analysis (Fig. 13), 
fault identification demands a time quantum exceeding 
40  ms, while the sum-of-detailed coefficients analysis 
(Fig. 14) accomplishes fault identification in less than 15 ms. 
This underlines the superiority of the proposed method com-
pared to conventional techniques. Precise fault identifica-
tion is achieved by scrutinizing 3-phase current index values 
against a predefined threshold. Instances where faulty phase 
index values surpass the threshold indicate that the respec-
tive phases are affected, while the remaining phases remain 
healthy (as illustrated in Fig. 14).

SVC compensation helps mitigate fault severity, poten-
tially affecting relay operation based on predefined set-
tings. Additionally, the research showcases a reduction in 
time quantum compared to traditional methods through the 

proposed algorithm. Figures 13, 14, 15, 16 highlight the 
impact of SVC by comparing various faults, distances, and 
fault inception angles.

The study primarily focuses on fault classification, pin-
pointing fault inception angles and distances, and evaluating 
the role of SVC. The efficacy of wavelet-based methodolo-
gies, particularly the sum-of-detailed coefficients technique, 
for accelerated fault identification is emphasized. The inves-
tigation underscores the superiority of the proposed method 
over conventional techniques in terms of time efficiency.

The research further encompasses fault analysis at vary-
ing distances, demonstrating the impact of SVC compensa-
tion on fault severity reduction. The study also acknowledges 
faults in discrete zones through the utilization of sum-of-the-
detailed coefficients of the current signal. The recommended 
report stresses the method’s ability to reduce time quantum, 
from around 0.40–0.15 s, compared to traditional methods. 
Finally, the impact of SVC is observed by comparing vari-
ous faults, distances, and fault inception angles, as depicted 
in Figs. 15 and 16.

Fault analysis results with and without a compensated 
solar- PV linked system are shown in Table 1. It shows how 
to determine the type of fault independent of the fault’s loca-
tion or angle of initiation. Relay functioning based on preset 

Fig. 15  Performance analysis of SVC under fault condition

Fig. 16  Analysis of SVC 
performance under various fault 
inception angles
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Table 1  Comparative Fault analysis with and without SVC Integrated system through Fault Indices at Zone-3

PV-WIND-Integrated System SVC-PV-WIND- Integrated System

0 15 30 60 75 90 0 15 30 60 75 90

Phase-A Current FIA in degrees Phase-A Current FIA in degrees
10 1263.6 1259.0 1300.7 1231.7 1188.4 1148.1 938.33 1110.1 1116.6 1092.7 985.94 973.07
20 1174.8 1121.9 1222.6 1179.5 1132.7 1104.2 865.15 986.63 1069.6 1037.6 945.79 918.55
30 1192.6 1107.5 1194.8 1137.3 1075.0 1059.2 824.03 906.23 1001.7 1000.5 919.41 880.93
40 1149.7 1078.9 1167.8 1095.4 1024.9 1012.1 779.41 855.57 969.98 972.24 904.11 856.05
50 1180.9 1078.6 1162.5 1074.5 993.5 986.5 795.74 834.04 955.27 952.47 889.88 842.62
60 1179.3 1059.3 1141.4 1046.2 964.3 964.7 796.50 810.27 934.32 924.98 868.09 825.81
70 1155.9 1035.8 1127.0 1035.4 960.2 966.4 785.73 791.15 921.57 906.97 857.42 820.91
80 1129.3 1023.3 1126.7 1043.9 974.0 980.5 779.41 790.66 921.11 908.27 859.83 823.40
90 1117.1 1031.8 1127.6 1065.5 999.7 1007.6 785.58 810.38 925.37 919.84 864.07 824.51
100 1148.1 1054.7 1140.4 1086.3 1027.5 1037.6 799.41 833.61 933.33 928.40 868.60 827.99

Phase-B Current FIA in degrees Phase-B Current FIA in degrees
10 251.47 266.23 251.09 207.06 191.61 168.17 111.66 126.73 121.65 116.65 134.18 116.06
20 249.71 260.97 245.71 221.97 201.70 178.71 117.20 128.09 135.27 132.71 141.26 122.44
30 196.44 230.72 207.17 186.18 197.01 177.83 130.58 140.74 128.72 135.85 146.87 122.52
40 205.84 221.30 204.92 184.54 197.06 189.61 122.86 149.35 138.46 136.12 147.05 127.04
50 178.93 210.87 192.08 182.33 185.20 187.74 130.13 130.07 114.30 121.08 139.77 122.35
60 156.77 187.11 180.24 176.14 176.30 172.10 110.34 116.36 101.01 114.36 135.27 114.23
70 141.39 180.60 175.20 169.46 180.33 172.77 96.66 115.76 101.10 123.01 149.02 121.84
80 161.02 193.82 175.89 166.10 186.37 175.80 92.28 119.63 109.02 131.04 153.84 122.99
90 213.04 224.55 194.18 175.13 190.98 178.45 108.04 133.08 110.24 120.91 143.28 120.58
100 219.25 243.50 200.52 195.85 205.81 188.17 115.68 132.68 113.01 123.94 137.70 118.98

Phase-C Current FIA in degrees Phase-C Current FIA in degrees
10 276.56 244.88 259.00 187.67 144.47 178.72 133.87 118.59 131.33 123.66 124.83 120.92
20 245.75 218.91 206.13 159.48 126.31 152.43 154.33 126.75 117.52 108.23 118.13 117.03
30 243.32 235.01 218.11 147.76 120.23 143.79 160.65 123.91 125.15 107.15 113.18 120.70
40 227.71 212.22 180.30 130.17 102.41 127.16 119.10 103.55 115.71 108.29 113.99 118.59
50 252.25 233.84 190.77 146.53 112.41 134.69 178.18 138.41 140.80 124.05 120.29 122.39
60 259.85 234.72 205.23 173.11 129.47 148.74 214.23 161.73 172.04 141.25 127.39 129.85
70 241.85 216.19 186.36 148.84 116.86 146.05 194.69 152.50 160.97 123.11 118.90 118.99
80 214.70 200.08 162.84 127.78 107.50 139.69 174.61 144.88 149.18 117.66 118.68 117.13
90 201.12 198.87 150.59 129.66 104.82 129.19 161.57 142.06 140.21 121.95 119.20 118.17
100 213.17 218.14 158.84 146.57 124.76 150.83 182.30 147.92 130.0 110.20 113.48 115.33

Table 2  Error calibration using 
Actual Distance and ANN 
Calculated Distance at Zones 
3 and 4

AD actual distance, CD-ANN calculated distance, E-% Error

Zone3: Fault type Zone4: Fault type

AD CD E CD E CD E CD E CD E CD E

20 20.04 − 0.04 19.00 0.90 19.38 0.55 18.62 1.25 20.07 − 0.06 19.78 0.20
30 30.55 − 0.50 29.42 0.52 29.81 0.17 31.20 − 1.09 30.11 − 0.10 31.05 − 0.95
40 40.11 − 0.10 42.47 − 2.24 43.02 − 2.74 41.63 − 1.48 43.78 − 3.43 39.13 0.79
50 50.44 − 0.40 51.40 − 1.27 49.78 0.19 48.69 1.19 48.47 1.39 50.56 − 0.50
60 59.01 0.89 61.52 − 1.38 62.64 − 2.40 63.49 − 3.17 59.01 0.90 58.43 1.42
70 72.13 − 1.93 69.25 0.67 69.02 0.88 66.63 3.06 69.35 0.59 70.39 − 0.35
80 79.62 0.34 79.25 0.68 80.43 − 0.39 80.78 − 0.70 82.14 − 1.94 79.54 0.41
90 89.39 0.55 91.53 1.38 91.86 − 1.69 89.79 0.19 88.44 1.41 92.55 − 2.31
100 99.68 0.28 99.65 0.31 100 − 0.03 99.43 0.51 98.43 1.42 103.14 − 2.85
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settings may be impacted by the use of SVC compensation, 
which helps to mitigate fault severity. Table 2 presents the 
% error analysis utilizing both real and ANN calibrated dis-
tance at different fault locations. The research shows that 
the actual distance varies very little between fault locations.

Conclusion

The incorporation of reactive power compensation devices 
and renewable energy sources, in conjunction with methodi-
cal maintenance protocols, is vital in guaranteeing the con-
tinuous distribution of electrical power across a country’s 
grid. Furthermore, in order to reduce disturbances caused by 
both balanced and unbalanced electrical problems, a respon-
sive security system is necessary. This work uses mathemati-
cal and electrical principles to investigate transitory signals 
through wavelet and machine learning techniques, providing 
important new insights into power network issues.

However, demand variations, the unpredictability of 
renewable energy supply, and the complexity of the grid, 
which is made worse by unidentified grid models, make 
it difficult to deploy reactive power devices and renew-
able energy sources. supervised and unsupervised machine 
learning techniques are used in this research to address these 
issues and progress power system analysis.

The suggested algorithm shows effectiveness in identify-
ing and differentiating fault behavior in PV-Wind integrated 
power system networks, with or without Static Var com-
pensators, by employing a wavelet-based machine learning 
technique. The findings show that the algorithm works bet-
ter than conventional methods, providing a viable path for 
improving power transmission systems’ dependability and 
efficiency in the face of changing energy environments.
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