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Abstract The hippocampus segmentation plays a crucial 
role in analyzing brain activities, which is a widely used bio-
marker for Alzheimer’s disease, epilepsy, and schizophrenia 
diagnosis. The automatic segmentation of hippocampus is 
a complex task, because of low signal contrast, small struc-
tural size, and insufficient image resolution. The automatic 
hippocampus segmentation utilizing magnetic resonance 
imaging (MRI) is effective in clinical diagnosis and neuro-
science research. In this manuscript, a new automatic seg-
mentation model in MRI is implemented for hippocampus 
segmentation. Initially, the MRI brain images are collected 
from Neuroimaging Tools and Resources Collaboratory 
(NITRC) and the Open Access Series of Imaging Studies 
(OASIS) databases. Further, color normalization technique 
is employed for improving the visual ability, and reduce the 
impulse noise and machinery noise (mechanical and electri-
cal noises) in the image. Finally, the Fuzzy C Means-based 
Level Set Local Ternary Pattern with Enhanced Edge Indi-
cator (FCM-LSLTPEEI) is proposed for hippocampus seg-
mentation. The proposed model combines FCM and EEI 
functions in the LSLTP model, where the important phase 
is to adapt the EEI function effectively with the LSLTP. The 
experimental outcomes revealed that the proposed FCM-
LSLTPEEI model obtained 98.90% and 99.01% of accuracy 

on the OASIS and NITRC databases, which are superior 
compared to the traditional models.

Keywords Color normalization · Fuzzy C Means · 
Hippocampus segmentation · Level set · Local ternary 
pattern · Magnetic resonance imaging

Introduction

In recent times, hippocampus segmentation has gained more 
attention among the researcher’s community, because it 
plays a crucial role in disease monitoring and diagnosis [1]. 
Schizophrenia, Alzheimer’s disease and epilepsy are neuro-
degenerative disorders, which are characterized by defective 
brain cells like amyloid plaques, and neuro fibrillary tangles 
[2, 3]. The shrinkage of the hippocampus in the brain is the 
major physical characteristic, those who suffer from Schizo-
phrenia, Alzheimer’s disease and epilepsy [4], whereas the 
hippocampus is the thin brain area, which is responsible for 
storing memories. Therefore, a precise and accurate brain 
volume measurement is important to understand the nature 
of brain problems, rigorously [5]. Compared to other imag-
ing modalities such as ultrasound, histopathology, X-ray, and 
computed tomography, the MRI is the extensively utilized 
neuro-imaging modality for clinical valuation of the human 
brain [6].

The MRI modality is effective in understanding the 
structural abnormalities related to brain disorders, where 
the manual/handcrafted hippocampus segmentation con-
sumes more time and requires expert physicians in this 
field. Hence, the expensiveness of the handcrafted segmen-
tation prompted the exploration of automatic hippocampus 
segmentation algorithms [7, 8]. In recent decades, several 
automated segmentation algorithms have been developed for 
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hippocampus segmentation such as FCM, K-means cluster-
ing, superpixel clustering, and level set approach. However, 
the conventional segmentation algorithms suffer from three 
major problems such as requiring previous knowledge about 
the MRI brain images, sensitive to machinery noise, and 
increased computational cost [9, 10]. Therefore, a novel 
automatic hippocampus segmentation model is proposed in 
this manuscript, and its major contributions are determined 
as follows:

• This manuscript aims to propose a superior segmenta-
tion model for improving the accuracy of hippocampus 
segmentation.

• The input MRI brain images are acquired from two online 
databases like NITRC and OASIS.

• The color normalization technique is applied for enhanc-
ing the visibility level of MRI brains and for decreas-
ing the unwanted distortions such as impulse noise and 
machinery noises (mechanical and electrical noises) in 
the brain images.

• The hippocampus segmentation is accomplished utiliz-
ing FCM-LSLTPEEI. Initially, the optimal clusters are 
determined by the FCM clustering technique. Then, hip-
pocampus segmentation is accomplished using a level 
set algorithm with LTP descriptor and EEI function. The 
inclusion of the LTP descriptor and EEI function in the 
level set algorithm effectively excludes the extraneous 
boundary points and preserves the real boundaries for 
achieving better segmentation results.

• At last, the proposed FCM-LSLTPEEI model’s perfor-
mance is validated by means of accuracy, Jaccard coef-
ficient, sensitivity, and dice coefficient.

This manuscript is structured in the following man-
ner: Articles on the topic “hippocampus segmentation” 
are reviewed in Sect. “Literature Review.” The detailed 
investigation of the FCM-LSLTPEEI model is denoted in 
Sect. “Methodology” and the experimental examination of 
the FCM-LSLTPEEI model is stated in Sect. “Experimental 
Results.” The conclusion of the FCM-LSLTPEEI model is 
given in Sect. “Conclusion.”

Literature Review

Carmo et al. [1] have introduced a hippocampus segmenta-
tion model named multiple U-Net-based convolutional neu-
ral network (CNN) for timely detection of Alzheimer and 
epilepsy diseases. The quantitative outcomes demonstrated 
the successfulness of the multiple U-Net-based CNN model 
in hippocampus segmentation than the conventional U-Net 
model. Still, the developed model needs a preprocessing step 
to further improve hippocampus segmentation. Liu and Yan 

[2] developed a new automated model, which combines lat-
tice Boltzmann (LB) and deep belief network (DBN) for 
hippocampus segmentation. The developed model attained 
consistent segmentation results compared to manual seg-
mentation, but its structure was complex.

Shao et al. [3] implemented a classification guided bound-
ary regression (CGBR) model for hippocampal segmenta-
tion. Initially, the 3D displacements were predicted from the 
brain scans, and then the boundary maps were determined 
using a voting method. Further, the information about lon-
gitudinal context and spatial context was combined with the 
voted hippocampal boundary maps for precise hippocampal 
segmentation, where the manual intervention was high in 
the CGBR model that needed to be automated. Shi et al. 
[4] introduced a generative adversarial networks (GANs) 
model for hippocampal segmentation. The GANs comprise 
the adversarial model and U-Net model, which extract local 
information from the collected brain images and determine 
the interrelationship between the feature values. The adver-
sarial training smoothens the image edges for precise hip-
pocampal segmentation. In the medical image segmentation, 
the GANs network structure was unstable.

Vijayalakshmi and Savita [5] introduced an enhanced 
FCM technique for segmenting hippocampus in MRI 
images. In the resulting phase, the enhanced FCM technique 
was tested in light of dice coefficients and Jaccard coeffi-
cients. The prior specification of the number of clusters was 
a main concern in the FCM technique, while implementing 
image segmentation. Pang et al. [6] presented local linear 
mapping (LLM) for effective hippocampus segmentation. 
The LLM model utilizes distance information and labels 
information of the hippocampus boundary for enhancing the 
accuracy of segmentation. Additionally, K-means clustering 
and confidence-based weighted average (CWA) was incor-
porated with the LLM model for accurate segmentation with 
limited memory and computational costs.

Jiang et al. [7] integrated level set algorithm and adap-
tive region growing for hippocampus segmentation in MRI 
images. In the natural MRI brain images, the edge stopping 
function was not exactly zero, which may degrade the hip-
pocampus segmentation. Palumbo et al. [8] used two auto-
matic MRI brain segmentation models: statistical parametric 
mapping (SPM) and free surfer (FS) for hippocampus seg-
mentation. Yang et al. [9] utilized a multi-scale deep CNN 
model for hippocampal subfields segmentation. The devel-
oped multi-scale deep CNN model achieved comparable 
segmentation accuracy in light of dice coefficient, which 
was superior compared to the existing models. Nasser et al. 
[10] introduced U-Net model for hippocampus segmen-
tation. However, the deep CNN and U-Net models were 
computationally expensive, because they needed an enor-
mous amount of images to attain significant segmentation 
performance.
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By surveying existing literature, the hippocampus 
has ambiguous boundaries that makes it challenging in 
segmenting interested regions. Furthermore, raw medi-
cal images have varied pixel intensity levels, due to the 
difference in scanner models and acquisition parameters. 
In order to address the following concerns, a novel auto-
matic segmentation model, FCM-LSLTPEI, is proposed 
in this manuscript for precise hippocampus segmenta-
tion. The proposed FCM-LSLTPEEI effectively handles 
fuzzy and complex boundaries in the raw medical image. 
Additionally, the combination, color normalization with 
FCM-LSLTPEEI model, fully addresses the problem of 
inconsistent contrast by clustering image pixels into fuzzy 
classes based on the intensity value.

Methodology

In medical image analysis, the precise hippocampal 
subfield segmentation in MRI is a challenging process, 
because of the morphological complexity and small struc-
tural size of the hippocampal subfields. The existing seg-
mentation models faced difficulties in obtaining the ideal 
segmentation results. In this manuscript, the hippocam-
pal subfields segmentation is accomplished using FCM-
LSLTPEEI model. In the hippocampus segmentation, the 
proposed system includes three major phases: image col-
lection: OASIS and NITRC databases, image pre-process-
ing: normalization technique and hippocampal segmenta-
tion: FCM-LSLTPEEI model. The working process of the 
developed framework is mentioned in Fig. 1.

Data Description

In this manuscript, the effectiveness of FCM-LSLTPEEI 
model is tested on the OASIS and NITRC databases. The 
NITRC database has T1-weighted MRI images of fifty sub-
jects in which ten subjects are non-epileptics and the resid-
ual forty subjects belong to temporal lobes; here, the term 
“T1” represents “longitudinal magnetization weighted.” In 
this database, the hippocampus labels are given to twenty-
five subjects for model training. The researchers can sub-
mit their segmentation outcome for the residual twenty-five 
images to validate the model performance. In addition, the 
OASIS database comprises T1-weighted cross-sectional 
MRI images of 416 subjects, who belong to the age group 
of 18 to 96. In this OASIS database, the subjects are right-
handed, which includes both women and men. Among 416 
subjects, 100 subjects are over 60 age and are diagnosed 
with moderate Alzheimer’s disease. The collected MRI brain 
images are specified in Fig. 2.

Image Preprocessing

After image collection, preprocessing is carried out for enhanc-
ing the image visibility level by decreasing unwanted distor-
tions in images acquired from OASIS and NITRC databases. 
The majority of the existing preprocessing techniques are uti-
lized for image reconstruction, noise removal, transforming the 
image from binary to grayscale, etc. In this particular appli-
cation, MRI brain images are captured or acquired by using 
MRI equipment, where the acquired hippocampus images are 
contaminated with impulse noise and machinery noise. So, 
the color normalization technique is implemented, which is 
effective in removing the machinery and impulse noise and 
improving the image visibility level. In this context, the color 
normalization technique standardize pixel intensity variations 
that ensure that the intensity range of the hippocampus region 
is uniform throughout all images, which is mathematically 

Fig. 1  Working process of the developed framework
Fig. 2  Collected MRI brain images: a OASIS database and b NITRC 
database
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denoted in Eq. (1). This process makes it easier for the seg-
mentation model (FCM-LSLTPEEI) to delineate and identify 
the hippocampus precisely.

whereI  represents original acquired MRI brain 
images, N  represents normalized MRI brain images, 
newMax − newMin specifies altered new image pixel inten-
sity values, and Min and Max represent minimum and maxi-
mum pixel intensity values, which ranges from 0 to 255. The 
sample normalized MRI brain images of OASIS and NITRC 
databases are represented in Fig. 3.

Hippocampal Segmentation

In this scenario, the normalized MRI brain images are passed 
into the FCM-LSLTPEEI model for hippocampal segmenta-
tion. Firstly, the FCM clustering technique is used for selecting 
the correct clusters and then the LSLTPEEI is employed on the 
selected clusters for hippocampal segmentation. The selection 
of correct clusters improves the segmentation performance in 
ill-defined portions and enhances the object localization in the 
complex template. Generally, the FCM clustering technique 
considers an object as a cluster member with the value of 
degree of membership (DoM) function. The objective func-
tion Oj is minimized in each iteration of the FCM technique, 
which is defined in Eq. (2).

where D indicates data-points of the normalized MRI brain 
imagesN , C represents the number of clusters, �ij denotes 
DoM function of ith data-points xi in the cluster j , cj repre-
sents center vector of the cluster j , the term ‖xi − cj‖ esti-
mates the similarity between the data-points xi and the center 

(1)N = (I −Min) ×
newMax − newMin

Max −Min
+ newMin

(2)Oj =

D�
i=1

C�
j=1

�ij‖xi − cj‖2

vector of the cluster j , and ‖.‖ indicates an absolute value of 
an expression. The DoM function of the data points xi is 
determined using Eq. (3).

where m denotes fuzziness coefficient, and the center vector 
of the cluster j is estimated by using Eq. (4). Furthermore, 
the term ‖xi − ck‖ computes the similarity between the data 
points xi and ck.

In FCM clustering technique, the fuzziness coefficient m 
determines the cluster tolerance, as mentioned in Eqs. (3) 
and (4). The higher value of fuzziness coefficient m denotes 
the larger overlap between the clusters C . The higher value 
of m utilizes more data points xi , and the DoM function is 
neither 0 nor 1. The DoM function validates the number of 
iterations completed by the FCM clustering technique. In 
this scenario, the term “accuracy” a is computed utilizing the 
DoM function from the current iteration k to the succeeding 
iterations k + 1 . The term a is estimated using Eq. (5).

whereΔ indicates higher vector value, and �k
ij
 and �k+1

ij
 repre-

sents DoM function of present iteration k and the succeeding 
iterations k + 1 . The selected clusters are three, which is 
stated in Fig. 4.

After finding the optimal clusters, the level set algo-
rithm is applied to the selected clusters for segmenting the 
hippocampal with the benefit of active contour. The level 
set formulation should be smoother, during the level set 
evolutions. In this manner, the level set has fulfilled the 
condition of the signed distance function (SDF),|∇∅| = 1 , 
where the SDF z = ∅(x, y) represents the image surface. 
The time dependent level set formulation ∅(t, x, y) is 

(3)
�ij =

1

∑C

k=1

� ‖xi−cj‖
‖xi−ck‖

� 2

m−1

(4)cj =

∑D

i=1
�m
ij
× xi

∑D

i=1
�m
ij

(5)a = ΔD
i
ΔC

i

|||�
k+1
ij

− �
k
ij

|||

Fig. 3  Sample normalized MRI brain images: a OASIS database, 
and b NITRC database Fig. 4  Output of selected clusters
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employed for rendering the level set solution instead of 
parametric characterization of active contours. The term 
∅(t, x, y) is utilized for facilitating the evolution of the 
active contours by determining the zero-level-set Γ(t) , 
where the conditions of the term ∅(t, x, y) is indicated in 
Eq. (6).

However, the time variable t  in the level set formula-
tion leads to higher dimensions, so an additional com-
putation is included with the practical advantages. By 
estimating the level set formulation value ∅ , the interface 
Γ(t) is obtained that manages the topological variations 
in the implicit interface Γ(t) . The revolution of level set 
formulation ∅ vs time t  is derived using the chain rule, as 
mentioned in Eqs. (7) and (8).

, whereas

Equation  (7) is rewritten as represented in Eq.  (9). 
Hence, the polar co-ordinates are the suitable description 
for the contour revolution, and it is denoted in Eq. (10). 
Particularly, the evolution ∅ is calculated using the 
numerical level set evolution equation, which is stated in 
Eq. (11).

where Fn specifies normal forces that include external force 
(artificial momentum or image gradient) and internal force 
(area, contour length, mean curvature, etc.), |∇∅| denotes 
normal direction and ∅0(x, y) represents initial contour. The 
driving force F is controlled by the EEI function g for evolv-
ing the initial level set contour toward the local optimal solu-
tion. In addition, the EEI function g emphasizes the gray 
level difference between the directions x and y. The EEI 
function includes other two directions like − 45 and + 45 
degrees for depressing the image orientation effect that is 
mathematically specified in Eqs. (12), (13), and (14).

(6)

⎧
⎪⎨⎪⎩

∅(t, x, y) < 0, (x, y)is insideΓ(t)

∅(t, x, y) = 0, (x, y)is onΓ(t)

∅(t, x, y) > 0, (x, y)is outsideΓ(t)

(7)
�∅

�t
=

�∅

�x

�x

�t
+

�x

�y

�y

�t
+

�∅

�t

(8)
�∅

�x

�x

�t
+

�x

�y

�y

�t
= u∅x + v∅y = F × ∇∅

(9)∅t + F × ∇∅ = 0

(10)∅t +
(
Fn �⃗n + Ft⃗t

)
= 0

(11)
{

�∅

�t
+ Fn|∇∅| = 0

∅(0, x, y) = ∅0(x, y)

where

where N′
G�,x

 and N′
G�,y

 measure the diagonal angles of 45° and 
135°, where these angels help in excluding the extraneous 
boundary points that preserve the real boundaries. The term 
g′ is used for differentiating the positive variational bounda-
ries, still, the MRI brain images suffer from the pathology 
and physiology complexities, so the LTP descriptor is 
employed to deal with incompleteness and imprecision. In 
this segmentation model, the LTP descriptor is employed for 
regularizing the dynamic interface in the level set algorithm. 
However, the segmented image of the FCM-LSLTPEEI 
model is indicated in Fig. 5, and the steps followed in the 
developed framework is mentioned below.

Steps followed in the developed framework
Step 1: Preprocessing: Employed a standard preprocess-

ing technique: color normalization for enhancing the con-
trast and visibility level of brain images.

Step 2: FCM: It allocates every pixel to a cluster with a 
DoM function. The number of clusters is determined based 
on the nature of the image data. The FCM performs cluster-
ing on the preprocessed grayscale image. Based on the pixel 
intensity value, FCM allocates pixels to one of the clusters.

Step 3: Level set initialization: Initialize level set func-
tions for every cluster by utilizing an active contour meth-
odology; here, every level set function states a boundary or 
contour.

Step 4: Enhanced edge indicator: In this step, compute 
enhanced edge indicator maps that highlight texture bounda-
ries and edges in the image.

(12)
g� =

1

1 + ||∇G� × N||�2
=

1

1 +

√(
N�
G�,x

)2

+

(
N�
G�,y

)2

(13)N�
G�,x

= NG�,x
+ (NG�,xy

− NG�,yx
) × cos

�

4

(14)N�
G�,y

= NG�,x
+ (NG�,xy

+ NG�,yx
) × sin

�

4

Fig. 5  Segmented image of FCM-LSLTPEEI model
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Step 5: Level set evolution: Evolve level set functions 
utilizing the enhanced edge indicator map and the FCM 
derived information. The level set functions are iteratively 
updated based on terms like regional regularizers, edge 
information, and other constraints.

Step 6: Post processing: Performed post-processing for 
refining the segmented interested region. The post-process-
ing includes filling holes and eliminating small regions.

Step 7: Evaluation: The proposed FCM-LSLTPEEI 
model’s efficacy is validated using following performance 
metrics such as Jaccard coefficient, sensitivity, accuracy, and 
dice coefficient.

The accurate segmentation of hippocampus in MRI 
images enables researchers and clinicians in monitoring 
disease progression over time. Additionally, the precise hip-
pocampus segmentation assists doctors in planning surgical 
interventions like removal of brain tumor and excisions for 
epilepsy treatment. Furthermore, it helps surgeons in mini-
mizing damage to healthy tissue and leads to improved sur-
gical results.

Experimental Results

The proposed segmentation model: FCM-LSLTPEEI has 
been executed utilizing the MATLAB 2020a tool on a com-
puter with 128 GB random access memory, Windows 11 (64 
bit) operating system and 8 TB hard drive. In the context 
of image segmentation, the FCM-LSLTPEEI model is vali-
dated individually on 316 and 50 MRI scans acquired from 
OASIS and NITRC databases. Additionally, the proposed 
FCM-LSLTPEEI models effectiveness is analyzed by means 
of Jaccard coefficient, sensitivity, accuracy and dice coef-
ficient. The possible variations in the segmented region are 
quantified by means of dice coefficient value, which is an 
overlap measure between two MRI brain images. The dice 
coefficient value ranges from zero to one, where one denotes 
overlap and zero represents no overlap between MRI brain 
images (A and B). The mathematical formula of the dice 
coefficient is denoted in Eq. (15).

The Jaccard coefficient value is mathematically stated in 
Eq. (16). In the hippocampus segmentation, if the proposed 
FCM-LSLTPEEI model matches exactly with the ground 
truth, then the Jaccard coefficient value is 1, or-else 0 (no 
overlap).

Additionally, the sensitivity determines the percentage 
of the active positives, which are precisely identified. The 
performance measure: accuracy reports the percentage of 
the image pixels, which are precisely classified. The math-
ematical depiction of sensitivity and accuracy is specified 
in Eqs. (17) and (18).

where False Positive (FP) indicates that the background pix-
els are incorrectly recognized as hippocampus pixels, False 
Negative (FN) represents that the hippocampus pixels are 
incorrectly recognized as background pixels, True Positive 
(TP) states that the hippocampus pixels are correctly rec-
ognized as hippocampus pixels, and True Negative (TN) 
specifies that the background pixels are correctly recognized 
as background pixels.

Performance Evaluation of OASIS Database

The FCM-LSLTPEEI model’s effectiveness is validated 
using the OASIS database. Additionally, the experimental 
examination is performed in two ways with preprocessing 
and without preprocessing technique. Table 1 represents 
the result of the proposed and the existing segmentation 
algorithms without using the color normalization tech-
nique. Table 1 shows that the FCM-LSLTPEEI model’s 

(15)Dice coeff icient =
2TP

(FP + TP) × (TP + FN)

(16)Jaccard coeff icient =
TP

TP + FP + FN

(17)Sensitivity =
TP

TP + FN

(18)Accuracy =
TP + TN

TP + TN + FP + FN

Table 1  Result of FCM-
LSLTPEEI model without 
normalization technique on 
OASIS database

Without normalization technique

Models Jaccard (%) Dice (%) Accuracy (%) Sensitivity (%)

K-means 20.21 19.25 20.21 23.89
FCM 51.97 52.52 46.50 47.57
Superpixel clustering 10.57 9.91 19.79 20.53
LSLTP 11.19 20.13 75.58 84.21
LSLGTP 60.82 57.97 73.89 70.18
FCM-LSLTP 60.93 74.13 78.23 81.42
FCM-LSLTPEEI 93.68 92.45 90.22 91.08
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effectiveness is validated by comparing its result with exist-
ing segmentation algorithms: k-means clustering, FCM, 
superpixel clustering, LSLTP, Level Set-based Local Gabor 
Transitional Pattern (LSLGTP), and FCM-LSLTP in light of 
Jaccard coefficient, dice coefficient, sensitivity, and accu-
racy. By investigating Table 1, the proposed FCM-LSLT-
PEEI model attained maximum result in the hippocampus 
segmentation with the Jaccard coefficient of 93.68%, dice 
coefficient of 92.45%, accuracy of 90.22%, and sensitivity 
of 91.08%. These outcomes are significant in comparison 
with the existing segmentation algorithms like k-means 
clustering, FCM, superpixel clustering, LSLTP, LSLGTP, 
and FCM-LSLTP. Hence, the graphical comparison of 
FCM-LSLTPEEI model without normalization technique 
on OASIS database is indicated in Fig. 6.

The result of the FCM-LSLTPEEI model with normaliza-
tion technique on the OASIS database is given in Table 2. 
By viewing Tables 1 and 2, the FCM-LSLTPEEI model 
with normalization technique attained better segmentation 
performance compared to the FCM-LSLTPEEI model with-
out normalization technique. As represented in Table 2, the 
FCM-LSLTPEEI model with the normalization technique 
achieved a maximum Jaccard coefficient of 97.90%, dice 

coefficient of 98.94%, accuracy of 98.90%, and sensitivity 
of 97.90% in the hippocampus segmentation. In addition, 
the achieved results are higher compared to the existing 
segmentation algorithms such as k-means clustering, FCM, 
superpixel clustering, LSLTP, LSLGTP and FCM-LSLTP. 
The graphical illustration of FCM-LSLTPEEI model with 
normalization technique on OASIS database is represented 
in Fig. 7.

Performance Evaluation of NITRC Database

Similar to the previous database, the proposed FCM-LSLT-
PEEI model’s performance is validated with and without 
employing the normalization technique. The experimental 
outcome of the FCM-LSLTPEEI model without normaliza-
tion technique on the NITRC database is given in Table 3 by 
means of Jaccard coefficient, dice coefficient, accuracy, and 
sensitivity. As seen in Table 3, the proposed FCM-LSLT-
PEEI model has achieved 90.57% of Jaccard coefficient, 
91.32% of dice coefficient, 90.16% of accuracy, and 89.03% 
of sensitivity, which are higher related to the comparative 
algorithms such as k-means clustering, FCM, superpixel 

Fig. 6  Graphical comparison of 
FCM-LSLTPEEI model without 
normalization technique on 
OASIS database

Table 2  Result of FCM-
LSLTPEEI model with 
normalization technique on 
OASIS database

The bold values indicate the output of our proposed method over the existing methods

With normalization technique

Models Jaccard (%) Dice (%) Accuracy (%) Sensitivity (%)

K-means 25.56 40.72 42.74 40.43
FCM 55.65 53.54 50.26 49.99
Superpixel clustering 16.91 28.92 39.52 39.73
LSLTP 24.82 39.77 42.81 47.22
LSLGTP 70.19 72.48 63.51 70.19
FCM-LSLTP 62.69 77.07 80.22 84.53
FCM-LSLTPEEI 97.90 98.94 98.90 97.90
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clustering, LSLTP, LSLGTP, and FCM-LSLTP in the hip-
pocampus segmentation. Hence, the graphical comparison 
of FCM-LSLTPEEI model without the normalization tech-
nique on NITRC database is depicted in Fig. 8.

In this scenario, the proposed FCM-LSLTPEEI model 
with the normalization technique has obtained higher seg-
mentation results on the NITRC database by means of Jac-
card coefficient, dice coefficient, accuracy, and sensitivity. 

By inspecting Table 4, the FCM-LSLTPEEI model with 
the normalization technique has attained 97.22% of Jaccard 
coefficient, 99.01% of accuracy, 98.59% of dice coefficient, 
and 97.22% of sensitivity in the hippocampus segmenta-
tion. The proposed FCM-LSLTPEEI model with normali-
zation technique achieves several edge maps, which are 
highly close to the interested region boundaries for obtain-
ing a better segmentation performance. Hence, the graphical 

Fig. 7  Graphical comparison 
of FCM-LSLTPEEI model with 
normalization technique on 
OASIS database

Table 3  Result of FCM-
LSLTPEEI model without 
normalization technique on 
NITRC database

Without normalization technique

Models Jaccard (%) Dice (%) Accuracy (%) Sensitivity (%)

K-means 20.49 19.31 26.07 27.01
FCM 53.52 54.38 57.46 58.58
Superpixel clustering 40.45 30.34 43.27 44.20
LSLTP 14.73 25.68 25.16 26
LSLGTP 47.54 70.63 71.63 67.54
FCM-LSLTP 80.98 83.43 85.04 83.51
FCM-LSLTPEEI 90.57 91.32 90.16 89.03

Fig. 8  Graphical comparison of 
FCM-LSLTPEEI model without 
normalization technique on 
NITRC database
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comparison of FCM-LSLTPEEI model with normalization 
technique on NITRC database is specified in Fig. 9.

Comparative Analysis

The analysis between the FCM-LSLTPEEI model and 
the comparative models is specified in Table 5. Liu and 
Yan [2] implemented a novel model on the basis of LB 
and DBN for hippocampus segmentation. In the resulting 
phase, the presented model obtained 84% of dice coeffi-
cient on the OASIS database. Palumbo et al. [8] developed 

Table 4  Result of FCM-
LSLTPEEI model with 
normalization technique on 
NITRC database

The bold values indicate the output of our proposed method over the existing methods

With normalization technique

Models Jaccard (%) Dice (%) Accuracy (%) Sensitivity (%)

K-means 24.96 23.37 28.89 30.05
FCM 58.80 56.51 60.20 63.37
Superpixel clustering 45.51 50.49 60.76 62.94
LSLTP 23.18 37.63 42.38 42.92
LSLGTP 55.02 70.99 79.19 75
FCM-LSLTP 87.50 93.33 95.04 87.50
FCM-LSLTPEEI 97.22 98.59 99.01 97.22

Fig. 9  Graphical comparison 
of FCM-LSLTPEEI model with 
normalization technique on 
NITRC database

Table 5  Analysis between the 
FCM-LSLTPEEI model and 
the comparative models on the 
OASIS database

The bold values indicate the 
output of our proposed method 
over the existing methods

OASIS database

Models Dice 
coeffi-
cient (%)

LB and DBN [2] 84
SPM and FS [8] 80
FCM-LSLTPEEI 97.90

Table 6  Comparative 
examination between the 
FCM-LSLTPEEI model and 
the existing models on NITRC 
database

The bold values indicate the output of our proposed method over the existing methods

NITRC database

Model Database sub-sets Sensitivity (%) Accuracy (%) Dice 
coeffi-
cient (%)

HSMC [10] Nimg2009 90 96 92
Atlas UMCU 87 96 90
Mean 88.5 96 91

HSSE [10] Nimg2009 89 95 91
Atlas UMCU 70 92 78
Mean 79.5 93.5 84.5

FCM-LSLTPEEI Mean 97.22 99.01 98.59
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two automatic MRI brain segmentation models: SPM and 
FS for hippocampus segmentation. The empirical inves-
tigation showed that the presented model attained 80% 
of the dice coefficient on the OASIS database. Related to 
the existing models, the FCM-LSLTPEEI model attained 
97.90% of the dice coefficient value.

Nasser et al. [10] presented two CNN models based on 
U-Net: Hippocampus Segmentation Multi-classes (HSMC) 
and Hippocampus Segmentation Single Entity (HSSE) for 
segmenting hippocampal sub-regions, and hippocampus as 
a single entity. In this study, the implemented model’s per-
formance was validated on the NITRC database. As seen 
in Table 6, the proposed FCM-LSLTPEEI model attained 
high segmentation results compared to the HSSE and HSMC 
models using performance measures like sensitivity, accu-
racy, and dice coefficient.

Conclusion

In this manuscript, the FCM-LSLTPEEI model is devel-
oped for hippocampus segmentation. The proposed system 
comprises three phases such as image collection, image pre-
processing, and hippocampus segmentation. After acquir-
ing MRI brain images from NITRC and OASIS databases, 
color normalization is employed for improving image quality 
and eliminating noise. Finally, the FCM-LSLTPEEI model 
is implemented for hippocampus segmentation. With the 
assistance of the FCM and EEI function in the LSLTP, 
the proposed model provides the edge maps close to the 
interested region boundaries to obtain a better segmenta-
tion performance. The proposed FCM-LSLTPEEI model 
achieved 98.90% and 99.01% of segmentation accuracy on 
the OASIS and NITRC databases. Here, the achieved results 
are significant in comparison with the conventional mod-
els such as k-means clustering, FCM clustering, superpixel 
clustering, FCM-LSLTP, LSLTP and LSLGTP models. In 
the future work, a new deep learning-based classification 
technique can be proposed for hippocampus subtypes/sub-
fields classification.
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